2024年数学高考专题--用构造局部不等式法证明不等式
1.2024年数学高考专题--用构造局部不等式法证明不等式 篇一
构造函数法证明不等式
一、构造分式函数,利用分式函数的单调性证明不等式
【例1】证明不等式:|a||b||ab|
1|a||b|≥1|ab|
证明:构造函数f(x)=
x
1x(x≥0)则f(x)=x1x=1-
11x
在0,上单调递增
∵f(|a| + |b|)=
|a||b|1|a||b|f(|a + b|)=|ab|
1|ab|
且|a| + |b|≥|a + b|
∴f(|a| + |b|)≥f(|a + b|)即所证不等式正确。
二、利用分式函数的奇偶性证明不等式
【例2】证明不等式:x12x<x
2(x≠0)证明:构造函数f(x)=x1
2x
x
2(x0)∵f(-x)=-xx-x2x1-2-x22x1x2x12x
[1-(1-2x)]x2x12xx2=f(x)
∴f(x)是偶函数,其图像关于y轴对称。当x>0时,12x
<0,f(x)<0;
当x<0时,-x>0,故f(x)=f(-x)<0 ∴x1-2xx2<0,即x12
x
<x
2三、构造一次函数,利用一次函数的单调性证明不等式
【例3】已知|a|<1,|b|<1,|c|<1,求证:a + b + c<abc + 2。
证明:构造函数f(c)=(1-ab)c + a + b-
2∵|a|<1,|b|<
1∴-1<ab<1,1-ab>0
∴f(c)的(-1,1)上是增函数
∵f(1)=1-ab + a + b-2=a + b–ab-1=a(1b)=(1c)2>4a(a + b + c)。证明:构造函数f(x)=ax2 +(-b + c)x +(a + b + c)(a≠0)
则f(0)=a + b + c,f(1)=2(a + c)
由(a + c)(a + b + c)<0知:f(0)•f(1)<0 ∴f(x)=0有两个不等的实数根。∴△>0,即(bc)2>4a(a + b + c)
【例5】已知实数a,b,c满足a + b + c = 5,a2 + b2 + c
2= 9,求证a,b,c的值都不小于1,又都 不大于21
3。
证明:构造函数f(x)=2x2+ 2(a + b)x + a2 + b2=(x + a)2 +(x + b)2 ≥0
∵2>0
∴△=[2(a+b)]2-4×2×(a2 + b2)≤0
∴△=4(5-c)2-8(9-c2)≤0 ∴(c-1)(3c-7)≤0
∴1≤c≤213
同理可证:1≤a≤21,1≤b≤2133。
【例6】已知a,b,c∈R,证明:a2 + ac + c2 + 3b(a + b + c)≥0,并指出等号何时成立?
证明:令f(a)= a2 +(c + 3b)a + c2 + 3b2
+ 3bc
△=(c + 3b)2-4(c2 + 3b2 + 3bc)=-3(b + c)2
≤0 恒成立 ∵二次项系数1>0
∴f(a)≥0,即 a2 + ac + c2 + 3b(a + b + c)≥0
又当△=0,即b + c = 0时f(a)=(a + b)2
= 0 ∴当且仅当a=-b=c时才能取等号。
⒉利用一元二次方程根的分布证明不等式
【例7】设a + b + c=1,a2 + b2 + c2 =1,且a>b>c,求证:-
13<c<0
证明:∵a + b + c=1
∴a + b =1-c有a2 + b2 + 2ab=1c
∴a,b是方程x2-(1-c)x+c2-c=0的两个实数根
∵a>b>c,故方程有大于c的两个不等的实数根
构造函数f(x)= x2-(1-c)x+c2-c,则有:
(1c)24(c2c)>0
1c>c
2
f(c)>0
∴-1
3<c<0
⒊综合运用判别式法、一元二次方程根的分布证明不等式
【例8】设a,b是两个不等于0的实数,求证:下列不等式中至少有一个成立。aa22b2
2b1,aa22b2
2b1
证明:设f(x)=bx2axb
2(b≠0)
∵△=(-a)2-2b(-b)=a2+2b2>0
∴抛物线与x轴必有两个交点,其横坐标为x=aa22b2
2b
∴f(-1)=b
2af(0)= b
2f(1)= b
2a
⑴当b>0时,f(0)<0
若a>0,则f(-1)>0
∴点A(-1,f(-1))在x轴上方,点B(0,f(0))在x轴下方
∴抛物线与x轴在(-1,0)内必有一个交点,此时有
aa22b2
2b1 若a<0,则f(1)>0 ∴点C(1,f(1))在x轴上方 ∴抛物线与x轴在(0,1)内必有一个交点,此时有 aa22b22b1 ⑵当b<0时,f(0)>0,此时点B在x轴下方,同理可证A点和C点至少有一点 在x轴上方。故两个不等式至少有一个成立。构造函数法证明不等式,关键在于找到能够反映所要证不等式特征的合适的函数,从而就可以利用该函数的性质去证明不等式。
【2024年数学高考专题--用构造局部不等式法证明不等式】推荐阅读:
数学不等式证明方法论文开题报告08-07
近三年数学高考分析07-18
中职数学不等式课件07-19
高二数学不等式压轴题08-22
七年级数学不等式测验09-12
高一数学 必修五 不等式09-23
数学竞赛教案讲义(9)——不等式07-05
高中数学知识点总结_第六章不等式06-26
江苏高考数学复习专题08-15