《2.7探索勾股定理》说课稿

2024-11-15

《2.7探索勾股定理》说课稿(通用10篇)

1.《2.7探索勾股定理》说课稿 篇一

《勾股定理》说课稿

德源学校:姚凤晶

一、说教材

1、教材所处的地位、作用

这节课是人教版八年级下册第二章第一节《勾股定理》第一课时,它揭示的是直角三角形三边的数量关系,前面已经学习了三角形的三边关系,三角形全等的判定,以及二次根式的运算为勾股定理的学习奠定基础,本节课又为接下来勾股定理的逆定理以及九年级三角函数的学习做铺垫。因此,本节课勾股定理的学习在初中数学学习中起到承上启下的重要作用,2、教学目标

1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯。

3、情感态度与价值观: 让学生体验数学来源于生活并服务于生活,从而了解数学,喜欢数学。

3、教学的重、难点

教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。

二、说教法、学法

教法分析:结合学生和教材的特点,在教学中采用“情境导入----互动探究----活动讨论---应用拓展”的模式, 选择引导探索法。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

三、学情分析

八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,估计本课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

四、教学程序分析

(一)创设情景,导入新课

1)毕达哥拉斯去朋友家做客的故事导入

设计意图:通过故事的讲述,一是提高学生的学习兴趣,二是通过毕达哥拉斯去朋友家做客观察天花板得出勾股定理这一重要发现,引导学生体会生活观察生活的情感!(二)尝试发现,探索新知

1、做一做

①探索活动一:

设计意图:教师设置方格纸当铺垫,为学生计算面积,探索定理提供帮助。

鼓励学生充分经历这一观察、归纳猜想过程,引导学生尝试多种方法求三个正方形面积,从而得出三角形三边的关系。②探索活动二:

(1)观察图3,图4 设计意图:通过上面等腰直角三角形和一般直角三角形的面积的对比,让学生体会数学中由特殊到一般的类比思想.③归纳结论:勾股定理

222 如果直角三角形两直角边分别为a、b,斜边为c ,那么a+b=c。即直角三角形两直角边的平方和等于斜边的平方。

设计意图:这个图形的动态展示过程,由正方形的面积转化到了直角三角形的三边关系,可以更清晰的帮助学生理解勾股定理由形到数的过程,加深学生数学中数形结合思想的感知!以 1

此来突破本节课的难点!

三)知识反馈,巩固深化

设计意图:练习的设计由易到难,达到分层练习,因材施教的目的.从而突破本节课的重点内容

四)课堂小结

1、勾股定理

如果直角三角形两直角边分别为a、b,斜边为c ,那么a2+b2=c2。即直角三角形两直角边的平方和等于斜边的平方。

设计意图:学生自己总结一节课所学的知识,有很强的收获感,并获得成功的喜悦。五:板书设计

1.1 探索勾股定理

(一)做一做—→勾股定理←—议一议

222(直角三角形的直角边分别为a、b,斜边为c,则a+b=c)

六、教学反思:

1、探索定理采用面积法,由等腰直角三角形到一般直角三角形,让学生体会数形结合以及从特殊到一般的数学思想。

2、教学中注重让学生参与课堂,让学生成为自己学习的主人!

2.《2.7探索勾股定理》说课稿 篇二

一、说教材

(一)教材所处的地位和作用

本教学内容是在学生已经学习了整数除法的意义和计算方法、小数的意义和性质、小数加减等知识的基础上进行学习的。在生活中学生也积累了一些小数除法的初步经验。它是在整数除法意义的基础上的进一步扩展,同时,它既是整数除法学习的发展,也是小数四则混合运算和分数小数四则混合运算学习的基础。

(二)教材重难、点的确定

教学重难点:学生自己探索获得“小数除法”的计算方法。因为培养学生自己探索的能力,即独立获取知识的能力,一方面是学生主体地位的体现,另一方面是为了使学生由“学会”向“会学”转变,更有利于学生的可持续性发展。

教学关键:紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行尝试探索、释疑、运用”这一循环过程中,自然地发现“商的小数点要和被乘数的小数点对齐”的道理。

二、说教学目标

知识与能力目标:进一步理解除数是整数的小数除法。正确、熟练地进行除数是整数的小数除法的计算,并能对其中的算理做出合理的解释。

过程与方法目标:使学生经历尝试探索小数除以整数的计算方法的过程,同时培养学生发现问题,尝试解决问题的能力。

情感态度与价值观目标:使学生体会小数除法在实际生活中的应用,感受数学源于生活,生活需要数学,发现数学的魅力,增加学生学习数学积极的学习态度。

三、说教法、学法

如何突破重难点,完成上述三维目标呢?新的课程标准提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正的理解和掌握基本的数学知识与技能、数学思想和方法。基于这一认识的基础上,设计教案的时候,考虑最多的还是怎么设计教学才能真正的在尝试中成为课堂的主人,怎样才能让自己的课像名师上课一样,行云流水,不知不觉中让生尝试探索中学会新知?同时,更想通过尝试的教学模式,坚持以学生的尝试为核心,为学生提供独立思考、大胆尝试,勇于创新的天地。所以,我努力的为学生创设开放的问题背景下的探索活动根据教材的特点,学法上,采用以自主探究发现问题、尝试自学、讨论交流为主要方式进行教学。在教学中创设情境,以生活中的事件为原型为学生提供较丰富、直观的观察材料,激发学生学习的积极性和主动性,引导学生自主尝试、观察、讨论、探究中获取知识,把课堂还给了学生,把学习的主动权交给了学生,体现了以学生为主体,求解简单小数除以整数时遇到的两种不同困难的结果,并应用解决实际问题。整个教学按以下四个环节组织进行:①创设情境,激趣导入,②尝试探究,明理获知,③深化运用,巩固新知,④回顾小结,质疑问难。主要学习方法:转化。另外还有迁移、猜测——验证、归纳。主要教学方法:引领、提升。

四、说教学过程

一、复

1、口算

6.5÷5

7.2÷4

9.6÷8

14×0.5

0.12×3

12.5÷52、笔算

9.8÷7

16.8÷12

二、探究新知

例题

1、王鹏同学坚持晨练。并计划用4周的时间跑完22.4千米的路程。问:他平均每周应跑多少千米?

思考:

思考:

小数除以整数怎样计算?

商的小数点要和被除数的小数点对齐

22.4÷4=

5.6(千米)

答:王鹏平均每周应跑5.6千米

2、做一做

4.08÷8=0.51

1.8÷12=0.15

引导学生竖式计算

想一想

(1)被除数比除数小,整数部分不够商1时,怎么办?

被除数的整数部分不够商1时,要先在商的个位上写0,点上小数点后再除。

(2)除到被除数的末尾仍有余数,怎么办?

被除数末尾仍有0时,就在余数后面添0,再继续除。

三、达标检测

1、练一练

2.52÷6

3.45÷15

0.54÷6

14.21÷7

想一想

整数除法的意义

整数除法的意义是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、比一比,看一看,看谁做的又快又准确。

0.9×6

0.7×0.8

14×0.5

16÷4

200÷8

224÷4

318÷6

345÷3

168÷73、练一练

25.2÷6

34.5÷15

42.84÷7

4.32÷3

四、小结(略)

总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,变”先讲后练”为”先练后讲”,努力创设发现问题、尝试辩析问题,到最后解决问题的一种思维活动。创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过尝试学习、小组讨论、合作交流和多向探索,去发现和创造小数除法的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。

3.勾股定理说课稿 篇三

1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.

3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.

教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用.

教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.

二.说教法和学法

1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.

2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力.

3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.

4.勾股定理说课稿 篇四

1. 教材的地位和作用

华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。

因此他的教育教学价值就具体体现在如下三维目标中:

知识与技能:

1、经历勾股定理的探索过程,体会数形结合思想。

2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。

过程与方法:

1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。

2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。

情感、态度与价值观:

1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。

2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。

3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。

由于八年级的学生具有一定分析能力,但活动经验不足,所以

本节课教学重点:勾股定理的探索过程,并掌握和运用它。

教学难点:分割,补全法证面积相等,探索勾股定理。

二、说教法学法分析:

要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:

先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。

学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。

三、说教学程序设计

1、故事引入新课,激起学生学习兴趣。

牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。

2、探索新知

在这里我设计了四个内容:

①探索等腰直角三角形三边的关系

②边长为3、4、5为边长的直角三角形的三边关系

③学生画两直角边为2,6的直角三角形,探索三边的关系

④三边为a、b、c的直角三角形的三边的关系,(证明)

⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。

体现从特殊到一般的发现问题的过程。

3、新知运用:

①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)

②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?

④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.

4、小结本课:

学完了这节课,你有什么收获?

老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。

反思:

教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。

对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。

5.“勾股定理的应用”说课稿 篇五

大塘学校

李丽霞

一.说教材

本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一.勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用.据此,制定教学目标如下: 1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解.2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.教学重点:勾股定理的应用.教学难点:勾股定理的正确使用.教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.二.说教法和学法

1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力.3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.三.教学程序

本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:(一).回顾

问勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用.(二)

.新授课例

1.如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)

①学生取出自制圆柱,尝试从A点到C点沿圆柱侧面画出几条路线.思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?

思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”.学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出 2.3m CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过.详细解题过程看课本 引导学生完成P58做一做.三.课堂小练 1.课本P58练习第1,2题.2.探究:

一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?

四.小结

直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。

五.布置作业

6.勾股定理说课稿64-69 篇六

今天我说课的内容是《勾股定理》63-69页,我打算从教材,学生,教法学法,教学过程几个方面来进行!

一、教材分析

(1)教材内容

本节课是人教版八年级下册第十八章第一节《勾股定理》的第一课时。勾股定理贯穿了直角三角形的整个教学,是学生在已经掌握了直角三角形有关性质的基础上进行学习的,也是学生进一步学习勾股定理逆定理的基础。教材的编写有助于注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(2)教学目标

知识与技能:

⒈能说出勾股定理的内容;会初步运用勾股定理进行简单的计算及实际运用。

⒉通过探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

过程与方法:在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

情感态度与价值观:

在探究活动中渗透与他人交流、合作的意识和探究精神;通过介绍中国古代勾股定理方面的成就,激发学生热爱祖国及悠久文化的思想感情,激励学生发奋学习。

(3)教学重点、难点

教学重点:勾股定理的证明和运用

教学难点:用面积法等方法证明勾股定理

二、教学对象分析

八年级学生已经学习了直角三角形的一些性质和平方、方程方面的知识,并具备动手、合作交流能力,具有较完备的逻辑推理能力等,这些都是教法与学法要考虑的内容。

三、教法学法分析

教法: 对八年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是:创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业。

学法:根据新课标的要求——培养“可持续发展的学生”,我们要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

四、教学过程设计

(一)创设情景,引出课题 PPT演示图片:一只蚂蚁在一长4米宽3米的长方形木板上的一个顶点处,与它相对的顶点处有一摊蜂蜜,问蚂蚁至少爬多长的路程可以吃到蜂蜜?

以问题激发学生对新课的探究欲望,引导学生将实际问题转化为数学问题,也就是“已知直角三角形的两边,求第三边?”的问题,进而引出解决问题的方法——勾股定理。这种以实际问题作为切入点导入新课,显得自然,而且也反映了生活处处即数学。

(二)实际操作,探究课题

⒈课件出示课本64页的18.1.1

观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现紫色部分面积等于两个蓝色正方形的面积之和,从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠A=90°,AB=AC时,则AB^2+AC^2=BC^2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出65页图18.1.2(一般直角三角形)。学生可以同样求出正方形A、B、C、A’、B’、C’的面积,小组讨论得出结论,(对于以斜边为边长的正方形面积可以采用拼图的方法得到)学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:让学生计算。以让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

(三)归纳验证

归纳:让学生分小组讨论,派代表用规范的数学语言说出结论,再由大家共同讨论得出勾股

222定理的定义如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a+b=c。

验证:让学生动手进行画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

(四)问题解决

⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的喜悦。

⒉学生自学探究1、2并解决书中的问题,期间针对学生暴露的问题具体解释。

3.利用勾股定理在数轴上找到无理数的点

(五)课堂小结

1.分小组从勾股定理内容、证明方法、获取途径进行小结,由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。

2.利用多媒体介绍“勾股定理史话” 如:《周髀算径》中的“勾三股四弦五”规律; 《勾股图解》中五种求解直角三角形的方法。借此对学生进行爱国主义教育,激励学生奋发向上。

(六)布置作业

7.勾股定理的逆定理说课稿 篇七

一、教材分析 : 本节课在教材中的地位作用

“勾股定理的逆定理”一节,在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:

1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:

1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

(三)、学情分析:

尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

二、教学过程 :

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?„„。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

8.正弦定理说课稿 篇八

正弦定理说课稿1

教材地位与作用:

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

学情分析:

作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)

教学目标分析:

知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

教法学法分析:

教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

教学过程

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81。8°,a=42。9cm。解三角形。

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2。在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1、在△ABC中,已知下列条件,解三角形。

(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

2、在△ABC中,已知下列条件,解三角形。

(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

(九)作业布置

正弦定理说课稿2

尊敬的各位专家、评委:

大家好!

我是**县**中学数学教师fwsi,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用“等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立”数学与我有关,数学是有用的,我要用数学,我能用数学“的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用”问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1.1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:(略)

正弦定理说课稿3

尊敬的各位考官:

大家好,我是今天的X号考生,今天我说课的题目是《正弦定理》。

新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。

《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。因此本节的学习有着极其重要的地位。

二、说学情

合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

能证明正弦定理,并能利用正弦定理解决实际问题。

(二)过程与方法

通过正弦定理的推导过程,提高分析问题、解决问题的能力。

(三)情感、态度与价值观

在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦定理。难点:正弦定理的证明。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。

六、说教学过程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

(一)导入新课

首先是导入环节,我将采用温故知新的导入方式。

复习初中学习的任意三角形中的边和角存在什么样的关系。在学生回顾之后,再提问:能否得到这个边、角关系准确量化的表示?引出本节课学习的内容——正弦定理。

通过温故知新的导入方式,能为本节课的后续的教学做好铺垫。

(二)讲解新知

接下来是新课讲授环节,我将分为四部分,分别为在直角三角形中推导正弦定理、在锐角三角形中推导正弦定理、在钝角三角形中推导正弦定理以及正弦定理的应用。

素的过程叫做解三角形。

在介绍完正弦定理后,接下来介绍正弦定理的应用。通过提问:我们利用正弦定理可以解决一些怎样的解三角形问题呢?总结:如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边;如果已知三角形的任意两边与其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角。

整节课,本着学生为主体,教师为主导的设计理念,结合教学内容和学生的特点,利用学生已有的知识经验,采用层次性的问题,一步步引导学生思考交流、发现知识。并且在整个过程中,讲授法、引导法、合作探究等多种教学方法的使用,不但让学生学会知识,也培养学生的学习能力。通过这样的设计,提升学生学习数学的信心,提高学习数学的兴趣。

(三)课堂练习

正弦定理说课稿4

一、教材分析

1.教材地位和作用

在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。 依据教材的上述地位和作用,我确定如下教学目标和重难点

2.教学目标

(1)知识目标:

①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:

①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。 3.教学的重﹑难点

教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明;

教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段

二、教学方法与手段

1.教学方法

教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2.学法指导

学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

3.教学手段

利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

下面我讲解如何运用上述教学方法和手段开展教学过程

三、教学过程设计

教学流程:

引出课题

引出新知

归纳方法

巩固新知

布置作业

四、总结分析:

现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”. ㈡引导学生通过同化,顺应掌握新概念。

㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。

我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的`作用.

设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

谢谢!

正弦定理说课稿5

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

一、教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

二、教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

三、学法

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四、教学过程

(一)创设情境(3分钟)

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)猜想—推理—证明(15分钟)

激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

在三角形中,角与所对的边满足关系

注意:1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

(三)总结--应用(3分钟)

1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(四)讲解例题(8分钟)

1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中

一边的对角时解三角形的各种情形。完了把时间交给学生。

(五)课堂练习(8分钟)

1.在△ABC中,已知下列条件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(六)小结反思(3分钟)

1.它表述了三角形的边与对角的正弦值的关系。

2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

3.会用向量作为数形结合的工具,将几何问题转化为代数问题。

五、教学反思

从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。

正弦定理说课稿6

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

一教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三学法

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五板书设计

正弦定理

1正弦定理2证明方法:3利用正弦定理能够解决两类问题:

(1)平面几何法(1)已知两角和一边

(2)向量法(2)已知两边和其中一边的对角

例题

9.《余弦定理》说课稿(精选) 篇九

一.教材分析

1.地位及作用 “余弦定理”是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2. 课时安排说明

参照教学大纲与课程标准,以及学生的现实情况,本节内容安排两课时,本次说课内容为第一课时。3.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。二.学情分析

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度.三. 目标分析

根据新课程标准突出学生综合素质培养的特点,确定了本节课三位一体的教学目标:

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。情感目标:从实际问题出发,体验数学在实际生活中的运用,让学生感受数学的美,激发学生学习数学的积极性。通过主动探索,合作交流,感受探索的乐趣和成功的体验。养成实事求是的科学态度和契而不舍的钻研精神.四. 教学方法

1.教法分析:

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能突出解决问题的思维。在本节教学中,我将以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,使学生在各种数学活动中掌握各种数学基本技能。

2.学法分析:

教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键。本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,并通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力.五. 教学过程

教学环节:温故知新—探究新知—巩固提高—反思体验。

1.在第一环节中,我提出问题:正弦定理及正弦定理解决的解三角形问题。并引导学生思考正弦定理没有解决的解三角形问题。

设计意图:温故旧知,为学习新知识,做准备。

2.在第二个环节中:通过铁路规划的实际问题,建立数学模型.设计意图:通过实际问题,引发学生思考,激发学生的学习兴趣,在给出技术人员的方法后,提出问题,激起学生求知欲.然后我将全班同学分为三个队,以小组合作的形式分别利用平面几何法,向量法,解析法探究余弦定理.设计意图: 从各个不同的方向探索得到余弦定理,发散学生的思维;让全班同学参与其中,成为学习的主人,共同感受知识的产生过程,体验成功的快乐.通过学生的自主学习,合作交流,得出余弦定理公式,归纳总结定理特点,树立知三求一的思想.3.在第三个环节中,首先带领学生解决之前的实际问题,树立学生信心,使学生有一种跃跃欲试的感觉.然后设置了三道例题: 例1:已知两边及夹角,巩固新知

例2:已知三边求最大角;由学生思考得出余弦定理推论,带动学生思考,观察推论,再次明确知三求一的思想;例3:已知两边及一边对角;引导学生发出此类问题可以通过正,余弦定理两种方法求解.这样设计由浅入深,层次分明,符合学生的认识规律,最后加以总结.接下来通过一道口答题,使学生回忆起勾股定理可以解直角三角形,引发学生思考勾股定理与余弦定理的关系.设计意图:加深学生对余弦定理的认识,强化特殊与一般的对立统一关系。通过知识的外延拓展学生思维,培养学生创造力。

通过抢答环节,调动学生的积极性,通过课堂练习巩固所学知识,加强学生数学知识应用能力的培养.4.在最后一个环节中,通过知识树的形式总结本节课内容,使学生对知识有一个系统的回顾与认识,培养学生归纳概括能力。六.教学理念

10.《勾股定理的应用》说课稿 篇十

各位评委老师,你们好!

今天我说课的题目是《勾股定理的应用》,下面我将从教材的地位和作用、学情、教学目标、教学重、难点、教法和学法、教学过程六个方面对本课进行分析。

一、说教材的地位和作用

本节选自华东师大版八年级数学上册第14章第2节,本节是在掌握勾股定理的基础上对勾股定理的应用之一。教材在编写时注重培养学生的动手操作能力和分析问题的能力。通过实际分析,使学生获得较为直观的印象。通过联系和比较,了解勾股定理在实际生活中的广泛应用。勾股定理作为数学学习的工具,掌握好本节内容对其他内容的学习奠定基础。《勾股定理的应用》分为两个课时,本节课是第一课时。二:说学情

在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些数学问题,同时也具备了一定的合作意识与能力,并对“做数学”有相当的兴趣和积极性,但探究问题的能力还是有限,对生活中的实际问题与勾股定理的联系还不明确,特别是构建数学模型还有困难,自主学习能力也有待于加强。

三、说教学目标

课标要求:能运用勾股定理及逆定理解决简单的实际问题

1.知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度价值观目标:培养合情推理能力,体会数学源于生活又服务于生活,激发学习热情。

四、说教学重、难点

重点:勾股定理及逆定理的应用。

难点:勾股定理的正确使用及体会数学建模思想。

关键:在现实情境中捕捉直角三角形,把实际问题化成勾股定理几何模型,然后针对性解决。

五、说教法和学法

1、教法分析

我主要采用了 引导发现法

问题教学法

演示法

合作探究法

练习巩固法等

2、学法分析

我主要采用了:自主探究学习法

实验法

合作探究学习

个人展示法

练习巩固法等

六、说教学程序

【第一环节

情境引入 导入新课】

本环节我设计了一个受台风影响树木断裂的问题,学生先独立思考,然后二人复述,再上黑板展示,最后教师引导学生发现解题思路,引出本节内容。

设计意图:通过给学生提供现实背景及生活素材,激发学生为解决问题而生成的求知欲。并体会数学来源于生活。

【第二环节

自主学习】 我把例1设计了5个问题,例2设计了4个问题,然后学生课前根据老师

设计问题自主探究,独立完成

设计意图:

1、通过自主学习,培养学生的自主探究学习的能力。

2、问题具体化,让学生亲历知识生成的过程,明确本节的重点,突破难点。

3、问题的层次化引导了学生数学模型的建立。

4、要求学生把解题过程规范写出来,让学生在理解知识内涵,掌握规律的基础上规范解题。

【第三环节

合作探究】

小组合作探究学习,教师巡视指导。

设计意图:一方面培养学生团队合作意识。另一方面让学生在讨论辨析中明辨事理,突破疑点和难点。

【第四环节

师生点拨] 通过合作探究,小组提出问题,学生解决问题,老师补充。老师质疑,师生共同解决。

设计意图:通过问题的解决和思维的展示,突破本节课的重难点。

【第五环节

巩固训练】

1、课本练习1

2、【2008年德州中考】有两棵树,一棵树高8米,另一颗树高2米,两树相距8米,一只小鸟从一颗树飞到另一棵树梢至少飞

米。

(黑板展示3号完成1题,2号完成2题,然后全体学生共同点评)设计意图:

1、让学生在训练中反思基础,认识规律,熟练掌握其应用方法,明确应用的条件

2、通过黑板测验激发学生的竞争力,同时巩固本节课的内容。【第五环节

拓展创新】

如图,在长、宽都是5,高是7的长方体纸箱的外部,一B只蚂蚁从顶点A沿纸箱表面爬到顶点B处,求它所行的最短路线的长。

(学生先独立思考,然后各抒己见,教师引导达成共识,最后老师继续拓展,长宽不一样又应该怎么求)A

设计意图:进一步深化和拓展本节知识的内涵与外延,从而提高学生的思维能力。

【第五环节

课堂小结】

鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系。

上一篇:三年级上科学期末测试下一篇:学校保卫年终总结