立体几何证明平行专题(10篇)
1.立体几何证明平行专题 篇一
高一垂直证明基础练习专项
1、点线面位置关系判定问题
解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都是点集,所以在考虑线面关系时从集合与集合的包含关系或者集合与集合的交、并、补关系来判定;(2)几何:把集合与几何关系结合来判定线线,线面,面面关系
例1、设是三个不重合的平面,l是直线,给出下列命题
①若,则;
②若l上两点到的距离相等,则;
③若
④若
其中正确的命题是
()
A.①②
B.②③
C.②④
D.③④
解析:
①由面面垂直关系已知不成立,可能垂直也可能相交平行。错误;②由点到面距离易知直线还可能和平面相交;③因为所以在平面β内一定有一直线垂直α所以正确④根据平行关系易知正确
答案选D
练习1、设,是两条不同的直线,是一个平面,则下列命题正确的是()
(A)若,则
(B)若,则
(C)若,则
(D)若,则
练习2、给定下列四个命题:
()
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是
A.①和②
B.②和③
C.③和④
D.②和④
练习3.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是()
A.若,则
B.若,则
C.若,则
D.若,则
练习4.顺次连接空间四边形各边中点所成的四边形必定是()
A、平行四边形
B、菱形
C、正方形
D、梯形
练习题答案:练习1:B;练习2:
D;练习3:
C;练习4:
A;
2、空间中线面的平行垂直证明
例1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面
解析:
证明PC平行于面EBD,只需在面EBD内找一条直线和已知直线平行即可
E为中点,首先考虑构造等腰三角形中位线,取AC中点O连接EO即可
证明:取AC的中点O,连接EO,例2:三棱柱—中,为的中点,为的中点,为的中点,证明:平面∥平面
解析:面面平行的证明定理,证明两平面内两组相交直线平行,即把面面
平行问题转化为线线平行问题,按解决线线平行的思路即可解决问题
证明:连接BC1,EF
分别为BC、B1C1、BB1、CC1的中点,例3:如图:四棱锥—中,⊥平面,底面是矩形,为的中点,⊥,证明:⊥
解析:线线垂直的证明分同平面直线垂直证明和异平面垂直证明,在处理异平面垂直证
明问题时,优先考虑证明一直线垂直于另一直线所在平面,转化为线面垂直证明问题
即证明PD垂直于面BEF即可
证明:点
例4:如图:四棱锥—中,⊥平面,底面是矩形,证明:平面⊥平面
练习1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面
练习2:如图:三棱柱—中,为的中点,证明:∥平面
练习3:如图:三棱柱—中,为的中点,证明:∥平面
练习4:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面
练习5:如图:三棱柱—中,、分别为、的中点,证明:∥平面
练习6:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面
练习7:如图:三棱柱—中,为的中点,为的中点,证明:∥平面
练习8:如图:四棱锥—中,⊥平面,底面是梯形,∥,,为的中点,证明:⊥
练习9:如图:直三棱柱—中,,、分别为、的中点,为的中点,证明:⊥
练习10:如图:四棱锥—中,⊥平面,⊥,,⊥,⊥,为的中点,证明:⊥
练习11:如图:四棱锥—中,底面是矩形,平面⊥平面,证明:平面⊥平面
练习12:如图:五面体中,是正方形,⊥平面,∥,证明:平面⊥平面
练习13:如图:四棱锥—中,⊥平面,是菱形,为的中点,证明:平面⊥平面
练习14:如图:四棱锥—中,平面⊥平面,,证明:平面⊥平面
2.立体几何证明平行专题 篇二
以下题为例讲解证明 线面平行,面面平行 的方法
证明线面平行
方法一:找到平面内一直线 与 该直线平行
作EG//B1B , FH//C1C
由题意可知AE=BF, 且在正方体中△AB1B≌△BC1C
所以EG平行且等于FH ,EFHG是平行四边形
找到了面ABCD中的直线GH与EF平行,所以得证
方法二:找到直线所在的平面 与 该平面平行
取点H使EH//AB,由题意可知B1E=C1F ,AE=BF,根据
△AB1B≌△C1BB1, 有B1E/C1F =AE/BF=B1H/HB ,所以FH//B1C1//BC, 找到了直线所在的平面EHF平行于面ABCD,所以得证
方法三:建立空间直角坐标系 :平面的法向量与直线所在向量的数量积等于0
以……为原点,……分别为X,Y,Z轴,设AB=1,E(0,t,1-t),F(1-t,0,1-t),得出EF(1-t,-t,0)
求出面ABCD的法向量(这题可直接看出来)
n=(0,0,1)
n*EF=0 ,所以得证
证明面面平行
方法一:找到一个平面内的两条直线分别平行另一个平面内的两条直线
(如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。)
AC1//AC,AB//CD1,BC1//AD1
AC1∩AB≠∅ ……所以得证
方法二:建立空间直角坐标系 :两平面的法向量平行(不再举例)
证明线线平行
方法一:平行于同一直线的两直线平行
方法二:两平行平面,另一平面与这两平面相交,两条交线平行
方法三:建立空间直角坐标系
3.立体几何证明平行专题 篇三
BE
4.(2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)证明PQ⊥平面ABCD;
B
图
14.(福建19)(本小题满分12分)
如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;
20.(全国Ⅱ20)(本小题满分12分)
如图,正四棱柱ABCDA1B1C1D1中,AA12AB4,点E在CC1上且C1E3EC.
平面BED;(Ⅰ)证明:AC
1DA1
A
10.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ
E C
0。
2
(Ⅰ)求证:平面VAB⊥平面VCD;
26.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,BAC90,A1A平面ABC,A1AABAC2AC112,D为BC中点.(Ⅰ)证明:平面A1AD平面BCC1B1;
A1 B1
C1
A
3.(2006年浙江卷)如图,在四棱锥P-ABCD中,底面
为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(Ⅰ)求证:PB⊥DM;
1.(2006年北京卷)如图,在底面为平行四边表的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,点E是PD的中点.(Ⅰ)求证:ACPB;(Ⅱ)求证:PB//平面AEC12.(天津•理•19题)如图,在四棱锥PABCD中,PA,ACCD,ABC60°,底面ABC,ABADP
B
C
PAABBC,E是PC的中点.
(Ⅰ)证明CDAE;
(Ⅱ)证明PD平面ABE;
A
B
4.初中几何证明与计算专题复习 篇四
1.全等三角形
例题1:如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点
P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.P
D
C B
例题2:如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.
求证:AFBFEF.
A
E
B G
变式训练1:如图,在△ABC中,ABAC,BAC40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使BADCAE90°.
(1)求DBC的度数;
(2)求证:BDCE.
D C
变式训练2:如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.变式训练3:如图:已知在△ABC中,ABAC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若A90°,求证:四边形DFAE是正方形.D
F
C
2.相似三角形
例题1:如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB6,AE9,DE2,求EF的长.
例题2:如图,点D在△ABC的边AB上,连结CD,∠1=∠B,AD=4,AC=5,求 BD 的长?
B
变式训练1:已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为()
(A)1:2(B)1:4(C)2:1(D)4:
1变式训练2:如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12mB.10mC.8mD.7m
3.四边形
例题1:下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形 C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形
例题2:已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E. 求证:(1)△BFC≌△DFC;
(2)AD=DE.
例题3:如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论.
P
B
D
C 变式训练1:如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60º.(1)求证:AB⊥AC;
(2)若DC=6,求梯形ABCD的面积.变式训练2:在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF。⑴判断四边形AECD的形状(不证明);
⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明。
⑶若CD=2,求四边形BCFE的面积。圆
例题1:如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
例题2:如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB2,OD3,则BC的长为()A.
B.
C
.
D
.
变式训练1:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使
DCBD,连结AC,过点D作DEAC,垂足为E.(1)求证:ABAC;(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,BAC60,求DE的长.
变式训练2:在Rt△ABC中,ACB90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.(1)求证:BDBF;
5.立体几何证明平行专题 篇五
2011年高考试题数学(理科)选修系列:几何证明选讲
一、选择题:
1.(2011年高考北京卷理科5)如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G。给出下列三个结论:
①AD+AE=AB+BC+CA; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A.①②C.①③B.②③ D.①②③
【答案】A
【解析】由切线长定理得AD=AE,BD=BF,CE=CF,所以AB+BC+CA=AB+BD+CE=AD+AE,故①正确; 由切割线定理知,AD2= AF·AG,故②正确,所以选A.二、填空题:
1.(2011年高考天津卷理科12)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则线段CE
2【答案】
【解析】设AF=4x,BF==2x,BE=x,则由相交弦定理得:DF2AFFB,2即8x2,即x
2142,由切割线定理得:CEEBEA7x27
4,CE22.(2011年高考湖南卷理科11)如图2,A,E是半圆周上的两个三等分点,直
径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则的AF长为.答案:2
33解析:如图2中,连接EC,AB,OB,由A,E是半圆周上的两个三等分点可知:∠EBC=30°,且
用心爱心专心 1
⊿ABO是正三角形,所以EC=2,BE=23,BD=1,且AF=BF=
233
.故填
233
评析:本小题主要考查平面几何中直线与圆的位置关系问题,涉及与圆有关的定理的运用.3.(2011年高考广东卷理科15)(几何证明选讲选做题)如图4,过圆O外一点P分别作圆的切线和割线交圆于A,B。且PB7,C是圆上一点使得
BC5,BACAPB,则AB
【答案】35.【解析】由题得PABACB
ABC
PBAB
ABBC
7AB
AB
5PAB~AB
4.(2011年高考陕西卷理科15)(几何证明选做题)如图BD,AEBC,ACD90,且AB6,AC4,AD12,则BE
【答案】【解析】:
ACD900,AD12,AC4 CD
又RtABERtADC所以
三、解答题:
ABAD
BEDC,即BE
ABDCAD
61
2
1.(2011年高考辽宁卷理科22)(本小题满分10分)选修4-1:几何证明选讲 如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且
EC=ED.(I)证明:CD//AB;
又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆
2.(2011年高考全国新课标卷理科22)(本小题满分10分)选修4-1几何证明选讲 如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知AEm,ACn,AD,AB 为方程x214xmn0的两根,(1)证明 C,B,D,E四点共圆;
(2)若A90,m4,n6,求C,B,D,E四点所在圆的半径 分析:(1)按照四点共圆的条件证明;(2)运用相似三角形与圆、四边形、方程的性质及关系计算。
解析:(I)连接DE,根据题意在△ADE和△ACB中,ADAB
mn
AE
AC
D
CE
第22题图
即
ADAC
AEAB
.又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB
所以C,B,D,E四点共圆。
(Ⅱ)m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂
线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90,故GH∥AB, HF∥AC.HF=AG=5,DF=
2(12-2)=5.故C,B,D,E四点所在圆的半径为52
点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。
3.(2011年高考江苏卷21)选修4-1:几何证明选讲(本小题满分10分)
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1r2),圆O1的弦AB交圆O2于点C(O1不在AB上),求证:AB:AC为定值。
解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得AOAB2CAO1B,AC
O1BOr12C
r
6.证明平行与垂直 篇六
平行与垂直
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a
a分别与AB,AC垂
直,则向量a为
A.1,1,1
B.-1,-1,-1
C.1,1,1或-1,-1,-1
D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-
23.已知a=1,,,b=3,,
A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.15401533,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0
B.a=1,3,5,n=1,0,1
C.a=0,2,1,n=-1,0,-1
D.a=1,-1,3,n=0,3,1
二、填空题每小题6分,共24分
6.设a=1,2,0,b=1,0,1,则“c=(的条件.7.若|a|
b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为
212,,)”是“c⊥a,c⊥b且c为单位向量”33
39.设A是空间任一点,n为空间内任一非零向量,则适合条件AM·n=0的点M的轨迹
是.三、解答题共41分
10.(13分)已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量.
11.(14分)如图,已知ABCD—A1B1C1D1是棱长为3的正
方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;
2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,3垂足为H,求证:EM⊥面BCC1B1.12.(14分)如图所示,已知正方形ABCD和矩形ACEF所在的平
面互相垂直,AB2,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.答案
1.C2.A3.B4.B5.D
6.充分不必要7.118118,2,或,2,8.1 555
5.9.过A点且以n为法向量的平面
10.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).2211∴AM1,0,,AN0,1设平面AMN的一个法向量为n=x,y,z, 22
1nAMyz02 1nANxyz0
2令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).
∴(-3,2,-4)为平面AMN的一个法向量.
11.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).
→→所以BD1=BE+BF,故BD1,BE,BF共面.
又它们有公共点B,所以E、B、F、D1四点共面.
(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3
得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).
→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 ,0、(0,0,1).
22
∴NE=-1.22
又点A、M的坐标分别是2,2,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F2,2,1),22
DF=(0,2,1).
7.两直线平行证明 篇七
1、如图,已知∠ABC=30,∠ADC=60,DE为ADC的平分线,请你判断哪两条直线平行,并说明理由。
2、如图,在△ABC中,∠B=90,D在AC边上,DF⊥BC于点F,DE⊥AB于点E,那么AB与DF平行吗?CB与DE平行吗?为什么?
3、如图,根据下列条件:∠A=∠AOD,∠ACB=∠F,∠BED+∠B=180,分别可以判定哪两条直线平行?并说明判定的依据。
4、如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?
5、如图,EF平分∠BEG,GF平分∠DGE,若∠1+∠2=90,猜测AB、CD的位置关系,并说明理由。
6、如图,AE∥BC,∠
B=
∠C,试说明∠
1=∠2。
7、如图,AD∥BC,∠A = ∠C,试说明AB∥CD8、如图,AB∥CD,∠B=∠D,试说明BF∥DE.9、如图,AB∥CD,∠1=∠2,∠3=∠4,求∠EMF的度数10、1.已知∠BED=∠B+∠D,试判断AB与CD的位置关系。
2.如图,AB∥CD,猜想∠E与∠B、∠D之间有何关系,试说明你的结论。
11、如图,AB∥CD, ∠1: ∠2:
∠,求证:
BA平分
8.立体几何证明平行专题 篇八
作业 第八编 立体几何 主备人 张灵芝 总第41期
班级 姓名 等第 §8.7 立体几何中的向量问题(Ⅰ)——平行与垂直
一、填空题
1.若平面、的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则,的位置关系是(用“平行”,“垂直”,“相交但不垂直”填空).2.已知AB=(2,4,5),CD=(3,x,y),若AB∥CD,则x= ,y=.3.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是(写出一个即可).4.已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为.5.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a=.6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是.7.若A(0,2,1955),B(1,-1,),C(-2,1,)是平面内三点,设平面的法向量a=(x,y,z),则888x∶y∶z=.8.若|a|=17,b=(1,2,-2),c=(2,3,6),且a⊥b,a⊥c,则a=.二、解答题
9.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.81
10.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.11.在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.(1)求证:平面AED⊥平面A1FD1;
9.平行与垂直的证明 篇九
1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.
ADBC
1D
B
C
2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;
3.如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF
A
E
B
C
AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC10,D是BC边的中点.(Ⅰ)求证:
5.如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.
6.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE
上确定一点N,使得MN∥平面DAE.7.如图,在棱长为1的正方体ABCDA1B1C1D1中:(1)求异面直线BC1与AA1所成的角的大小;(2)求三棱锥B
1A1C
1B的体积。(3)求证:B1D
平面A1C1B
ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;
8. 如图:S是平行四边形ABCD平面外一点,M,N分别是
SA,BD上的点,且
AMBN
=,求证:MN//平面SBC SMND
P
9. 如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB∥平面AEC.
E
A
B
D C
10.在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,平面CDE是等边三角形,棱EF//BC且EF=
BC.
2(I)证明:FO∥平面CDE;
(II)设BC=CD,证明EO⊥平面CDF.
11. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱 PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明PA//平面EDB;(Ⅱ)证明PB⊥平面EFD.
12.如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.
(1)求证:CDAE;(2)求证:PD面ABE.
13.如图在三棱锥PABC中,PA平面ABC,C E
C
P
B
A
DB
_P
ABBCCA3,M为AB的中点,四点P、A、M、C
都在球O的球面上。
(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;
14.如图,在四棱锥SABCD中,SAAB2,SBSD ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
_A_C
_M
_B
D
C
课后练习
1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;(II)求证:B1C1⊥平面ABB1A
(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面 BDE,并说明理由。
2.如图,已知AB平面ACD,DE平面ACD,三角形ACD 为等边三角形,ADDE2AB,F为CD的中点(1)求证:AF//平面BCE;
(2)求证:平面BCE平面CDE;
1. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直 角梯形,∠ABC=∠BAD=90°,PA=BC=
AD.2
(I)求证:平面PAC⊥平面PCD;
(II)在棱PD上是否存在一点E,使CE∥平面PAB?若 存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB
2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
D
C
【课后记】 1.设计思路(1)两课时;
(2)认识棱柱与棱锥之间的内在联系;(3)掌握探寻几何证明的思路和方法;(4)强调书写的规范性 2.实际效果:
(1)用时两节半课;
10.立体几何证明平行专题 篇十
【2013年高考会这样考】
考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用.
【复习指导】
复习本讲时,只要掌握好教材上的内容,熟练教材上的习题即可达到高考的要求,该部分的复习以基础知识、基本方法为主,掌握好解决问题的基本技能即可
.基础梳理
1.平行截割定理
(1)平行线等分线段定理及其推论 ①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.
②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.
(2)平行截割定理及其推论 ①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例. ②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.
(3)三角形角平分线的性质 三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.
(4)梯形的中位线定理 梯形的中位线平行于两底,并且等于两底和的一半.
2.相似三角形
(1)相似三角形的判定
①判定定理
a.两角对应相等的两个三角形相似.
b.两边对应成比例且夹角相等的两个三角形相似.
c
②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
③直角三角形相似的特殊判定
斜边与一条直角边对应成比例的两个直角三角形相似.
(2)相似三角形的性质 相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.
(3)直角三角形射影定理
直角三角形一条直角边的平方等于该直角边在斜边上射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.
双基自测
1.如图所示,已知a∥b∥c,直线m、n分别与a、b、c交于点A,B,C和A′,3B′,C′,如果AB=BC=1,A′B′=2,则B′C′=________.相似的三角形________.2.如图所示,BD、CE是△ABC的高,BD、CE交于F,写出图中所有与△ACE
3.(2011·西安模拟)如图,在△ABC中,M、N分别是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是________.
4.如图所示,已知DE∥BC,BF∶EF=3∶2,则AC∶AE=______,AD∶DB=________.5.(2010·广东)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CDa=2E、F分别为线段AB、AD的中点,则EF=________.考向一平行截割定理的应用
【例1】►(2011·广州测试(二))在梯形ABCD中,AD∥BC,AD=2,BC=5,点E、AE3F分别在AB、CD上,且EF∥AD,若EB4EF的长为________.
【训练1】 如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为________.
考向二 相似三角形的判定和性质的应用
【例2】►已知,如图,在△ABC中,AB=AC,BD⊥AC,点D是垂足. 求证:BC2=2CD·AC.5,DE=6,则BF=________.3【训练2】(2011·惠州调研)如图,在△ABC中,DE∥BC,DF∥AC,AE∶AC=3∶
考向三 直角三角形射影定理的应用
【例3】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.【训练3】 在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD与△CBD的相似比为________.
高考中几何证明选讲问题(一)
从近两年新课标高考试题可以看出,高考主要以填空题的形式考查平行截割定理和相似三角形判定定理的应用,难度不大.
【立体几何证明平行专题】推荐阅读:
立体几何中线面平行垂直性质判定20107-19
高考立体几何证明垂直09-14
几何证明与计算专题09-25
立体几何解题思路10-05
立体几何复习资料109-17
高中数学立体几何的有效学习方法08-23
用向量方法解立体几何题(老师用)10-07
2022年中考数学二轮复习讲义专题几何图形的归纳,猜想,证明10-03
立体几何中探索性问题的向量解法06-23