初中高中数学公式大全

2024-09-10

初中高中数学公式大全(精选8篇)

1.初中高中数学公式大全 篇一

积化和差,指初等数学三角函数部分的一组恒等式。

公式

sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

证明

法1

积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。

即只需要把等式右边用两角和差公式拆开就能证明:

sinαsinβ=-1/2[-2sinαsinβ]

=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]

=-1/2[cos(α+β)-cos(α-β)]

其他的3个式子也是相同的证明方法。

(该证明法逆向推导可用于和差化积的计算,参见和差化积)

法2

根据欧拉公式,e^ix=cosx+isinx

令x=a+b

得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)

所以cos(a+b)=cosacosb-sinasinb

sin(a+b)=sinacosb+sinbcosa

记忆方法

积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。

【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是

[-2,2],而积的值域确是[-1,1],因此除以2是必须的。

也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:

cos(α-β)-cos(α+β)

=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)

=2sinαsinβ

故最后需要除以2。

[高中数学公式:积化和差公式]

2.初中高中数学公式大全 篇二

1.公式法

若所求数列为等差或等比数列,则代入相应的通项公式即可。

2.分析、观察法

通过观察分析找出项序号与符号,项序号与项之间的关系。

3.拆项法

将数列中的每一项拆成与项序号n之间的关系易于表示的几部分之和、差等。

例1:求数列,…的通项公式。

解:整数部分:1、2、3、4…的通项为n;分数部分:…的通项为,∴数列的通项公式

4.利用an与Sn的关系法

通项an与前n项和Sn之间的关系为

例2:已知数列{an}的前n项和Sn满足Sn=n2-2n,求此数列的通项公式。

解:当n=1时,a1=S1=12-2×1=-1。

当n≥2时,an=Sn-Sn-1=n2-2n-[(n-1)2-2(n-1)]=2n-3。

∴当n=1时,a1=-1也满足an=2n-3。故通项公式an=2n-3。

5.利用递推公式求数列的通项公式

(1)累加法

当an-an-1=f(n)满足一定规律(f(n)能裂项)时,利用an=(anan-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1来求出an。

例3:已知数列{an}中,求数列{an}的通项公式。

解:

(2)累积法

当满足一定条件时,可用来求出an。

6.构造新数列法(配凑法)

对已知条件进行适当的变形,构造成新的等差或等比数列。

(1)对于an+1=p·an+q型(p,q为常数),设an+1+x=p(an+x),则即数列为首项,p为公比的等比数列。

(2)对于an+1-an=k·an+1an型(k为常数,a1≠0),可变形为为首项,-k为公差的等差数列。

(3)取倒数及换元法,对于型(b≠0,c≠0),两边取倒数后变形就与构造新数列法中的(2)类似。

以上所述方法,学生可以根据具体的问题而选用,其中以构造新数列法(配凑法)最具灵活性和创新性,既能锻炼和提高学生思维的灵活性、逻辑性,又能培养学生的创造性思维能力、逻辑推理能力、运算技能。

参考文献

[1]曹跃.求数列通项策略.

3.关于高中数学导数公式的应用研究 篇三

【关键词】高中数学;导数公式;应用研究;函数的思想

在高中对数学导数公式的应用非常广泛,由于在高中理科中,数理化有着相互融合相互渗透的效果,所以在对高中数学导数公式中也可以对物理、化学进行一定的应用,在对高中数学导数公式进行应用中,要求学生们能够有着充分的解题思路,对高中数学导数公式进行一定的推导,能够使得在对问题的解答中将复杂的问题进行一步步的简单化,不仅能够增加学生们在解题中形成的信心,而且还能够促进学生们对高中数学的学习。

一高中数学导数公式在解题中的应用

(一)利用高中数学导数公式对函数切线的求解

1.在导数的几何意义中,曲线在某点的导数值就是曲线在该点的切线斜率,在对函数的应用中,要特别注意函数在某点处可导,曲线就在该点存在切线,但是曲线在该点有曲线,未必就有可导性。

2.例子:函数f(x)在点a处导数的意义,它就是曲线y=f(x)在点坐标P(a,b)处的切线的斜率,在对函数切线进行求解时,假设曲线y=f(x)在点P(a,b)处切线的斜率就是f'(a),则相应的切线方程就是y-b=f'(a)(x-a)。

(二)利用高中数学导数公式对函数的极值的求解

1.在高中数学利用导数对函数值的求解中,能够显现出导数对函数极值求解的应用。

2.例子:求f(x)=x3-12x的极值

解:把函数的定义域为R,f'(x)=3x2-12=3(x+2)(x-2),设f'(x)=0,得到x=±2,当,x>2或x<-2时,,f'(x)>0,所以函数在(负无穷,-2)和(2,正无穷)上是增函数;当-2

(三)利用高中数学导数公式对函数的单调性进行判断

1.在数学坐标系中,对函数的单调性进行判断,可以根据切线上的斜率来判断,当切线的斜率大于零时,就可以准确的判断出单调的递增,当斜率为正时,判断出函数的单调为递增的,当斜率为负时,判断出函数的单调为递减的。通过利用导数对函数的单调性分析中,也可以对函数单调区间问题进行解决。

2.例子:一次函数y=kx-k在R上单调递增,它的图像过第几象限?

解:从一次函数中可以简单的看出函数必过坐标(1,0),所以说函数过第一和第四象限,又因为一次函数是单调递增的,所以k>0,可以分析出函数过第三象限,所以说它的图像过第一,第三,第四象限。

例子:求函数f(x)=x3-3x+1的单调区间

解:当f(x)=x3-3x+1,可以得出f'(x)=3x2-3,当3x2-3=0,即x=±1时,f(x)有极值=3和-1,因为x=2,f(2)=3;x=1,f(1)=-1;x=0,f(0)=1;x=-1,f(-1)=3;x=-2,f(-2)=-1。所以说,函数在(负无穷,-1]单调递增,在[-1,1]单调递减,在[1,正无穷)单调递增。

二、高中数学导数应用的价值

在对高中数学导数公式的利用中,要始终坚持函数的思想,能够更方便的去解决问题,由于在高中理科的学习中,都会用到导数的应用,在一些重要的概念中都会用导数来进行表示,在物理的学习中,对远动物体的瞬时速度和加速度都可以用导数来表示。导数公式的应用,是有函数推导出来的过程,运用导数公式推导的过程,也是巩固数学的过程,在对函数进行求解时,要明确的掌握和运用导数的公式,在导数的运用中不仅是在学习中对函数的求解,而且还能在生活中运用,在实际生活中遇到求效率最高,利润最大的问题,这些问题在高中数学导数中可以看做是函数的最大值,把这些问题转换为高中数学函数的问题,进而对变为求函数的最大值的问题,在对高中数学导数公式进行应用,不仅要掌握了解公式导数的概念和方法,而且还会把数学导数与其它的知识进行结合,能够在解决问题中找到合适的办法。

三、对高中数学导数公式应用后的反思

近年来,在高考中,高中数学的导数公式的地位越来越重,它已经成为解决数学问题中必不可少的一种工具,在教学中,要让学生们充分的了解数学的导数公式,要重视课堂的教学,教师们要了解学生们在应用导数公式中出现的各种问题,老师们要针对这些问题,对学生们再一次的进行讲解,能够使得学生们在解决问题中更熟练的应用导数公式,在教学中,要从导数的定义进行讲解,能进一步的增强学生们对导数学习的兴趣,能让学生们了解到不论是在学习中还是在生活中,对导数的应用是非常重要的。

结语:

综上所述,在高中数学中对导数公式的应用是非常重要的,在利用导数进行解决函数的问题中,要始终贯穿函数的思想,可以对函数的单调性,函数的区间,函数的切线,函数的极值进行问题上的解决,在新课标改革的背景下,要培养学生们正确的掌握导数公式的应用,对于导数在解决问题中有着积极的作用,能够为以后导数公式的学习打下了坚实的基础。

【参考文献】

[1]王利,邓鹏.加强高中与大学导数公式知识的衔接[J].教学学习与研究,2012(17)

[2]王彩霞.浅谈三角函数的几种解法[J].中学教学(上),2012(08)

[3]程守权.高效数学课堂的设计意图展现—案例分析“应用导数研究函数的最值”[J].高中数理化,2012(02)

[4]农仕科.关于高中数学导数公式的应用研究[J].教学参谋(解法探究),2014(02)

[5]赵波.谈解答数学题的几种意识[J].中学教学(上),2011(03)

4.高中数学公式和定理 篇四

数学公式和定理揭示了数学知识的基本规律,具有一定的形式符号化的抽象性和概括性的特征,是学生数学认知水平发展的重要学习载体.要学好数学,必须对公式和定理有十分正确透彻的理解,也就是说,牢固掌握并能灵活运用数学公式和定理是提高数学能力的重要前提.在教学过程中我积累了一些经验,下面我就数学公式和定理的教学谈谈我的一些体会.

在数学公式和定理的学习中,需要学生具备多方面的能力,如对新旧知识联系的理解能力,对数学规律的归纳与探究能力,对公式与定理的推理与演绎能力,对知识的存储、记忆与应用能力等.

数学公式和定理教学容易产生“一背二套”、“公式加例题”的形式,这种形式的教学往往使学生头脑里只留下公式、定理的外壳,忽视它们的来龙去脉,不明确它们运用的条件和范围.事实上在公式与定理的教学中一般应有如下五个环节:引入,推导,条件和特例,应用,最后把它们纳入学生的知识体系.因此,教师在教学中注意创设情景、激发兴趣,充分发挥学生在学习中的主体作用,就能避免学生的死记硬背,生搬硬套,做到“活学活用”.

一、知识引入多样化,激发学生求知欲

公式、定理的引入是发展学生思维、培养探索能力的首要环节.一开始的引入如能把学生吸引住,将大大激发学生的求知欲,使他们的思维处于最亢奋的状态.在平时的教学中,我发现,“开门见山”式的引入虽然省时省力,但学生学习缺乏兴趣,只等着老师讲.而针对不同的公式与定理,采用多样化的引入,能很好地吸引学生,激发他们的探究欲望.在教学实践中,我常常采用以下几种引入的方法:

1、实践引入:

教师要善于搜集与公式和定理相关的、有趣味的模型,使学生在接触课题时,就产生强烈的探求欲望.例如在引入线面垂直的判定定理时,先让学生自己动手做一个实验:如图,拿一张矩形纸片,对折后略为展开,使矩形被折的一边紧贴在桌面上,教师告诉学生,折痕和桌面是垂直的,这是为什么呢?学生一下子被吸引住了,急切地想知道这是为什么.

2、类比引入:

数学具有系统性,因此新公式、新定理可以由旧公式、旧定理通过类比迁移而来. 例如在引入余

选校网专业大全 历年分数线 上万张大学图片 大学视频 院校库

弦定理时,先给出三角形的三边a、b、c,其中c为最大边.讨论c2与a2b2的关系.同学们已经学过勾股定理,C900时有c2a2b2.教师向学生提出这样的问题,在斜三角形中a2b2与c2有什么关系?学生通过探究发现,当C900时有c2a2b2;当C900时有c2a2b2.通过对三种三角形的类比,学生会有很大的兴趣去讨论它们之间存在怎样的一种关系式.此时教师引导学生归纳出在△ABC中,三边a、b、c有这样一种关系:c2a2b2m.进而得出m的符号与C的关系.这种引入方法,使学生对新公式、新定理不感到突然,而是旧公式、旧定理的延伸与扩展.

3、发现法引入:

由于公式是对客观实践的抽象,为了完成这一过程,我带领学生重涉前人探索之路去发现公式.这种发现式的引入,对培养学生观察与探究能力有重要作用.在应用这种引入方法时,关键是创设使学生感兴趣的情景.例如在学习等差数列求和公式时,我给同学们讲了他们都知道的高斯小时候求12100的故事,并加上了故事的尾巴:“在高斯说出了他的方法后,老师又提出了新的问题,请学生计算14798”,大家想一想,该如何计算?更一般的等差数列前n项a1a2an的计算公式我们能推导出来吗?同学们兴致盎然,通过独立探究与合作讨论,很快就得出了等差数列前n项和的公式.

二、重视推导和证明,弄清来龙去脉

公式的推导和定理的证明是教学的核心.由于第一环节恰当地引入,学生的心理状态是“兴趣被激发,对证明、推导有迫切感”,因此我抓住机会给予证明.如果在教学中不重视推导,学生对它们的来龙去脉就会很模糊.在推导过程的教学中,我尽量发挥学生的主体作用,能让学生推导的就让学生推导,并注意指出学生推导中的错误.有些推导过程繁琐的公式与定理,教师注重分析,讲清为什么用这样的方法.如果公式和定理有几种推导方法,教学中不是面面俱到,而是让学生课后思考不同的推导方法,在下一节课上进行交流.

三、强调条件和特例

公式成立是要有一定条件的.学生学习公式的最大弱点是把公式作为“万能公式”乱用乱套.因此教学中要强调公式成立的条件.如含有正切的三角公式的角的范围是有限制的.在公式推导完成后,我常常让学生做一个小练习,从中发现他们忽略条件而产生的错误,让学生讨论公式应用中要注意公式成立的条件.

另外,公式虽具有一定的普遍意义,但对一些具有特殊条件的情形要给予注意,这就是公式的特例.如三角诱导公式及倍角公式是两角和与差公式的特例.而一般结论往往是特例的发展与完善.如正弦定理是三角形面积公式的发展与推广.

四、注重灵活应用,提高学生学习能力数学教学的目的在于应用,因此,在公式和定理的教学中,必须使学生灵活巧妙地应用公式和定理,提高、培养学生实际运用的能力.在此教学环节中要注意引导学生灵活应用公式.

每个公式本身均可作各种变化,为了在更广阔的背景中运用公式,就需要对公式本身进各种变形.这一层次的思维量大,可很好地培养学生思维的灵活性.例如:ai(i1,2,,n)为正数,求证

222a12a2a2ana122(a1a2an),可把基本不等式a2b22ab变形为

a2b2ab

2来用.再如求tg200tg400tg200tg400的值,是将tg()的公式变形使用.

五、把公式和定理纳入学生的知识体系

数学知识系统性强.学生学习数学知识后,可以形成相应的认知结构.认知结构的发展,是“同化”与“顺应”调节的辨证统一.“同化”指的是新知识与旧知识相一致时,新知识被纳入原有认知结构中;“顺应”指的是新知识与旧知识不一致时,对原有的认知结构进行调节,以适应新的知识结构.如在复数的教学中,判别式小于零的实系数一元两次方程的根与系数的关系可同化到学生已有的知识结构中;而|z|2zz,就要学生将旧知识“顺应”到新的知识机构中去.因此,在教学中我们要注意把新知识纳入学生的认知结构中.为此,我在教学中充分注意以下几点:

1、注意公式推导过程中包含的数学思想方法.

在公式与定理的推导过程中,常常要用到数形结合,从特殊到一般,分类讨论等数学思想方法.在推导过程中,教师常从特殊的情景出发进行分析.例如,在推导sinxa(|a|1)解集时,从a的特殊值开始进行分析.在推导等比数列前n项和公式时,要分q1与q1两种情况讨论.在教学中要充分挖掘公式与定理推导中的数学思想方法,可以有效地培养学生的思维的严密性与灵活性.

2、公式和定理的推广及引申

由于学生学习的阶段性和教材要求等原因,中学数学有许多公式和定理是可以推广的,教会学生推广,让学生看清知识的内部联系,是把知识纳入学生认知结构的有效途径.例如三角形面积公式S11absinC中bsinC就是a边上的高,它其实就是初中所学的公式Sah的另一种新的形式.再如学2

2习了祖暅原理后,让学生把它引申到平面几何的相应命题.

3、比较与鉴别

比较与鉴别是把公式和定理纳入学生认知结构的必由之路.在教学的后阶段,一般是应用所学新知识来解题.如果仅仅盯住新公式,学生就失去一次独立选择公式的机会,这无助于学生认知结构的发展.特别是公式较多时,学生一旦面临复杂的问题,他们会无所适从.因此在教学中用注意公式的比较

与鉴别,选择合适的公式解题,使学生的解题能力得到发展.例如有这样一道题:在△ABC中,已知a3,b1,B300 ,求c边的长.如果用正弦定理来解,要分两步而且面临∠A是一解还是两解的选择,而直接用余弦定理就可一步到位.在数学公式和定理的教学中,教师必须使学生到达以下目标:一是要用准确的数学语言表述公式与定理的内容;二是要学会分析其条件与结论间的内在关系;三是要正确地掌握其证明及推导方法;四是要明确其使用的条件和适用的范围及应用的规律;五是要考虑对一些重要的公式和定理能否作适当的引申与推广.我们在教学中,必须以适当的方式将公式和定理的发生发展过程展示给学生,让学生通过自主学习获取知识,并领悟公式和定理所包含的教学思想方法,灵活地掌握知识,应用知识,达到提高分析问题,解决问题的能力.

参考资料:

李果民《中学数学教学建模》 广西教育出版社2003年

选校网高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库(按ctrl 点击打开)

选校网()是为高三同学和家长提 供高考选校信息的一个网站。国内目前有2000多所高校,高考过后留给考生和家长选校的时间紧、高校多、专业数量更是庞大,高考选校信息纷繁、复杂,高三 同学在面对高考选校时会不知所措。选校网就是为考生整理高考信息,这里有1517专业介绍,近2000所高校简介、图片、视频信息。选校网,力致成为您最 强有力的选校工具!

产品介绍:

1.大学搜索:介绍近2000所高校最详细的大学信息,包括招生简章,以及考生最需要的学校招生办公室联系方式及学校地址等.2.高校专业搜索:这里包含了中国1517个专业介绍,考生查询专业一目了然,同时包含了专业就业信息,给考生报考以就业参考。

3.图片搜索:这里有11万张全国高校清晰图片,考生查询学校环境、校园风景可以一览无余。4视频搜索:视频搜索包含了6162个视频信息,大学视频、城市视频、访谈视频都会在考生选校时给考生很大帮助。

5.问答:对于高考选校信息或者院校还有其他疑问将自己的问题写在这里,你会得到详尽解答。6新闻:高考新闻、大学新闻、报考信息等栏目都是为考生和家长量身定做,和同类新闻网站相比更有针对性。

7.千校榜:把高校分成各类,让考生选校时根据类别加以区分,根据排名选择自己喜欢的高校。8选校课堂:这里全部的信息都是以考生选校、选校技巧、经验为核心,让专家为您解答高考选校的经验和技巧。

9.阳光大厅:考生经过一年紧张的学习生活心理压力有待缓解和释放,阳光大厅给家长以心灵启示,给考生心里以阳光。

10.港澳直通:很多考生都梦想去香港澳门读大学,港澳直通,给考生的梦想一个放飞的地方,港澳直通囊括了港澳大学的所有信息,将一切更直观的呈现给考生。

11.选校社区:注册您真是的信息,在这里可以和大家分享您所在城市的到校信息,读到好的选校文章也可以拿到这里,让大家共同品尝,您还可以加入到不同的大学、专业、城市群组,和大家一起讨论这些话题分享信息。

选校网,为你整合众多高考选校信息,只为考生、家长能够从中受益。让我们共同为考生的未来,努力!我们在不断完善,以更加符合家长和同学们的需求。

5.高中数学-三角函数公式 篇五

sin(A+B)= sinAcosB+cosAsinBsin(A-B)= sinAcosB-cosAsinBcos(A+B)= cosAcosB-sinAsinBcos(A-B)= cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)倍角公式

tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A 三倍角公式

sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3-3cosA

tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式

sin(A/2)= √{(1--cosA)/2}cos(A/2)= √{(1+cosA)/2}

tan(A/2)= √{(1--cosA)/(1+cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)和差化积

sin(a)+sin(b)= 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)= 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)= 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)= 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)= 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b)= 1/2*[sin(a+b)-sin(a-b)] 诱导公式

sin(-a)=-sin(a)cos(-a)= cos(a)sin(π/2-a)= cos(a)cos(π/2-a)= sin(a)sin(π/2+a)= cos(a)cos(π/2+a)=-sin(a)sin(π-a)= sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tanA = sinA/cosA 万能公式

sin(a)= [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a)= {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a)= [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a·sin(a)+b·cos(a)= [√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a·sin(a)-b·cos(a)= [√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)= [sin(a/2)+cos(a/2)]^2;1-sin(a)= [sin(a/2)-cos(a/2)]^2;;公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanα公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)= tanα公式三:

任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanα公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanα公式六:

6.初中常用数学公式 篇六

①三组对应边分别相等的两个三角形全等(简称SSS或“边边边”);

②有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”);

③有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”);

④有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”);

⑤直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”);

⑥三条中线(或高、角平分线)分别对应相等的两个三角形全等。

2、角

①定理1在角的平分线上的点到这个角的两边的距离相等

②定理2到一个角的两边的距离相同的点,在这个角的平分线上

3、三角形

①直角三角形斜边上的中线等于斜边上的一半

②勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

③和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

④等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

⑤推论1等腰三角形顶角的平分线平分底边并且垂直于底边

⑥等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

⑦推论3等边三角形的各角都相等,并且每一个角都等于60°

⑧等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

⑨推论1三个角都相等的三角形是等边三角形

⑨推论2有一个角等于60°的等腰三角形是等边三角形

7.初中高中数学公式大全 篇七

题一 4名同学各写了一张卡片,先收集在一起,然后从中每人拿一张别人写的卡片,则四张卡片的不同分发方式共有多少种。

题二 将编号为a,b,c,d的四个小球分别放入编号为a,b,c,d的四个袋子中,要求每个袋子放一个小球,且小球的编号与袋子的编号不能相同,则共有多少种不同的放法。

以上问题都是元素都不在自己相同编号的位置上的排列问题,我们把带有这种限制条件的排列问题叫做全错位排列问题。

题三 五位同学坐在一排,现让五位同学重新坐,至多有两位同学坐自己原来的位置,则不同的坐法有_____种。

题三可以分情况解决:

第一种情况,所有同学都不坐自己原来的位置;

第二种情况,恰有一位同学坐自己原来的位置;

第三种情况,恰有两位同学坐自己原来的位置。

对于第一种情况,就是以上提到的全错位排列问题;对于第二、第三种情况有部分元素还占有原来的位置,其余元素可以归结为全错位排列问题,我们把这种排列问题为部分错位排列问题。

设n个元素全错位排列的排列数为Tn,则对于题三,第一种情况排列数为T5,第二种情况先确定一个排原来位置的同学有5种可能,其余四个同学全错位排列,所以第二种情况的排列数为5T4,第三种情况先确定两个排原位的同学,有=10种,所以第三种情况的排列数为10T3,因此题三的答案为:T5+5T4+10T3。

由于生活中很多这样的问题,所以我们有必要探索研究一下全错位排列问题的解决方法。

二、全错位排列数的一个递推关系式

(1)一般地,若有n个编号为1、2、3、… 、i、…、j、…、n的不同元素a1、a2、a3、…、ai、…、aj、…、an,排列在一排,而且每个元素都不排在与它编号相同的位置,这样的全错位排列数为Tn ,则 T2=1,T3=2,Tn= (n-1) ( Tn-1+Tn-2) ,(n≥3)。

(2)确立。递推关系

对于n=1,2时显然有T1=0,T2=1。

当n≥3时,在n个不同元素中任取一个元素ai不排在与它编号相对应的第i 位,必排在剩下n-1 个位置中的一个上面,所以ai有n-1 种排列方法。

对ai每一种排列方法,如ai排在 j位,对应j位的元素aj的排列位置总有两种情况:

与此同时,ai仍排在j位,aj不排在i位,则aj有n-1个位置可排,除ai外,还有n-1个元素,每个元素均有一个不能排的位置,问题就转化为n-1个元素全错位排列,排列数为Tn-1,由乘法原理和加法原理可以得出:Tn=(n-1)(Tn-1+Tn-2) ,(n≥3)。

根据上面递推关系可以分别算出T4=9,T5=44,所以题三的答案应该为44+5×9+10×2=109。

三、全错位排列数的一个通项公式

(1)探索与发现

(2)猜想与归纳

根据上面的探索,我们可以猜想n个元素全错位排列的排列数为

(3)。证明(数学归纳法)

n=2,3时(*)式显然成立;

假设n=k,k-1时(*)式成立,则当n=k+1时,有前面的递推关系式可得:

Tk+1= k(Tk+Tk-1)

∴n=k+1时(*)式仍然成立。

从上面过程可知n个元素全错位排列的排列数为:

四、全错位排列数的另一个递推关系式

由T2=1,T3=2,T4=9,T5=44,T6=265可以得出:

T3=3T2-1;

T4=4T3+1;

T5=5T4-1;

T6=6T5+1

于是猜想得Tn=nTn-1+ 。

证明:由上面已经证明的全错位排列数公式可以知道

所以有Tn=nTn-1+(-1)n 。

五、综上所述

8.初中数学完全平方公式 篇八

教学设计和反思

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则。

③多项式乘以多项式法则。

2、学生对将要习的内容已经具备的知识水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从特殊性的计算上升到一般性的规律,得出公式,并能正确的应用公式。

三、教学目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展推理能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

3、了解(a+b)2=a2+2ab+b2的几何背景。

(二)知识与技能:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下基础。

(三)数学思考:能收集、选择、处理数学信息,并做出合理的推断或大胆的猜测;

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题。

(五)情感与态度:敢于面对数学活动中的困难并有独立克服困难勇气和运用知识解决问题的成功体验,有学好数学的自信心;通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性;在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。

四、教学重点;完全平方公式的准确应用。

五、教学难点;掌握公式中字母表达式的意义及灵活运用公式进行计算。

六、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、归纳、应用等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

七、教学媒体:投影仪

八、教学和活动过程:

1、整个教学过程叙述:

教材“完全平方公式”内容共含两课时。本节是其中的第一课时,需40分钟完成。

2、具体教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?

(x+3)2=_______________,(x-3)2=_______________,这些式子的左边和右边有什么规律?再做几个试一试:

(2m+3n)2=_______________,(2m-3n)2=_______________,〈二〉、分析问题

1、[学生回答] 分组交流、讨论 多项式的结构特点

(2m+3n)2=(2m)2+2·2m·3n+(3n)2=4m2+12mn+9n2,(2m-3n)2=(2m)2-2·2m·3n+(3n)2=4m2-12mn+9n2,(1)原式的特点。两数和的平方。

(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

初中数学的教学设计和反思

教师的教学能力包括教学设计能力、教学实施能力、教学反思能力,其中,教学设计能力和教学实施能力是教师的基本能力,教学反思能力则是教师教育能力的核心和进一步发展的关键。

初中数学教学设计的步骤

(1)评测学生需求,识别教学目标,进行目标分析,设计目标要求:

在新理念下,课堂教学目标不再停留在以往仅仅关注知识技能等结果性目标,而是全面考察过程性目标和结果性目标,对数学来说,要将教学目标细化为知识技能,数学思考,解决问题,情感态度价值观等多方面的具体目标。

(2)分析学生学习情况与教学环境,撰写行动目标,进行任务分析,要搞清学生的起点是什么?在达到可能的学习目标时,学生主要的认知障碍和可能的认知途径是怎样的?学生达成目标的主要途径和方法又是怎样的?

(3)设计教学思路和实施步骤

设计具体的教学过程,创设哪些具体的情景?通过哪些线索开展教学活动?学生可能提出哪

些问题?附设计说明。

(4)开发评测工具,设计并从事规范化评估

为了达到教学目标,教学设计时,必须考虑评估学生是否达到教学目标的具体标准是什么?通过哪些指导性策略和具体的指导性材料能够促进和改善学生的学习行为?

(5)设计与从事综述性评估,进行教后反思

主要思考:是否达到预期目标?没有达到的话,其中的原因是什么?能提供改进的方案吗?有哪些突发的灵感?课堂上有没有印象最深的讨论以及学生独特的想法?等等.

在新的教育理念下,初中数学教学设计的着眼点,应放在如何将外在的教育理念物化为自己的数学教学设计行为和课堂教学行为,如何创设恰当的问题情景,如何激发学生强烈的探究欲望上;应放在师与生、生与生之间有效的互动上;应放在如何更好地组织引导,激励学生进行自主学习、探究学习等数学活动上;应放在如何在数学知识与技能的学习过程中有效地实现过程与方法、情感态度价值观目标;应放在如何使学生真正理解数学知识上;应放在如何培养学生的探索意识、创新能力上。数学教学设计的过程,既是教学内容分析、学情分析的过程,也是数学教学目标分析的过程,既是教学策略设计的过程,也是教学过程的设计过程,同时,也要关注教学反思问题,以便于及时反思自己的教学行为,适时改进教学。

3、[学生回答] 完全平方公式的数学表达式:两数差的平方,等于它们平方的和,减去它们乘积的两倍

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.4、完全平方公式的几何背景:

用不同的形式表示图形的总面积

并进行比较,你发现了什么?

(a+b)2=a2+2ab+b你能运用公式计算下列各式吗?

(-x-3)2=______________,(-x+3)2=_______________。

(-2m-3n)2=______________,(-2m+3n)2=_______________。

上面各式的计算结果:

(-x-3)2=(-x)2-2·(-x)·3+32=x2+6xn+9___,(-x+3)2=(-x)2+2·(-x)·3+32=x2-6x+9____。

(-2m-3n)2=(2m)2-2·(-2m)·3n+(3n)2=4m2+12mn+9n2,(-2m+3n)2=(2m)2+2·(-2m)·3n+(3n)2=4m2-12mn+9n2。

你从上面的计算结果中发现了什么规律?根据这个规律,完全平方公式又如何叙述?

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:

()①(a-2b)2= a2-2ab+b()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2= n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3①(x+y)2 =______________;②(-y-x)2 =_______________;

③(2x+3)2 =_____________;④(3a-2)2 =_______________;

⑤(4x-5y)2 =______________;⑥(0.5m+n)2 =___________;

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、练习填空

(1)(-3a+2b)2=________________________________

(2)(-5-m)2 =__________________________________

(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________

(5)(mn-3)2=__________________________________

(6)(ab3-1.5)2=_________________________________

(7)(2xy2+x2y)2=_______________________________

(8)(2n3-4m2)=________________________________

〈六〉、自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业] P34 随堂练习P36习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

数学教学工作,坚持面向全体学生,围绕“人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展”展开教学工作,跟以往进行比较反思,具体体现在:

一、摒弃旧的教学观念,建立全新的教学理念。在教学中,改变了自己在以往在课堂教学中的主角角色:将要讲述的内容为自己编好“剧本”,然后自己在讲坛上尽情演绎,将知识灌输给学生。而现在是给学生编好“剧本”,为学生创设学习的情境,让学生在课堂上充当主角,在教师的引导下进行演绎,自主、合作地获取知识。事实证明,这一教学理念的实施,从根本上改变了过去教师讲学生听的师生各自信息无互动的枯燥学习模式,使学生参与学习的热情大大提高,学习的效果不言而喻。如:在“有理数加减运算法则”的教学上,常规的教法是通过“向东、向西的连续走动几米,最终是向东或向西走了几米并结合数轴总结出有理数加法法则,然后再学习有理数减法转化为加法的法则,最后各自按法则计算”,而大家很清楚,课本上的有理数加法法则对于刚升上初中的学生来说是很繁、很难的:确定和的符号要分同号、异号,异号的还看绝对值谁大;确定和的绝对值又要分将两加数的绝对值是相加还是相减。这里学生存在着几大困难:首先,“绝对值”是新学知识,学生并不熟练,还要要求学生用“绝对值”来总结出加减法则更难。其次,法则分类复杂:类中再分类。因此,学生要运用法则计算很难,不要说理解法则,就是要记清楚法则也不是易事。因此,我们在新的教学理念及“非线性主干循环活动型单元教学模式”的启导下,采取了用学生所熟悉的“输赢球”的模式去让学生学习这一主干内容:堂上让本班学生与邻班学生含别代表足球赛的交战双方,用正、负数表示上、下半场及全场的输赢球数,通过若干有代性的案例的计算,学生很容易理解和体会到:上、下半场一赢再赢或一输再输,结果必然是赢或输得越多(数字累加);有输有赢用输赢抵消也很容易得出结果。有理数的加减法用“输赢球”去理解算理学生很易理解和掌握,实践证明,基础很差的同学也能很快掌握。

在新课标的新理念下,数学教学要尽可能地让学生去做一做从中探索规律和发现规律,通过小组讨论达到学习经验共享,培养合作意识、培养交流的能力、提高表达能力。如在《用字母表示数》一课,通过用牙签棒搭正方形游戏引入来创设学习的情境,学生分小组按要求搭正方形,然后讨论回答:

1、按图搭正方形

2、找出正方形的个数与牙签根数之间的关系

3、写出n个正方形需用的牙签根数(用含n的式子表示)

4、展示成果,组间交流总结给出充分的时间让学生讨论发现、交流、评议,教师鼓励、支持、启导,但不能占用太多时间。面对他们的研究,突出用字母表示数的简明性、一般性,对比用文字、用画图让学生体会其优越性,并指出在学习完本章书后你们就会明你们所得出的式子4+3(n-1)、2n+(n+1)、4n-(n-1)都可以化简成为1+3n,从而为今后的学习埋下伏笔。这种开放的课堂,可以让学生在有意义的活动中亲身参与、独立探索、合作交流,并逐步构建自己的数学知识、发展自己的数学能力和创新意识。再如,在第四章的学习中,通过学生对图标的收集与交流、制作长方体、正方体纸盒,然后展开去展现它们丰富多样的展开图,再交流总结;第五章中的游戏实验式的教学等等,无不体现学生的自主学习与合作交流的学习新理念。

二、教师应从知识的传授者转变为学习的组织者、引导者、合作者与共同研究者,要让学生演好主角的角色就必须为学生设计好适合学生演绎的剧本。因些,本人认真钻研教材,为集体备课和学习材料的设计做好充分的准备。由于本学期教的是新教材,所以本人特别注意新旧教材的对比,把握新教材的新要求、新动向,同时,还注意不同版本新教材之间在新知识的引入、内容及练习的编排上的区别与联系,力求使学习材料的设计更接近学生最近的发展区,而练习的编排按梯度分层。教学内容我们强调抓住主干,如对第二章“有理数的运算”,我们级科组经过反复的研讨,抓住了“训练学生各种运算技能”这一主干,对全章的教材进行了整合,效果比课本的做法更好,事实证明学生对加减的算法掌握得较好。但美中不足的是对正负数的定义过于淡化,未突出引入负数的作用或必要性,特别没有利用温度计等实例突出低于0的数用负数表示且负得越多数值越小,这是导致后面有理数大小比较学生出错较多的一个很主要的原因。又如在第四章、第八章、第九章的教学,我们充分利用了课室的电教平台,运用“几何画板”及教学光盘中的课件进行辅助教学,十分形象、生动,大大提高了学生的参与度。

三、尊重个体差异,面向全体学生“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展。”这是新课标努力提倡的目标,这就要求教师要及时了解和尊重学生的个体差异,承认差异,要尊重学生在解决问题的过程中所表现出来的差别,不挖苦、不讥讽,相反在问题情境的设置、教学过程的展开、练习的安排中,都要尽可能让全体学生能主动参与,使学生能根据自己的实际情况选择有所为和有所不为或有能者有大作为,小能者有小作为的练习。如在七年级第二学期,学完“一元一次方程的应用”后要求学生完成一些给出方程编写联系实际的应用题,并让学生交流评议,这样有能者得到淋漓尽致的发挥,理解不深者也可以仿照例题的背景通过借鉴书本完成。

四、在课堂教学上突出了精讲巧练,做到堂上批改辅导和及时的反馈。但由于人数较多,新学生的数学层次参差,有针对性的辅导还不完善。另学生学习的参与度还可以提高,体现在小组讨论、新知识的举例交流等合作学习,今后还可适当增加。七年级的学生学习方法较单一,可加强学法的指导。

五、改变单纯以成绩高低评价学生的学习状况的传统评价手段,逐步实施多样化的评价手段与形式:既关注学生知识与技能的理解与掌握,又关注学生情感与态度的形成与发展;既关注学生的学习结果,又关注他们在学习过程中的变化与发展。本学期所任教的班级学生生性好动任性,自制的能力比较差,容易形成双差生,为此,我在反复教育的基础上,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。如镜威同学平时不太安份,但数学测评做得比较多,我及时在我所教的两个班中表扬了他,使其感到不小的惊喜,并在之后的学习较为积极。班里学生有好几个基础较差,接受能力较弱,我反复强调会与不会只是迟与早的问题,只要你肯学。同时,我加强课外的辅导,想办法让他们体验学习成功的喜悦。

上一篇:逆向工程实习报告下一篇:企业文化的地位和功能