实验报告:验证机械能守恒定律

2024-06-21

实验报告:验证机械能守恒定律(共12篇)

1.实验报告:验证机械能守恒定律 篇一

验证机械能守恒定律

1.实验目的学会用打点计时器验证机械能守恒定律的实验方法和技能

2.实验原理

在物体自由下落的过程中,只有重力对物体做功,遵守机械能守恒定律,即重力势能的减少量等于动能的增加量。在实验误差范围内验证mgh121212mv(必须初速度为零)或 mghmv2mv1(v1≠0)22

2测定第n点的瞬时速度的方法是:测出第n点的相邻前、后两段相等时间T内下落的距离sn和sn+1,由公式

ddn1snsn1,或由vn=n1算出,如图所示。(注意单位用国际单位,看清计数点还是计时点,注意有无2T2T

有效数字的要求)

3.实验器材

铁架台(带铁夹)、电磁打点计时器、重锤(带纸带夹子)、纸带、复写纸片、直尺、导线、低压交流电源 vn=

4.实验步骤

(1)按右上图装置把打点计时器固定在支架上,并将打点计时器接在4~6V的交流电源上.(如果用电火花打点计时器电压:220v交流电)

(2)将大约0.5 m长的纸带用小夹子固定在重锤上后穿过打点计时器,用手竖直提起纸带使重锤停靠在打点计时器附近.

(3)先接通电源,再松开纸带,让重物自由下落,计时器就在纸带上打下一系列的点.(4)换上新的纸带,重做几次上面的实验.5.注意事项

(1)安装打点计时器时,必须使两纸带限位孔在同一竖直线上,以减小摩 擦阻力.

(2)实验时,必须保持提起的纸带竖直,手不动,待接通电源:让打点计时器工作稳定后再松开纸带,以保证第一点是一个清晰的点.

(3)测量高度h时,应从起始点算起,为减小h的相对误差,选取的计数点要离起始点远些,纸带不宜过长,有效长度可60~80 cm.

2(4)因为是通过比较mv/2和mgh是否相等验证机械能是否守恒,故不需要测量重锤的质量.

如果实验要求计算势能和动能的具体数据,那就必须要知道物体的质量。

(5)本实验中因重物和纸带在下落的过程中要克服阻力做功,故动能的增加量ΔEk一定略小于重力势能的减少量,这是不可避免的,属于系统误差.(6)不用测量g,直接用g=9.8m/s

(7)我们要求重物作自由落体运动,而阻力是不可避免地存在的,为了减少阻力对实验的影响,应采用密度较大的重物。

(8)选计数点时,相邻计数点间的距离要尽可能拉得开些,使求得的速度误差小些。

26. 数据处理

在已经打好的纸带中挑选点迹清晰的一条纸带,在起始点标上O,以后各点依次标上1, 2, 3, „用刻度尺测出对应下落高度h1、h2、h3 „,计算各点对应的瞬时速度v1、v2、v3„,然后计算各点对应的势能减少量 mghn和动能增量mvn/2 进行比较. 计算时不需要测量出重锤质量m.

这个实验也可以用纸带上任意两点,第N点和第N+M点,计算打N点和N+M点的瞬时速度V1、V2,量出第N点和第N+M点的距离Δh,重力势能减少量mgΔh和动能增量2112mv2mv1进行比较 22

27. 误差分析

本实验把重锤带动纸带的下落作为自由落体运动处理,实际上由于存在摩擦阻力一定会使结果出现偏差. 因为实际计算出来的速度vn应小于无其他阻力时对应于该点的速度,也就是说最终结果应当出现动能

2增量mvn/2略小于重力势能减小量mghn

在计算任意一点的瞬时速度vn时,采用的方法是vnsnsn1或vnhn1hn1的方法,而没有用vn=n·gt的方法

2T2T

计算,也是出此考虑,如果用vn=n·gt计算第n点速度,实际上是用理论的g值代替了实际上的加速度a, 且a<g,则vn结果将会偏大,再者做这个实验时是先接通电源,再放手,可能造成纸带上记录的最初两点之间的时间间隔小于0.02 s 用vn=n·gt计算时仍按0.02 s计算,也会使vn值偏大,无论怎样,使用vn=n·gt计算瞬时速度都将使动能增量的计算值偏大.

典型例题

例1“验证机械能守恒定律”的实验可以采用如图所示的甲或乙方案来进行.

(1)比较这两种方案,________(选填“甲”或“乙”)方案好些,理由

_______________

自由落体实验斜面小车实验

验证机械能守恒定律验证机械能守恒定律

(2)如图是该实验中得到的一条纸带,测得每两个计数点间的距离如图中所示,已知每两个计数点之间的时间间隔T=0.1 s.物体运动的加速度a=________;该纸带是

采用________(选填“甲”或“乙”)实验方案得到的,简要写出判断依据

__________

(3)如图是采用甲方案时得到的一条纸带,在计算图中N点速度时,几位同学

分别用下列不同的方法进行,其中正确的是()

xn+xn+1dn+1-dn-1A.vN=gnTB.vNC.vN=.vN=g(n-1)T 2T2T

例2:在用重锤下落来验证机械能守恒时,某同学按照正确的操作选得纸带如图所示.其中O是起始点,A、B、C、D、E是打点计时器连续打下的5个点,打点频率为50 Hz.该同学用毫米刻度尺测量O到A、B、C、D、E各点的距离,并记录在图中(单位:cm)

(1)这五个数据中不符合有效数字读数要求的是

(填A、B、C、D或E)点读数________.(2)纸带连接重物(填左端或右端)

(3)该同学用重锤在OC段的运动来验证机械能守恒,OC距离用h来表示,他用vC

C点对应的重锤的瞬时速度,得到动能的增加量,这种做法(填“对”或“不对”)___________.(4)若O点到某计数点的距离用h表示,重力加速度为g,该点对应重锤的瞬时速度为v,则实验中要验证的等式为________________.(5)若重锤质量m=2.00×10 kg,重力加速度g=9.80 m/s,由图中给出的数据,可得出从O点到打下D点,重锤重力势能的减少量为_____________ J,而动能的增加量为___________ J(均保留三位有效数字).(6)两者不完全相同的原因实验中需要的测量仪器是

(7)实验结论是

(8)如果仅仅是验证机械能是否守恒,实验中是否需要测出重物质量?_____________;因为___________.

(9)根据纸带所测量的数据,还可以求出物体实际下落的加速度为________ m/s,物体在从A到B下落的过程中所受到的平均阻力为________ N(计算结果都要保留3位有效数字),该阻力的来源主要有:

______________________________;____________________________________

例3如图所示,是用落体法验证机械能守恒定律的实验装置。(g取9.80m/s)

22-1

2某同学利用他自己实验时打出的纸带,测量出了各计数点到打点计时器打下的第一个点的距离h,算出了各计数点对应的速度v,以h为横轴,以12v为纵轴画出了如图的图线。图线的斜率近似等于_______。2

A.19.6B.9.80C.4.90D.2.2

5图线未过原点O的原因是_____________________________________。

4、现要通过实验验证机械能守恒定律。实验装置如图1所示:水平桌面上固定一倾斜的气垫导轨;导轨上A点处有一带长方形遮光片的滑块,其总质量为M,左端由跨过轻质光滑定滑轮的细绳与一质量为m的砝码相连;遮光片两条长边与导轨垂直;导轨上B点有一光

电门,可以测量遮光片经过光电门时的挡光时间t,用d表示A点到导轨底端C

点的距离,h表示A与C的高度差,b表示遮光片的宽度,s表示A,B 两点的距

离,将遮光片通过光电门的平均速度看作滑块通过B点时的瞬时速度。用g表示重力加速度。完成下列填空和作图;

(1)若将滑块自A点由静止释放,则在滑块从A运动至B的过程中,滑块、遮光片与砝码组成的系统重力势能的减小量可表示为_____。动能的增加量可表示为_________。若在运动过程中机械能守恒,1与s的关系式为2t

1= ________.t

2(2)多次改变光电门的位置,每次均令滑块自同一点(A点)下滑,测量相应的s与t值,结果如下表所示:

以s为横坐标,1为纵坐标,在答题卡上对应图2位置的坐标纸中t2

描出第1和第5个数据点;根据5个数据点作直线,求得该直线的斜率k=___________10m.s(保留3位有效数字).由测得的h、d、b、M和m数值可以计算出4121s直线的斜率ko,将k和ko进t2

行比较,若其差值在试验允许的范围内,则可认为此试验验证了机

械能守恒定律。

2例1答案:(1)甲 该方案摩擦阻力小,误差小,操作方便(2)4.83 m/s 乙 因为物体的加速度比g小得多

例4

补充例5 在“验证机械能守恒”的实验中,若不知道打点周期,只知道打点周期恒定,你能否利用打出的点迹

vsv22清晰的任一纸带进行验证?如何验证?解析:如图对点1有:v1=s/4T,若1=gh,则1/h=s/8Th=g, 2h2222222

=8Tg,此式表明:若以s为纵轴,以h为横轴,则s-h图线应是过原点的直线.因此,画出s-h图线,若为过原点的直线,则表明机械能守恒定律正确.2222

2.实验报告:验证机械能守恒定律 篇二

针对此问题, 笔者在教学过程中引导学生做如下分析, 让学生真正弄清楚三个落点为什么会出现这样的位置关系, 便于学生理解和记忆。

在该实验中, 两小球的碰撞可以视为弹性碰撞, 在碰撞过程中满足动量守恒和机械能守恒, 可以得到如下表达式:

分析以上两个结果可以得到, 本实验中必须要求入射小球A的质量比被碰小球B的质量大, 从 (3) 式中可以看出, 碰撞后入射小球A的速度小于碰撞前, 因此碰撞后的落点M在P点左侧;对 (4) 式, 由于mA>mB, 所以2mA>mA+mB, Vb>V0。因此碰撞后B的落点在P点右侧。

3.实验报告:验证机械能守恒定律 篇三

关键词:机械能;守恒定律;实验改进

验证机械能守恒定律是高中物理必修课内容之一,课本对该实验的设计思路、步骤和过程均有考察。表面上看,实验设计完善精确,但深入分析可以发现,该实验装置漏洞多,缺乏科学性和操作性,依据课本无法完成实验操作。为此,本文对验证机械能守恒定律实验改进谈谈我个人看法和学习心得,提高实验可操作性和精确性。

一、实验存在的问题

图1为教材所示实验配图,打点计时器使用烧瓶夹固定,即使使用专用夹子也无法将打点计时器固定于铁夹上。电磁打点计时器和电火花计时器所受重力分别为2.7 N和2 N,实验要求电磁打点计时器与烧瓶夹的基础面上,难以计算烧瓶夹住计时器产生的相对压力,也难以稳定地固定打点计时器。而由于两种计时器的结构及功能,计时器只能固定于左下角,该固定位置容易导致烧瓶夹并非夹在离计时器重心位置,使计时器存在转动力矩,试验中容易随振动而向下转动。改用电火花计时器也无法规避该问题。

二、改进措施

使用铁夾底座面和烧瓶夹共同固定打点计时器,如图2所示。将打点计时器竖直放于铁架台底座面,连接线柱一侧贴近铁架台底座面,将铁架台立柱垂直夹角降至合适位置,使用烧瓶夹夹住计时器右上角,带孔一端伸出台面,将打点计时器底座调节至竖直状态。此时打点计时器受铁架台及烧瓶夹共同作用,可将计时器稳定地固定于底座面。该设计方式不仅可以稳定地固定打点计时器,还确保底座与运动纸带始终处于同一水平位置,实验操作也更加灵活方便。另外,试验中保证纸带舒展。纸带通常被卷成圆形,纸带的摩擦力增大。而电磁打点计时器的工作阻力应低于2.49×10-2 N,纸带摩擦力远远高于打点计时器的工作阻力。而且卷曲的纸带也容易导致计时器打点,导致迹点不清晰。因此,实验前应将纸带捋直,减小摩擦力,使“迹点”更清晰。还应选择质地软薄、韧性高的纸带,提高“迹点”的清晰度。

在物理课程改革背景下,物理实验安排设计应贴近实际,使实验仪器结构、性能更加符合学校实际情况,才能更有利于物理实验教学。否则更容易造成实验教学混乱,使实验教学无法发挥作用。

参考文献:

[1]吴含章.验证机械能守恒定律实验的创新设计[J].实验教学与仪器,2014(06):31-33.

[2]刘玉震.“验证机械能守恒定律”实验的创新方案赏析[J].中学生数理化:高二高三版,2014(05):26-27.

4.实验报告:验证机械能守恒定律 篇四

【例1】如图实所示,在做“验证动量守恒定律”实验时,入射小球在斜槽上释放点的高低直接影响实验的准确性,下列说法正确的有()

A.释放点越高,两球相碰时相互作用的内力越大,外力(小支柱对被碰小球作

用力)的冲量就相对越小,碰撞前后总动量之差越小,因而误差越小

B.释放点越高,入射小球对被碰小球的作用力越大,小支柱对被碰小球作用

力越小

C.释放点越低,两球飞行的水平距离越接近,测量水平位移的相对误差就小

D.释放点越低,入射小球速度越小,小球受阻力就小,误差就小

答案A

【例2】如右图所示,在做“碰撞中的动量守恒”的实验中,所用钢球质量m1=17 g,玻璃球 的质量为m2=5.1 g,两球的半径均为r=0.80 cm,某次实验得到如下图所示的记录纸(最 小分度值为1 cm),其中P点集为入射小球单独落下10次的落点,M和N点集为两球相 碰并重复10次的落点,O是斜槽末端投影点.(1)安装和调整实验装置的两点主要要求是:.(2)在图中作图确定各落点的平均位置,并标出碰撞前被碰小球的投影位置O′.(3)若小球飞行时间为0.1 s,则入射小球碰前的动量p1kg·m/s,碰后的动量p1′=kg·m/s,被碰小球碰后的动量p2′=kg·m/s(保留两位有效数字)

答案(1)斜槽末端要水平,小支柱到槽口的距离等于小球直径且两小球相碰时球心在同一水平线上

(2)略(3)0.0340.0200.01

3【例3】某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续/

5做匀速运动.他设计的装置如图(a)所示.在小车A后连着纸带,电磁打点计时器所用电源频率为50 Hz,长木板下垫着小木片以平衡摩擦力.(1)若已测得打点纸带如图(b)所示,并测得各计数点间距(已标在图示上).A为运动的起点,则应选段来计算A碰前的速度.应选段来计算A和B碰后的共同速度(以上两空选填“AB”或“BC”或“CD”或“DE”).(2)已测得小车A的质量m1=0.4 kg,小车B的质量为m2=0.2 kg,则碰前两小车的总动量为kg·m/s,碰后两小车的总动量为kg·m/s.答案(1)BCDE(2)0.4200.417

【例4】气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨和滑块A和B验证动量守恒定律,实验装置如图所示,采用的实验步骤如下:

a.用天平分别测出滑块A、B的质量mA、mB;

b.调整气垫导轨,使导轨处于水平;

c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;

d.用刻度尺测出A的左端至C板的距离L1;

e.按下电钮放开卡销,同时分别记录滑块A、B运动时间的计时器开始工作,当A、B滑块分别碰撞C、D挡板时计时结束,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量及其符号是.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因有(至少答出两点).答案A、B两滑块被压缩的弹簧弹开后,在气垫导轨上运动时可视为匀速运动,因此只要测出A与C的距离L1,B与D的距离L2及A到C,B到D的时间t1和t2.测出两滑块的质量,就可以用mAL1=mBL2验证动量是否守恒.(1)实验中还应测量的物理量为B与D的距离,符号为t1t

2L2.(2)验证动量守恒定律的表达式是mAL1=mBL2,产生误差的原因:①L1、L2、mA、mB的数t1t

2据测量误差.②没有考虑弹簧推动滑块的加速过程.③滑块并不是标准的匀速直线运动,滑块与导轨间有少许摩擦力.1.在做“碰撞中的动量守恒”的实验中,入射球每次滚下都应从斜槽上的同一位置无初速释放,这是为了使()

B.小球每次都以相同的速度飞出槽口 D.小球每次都能对心碰撞 A.小球每次都能水平飞出槽口 C.小球在空中飞行的时间不变

答案B

2.在“验证动量守恒定律实验”中,下列关于小球落点的说法,正确的是()

A.如果小球每次从同一点无初速度释放,重复几次的落点一定是重合的B.由于偶然因素的存在,重复操作时小球落点不重合是正常的,但落点应当比较密集

C.测定P的位置时,如果重复10次的落点分别是P1,P2,P3,……,P10,则OP应取OP1、OP2、OP3、……、OP10的平均值,即:OP=OP1OP2OP3OP10 10

D.用半径尽可能小的圆把P1、P2、P3,……,P10圈住,这个圆的圆心是入射小球落点的平均位置P 答案BD

3.如图所示为实验室中验证动量守恒的实验装置示意图.(1)若入射小球质量为m1,半径为r1;被碰小球质量为m2,半径为r2,则

A.m1>m2,r1>r

2C.m1>m2,r1=r2()B.m1>m2,r1

(2)为完成此实验,以下所提供的测量工具中必需的是.(填下列对应的字母)

A.直尺B.游标卡尺C.天平D.弹簧秤 E.秒表

(3)设入射小球的质量为m1,被碰小球的质量为m2,P为碰前入射小球落点的平均位置,则关系式(用m1、m2及图中字母表示)成立,即表示碰撞中动量守恒.答案(1)C(2)AC(3)m1OP=m1OM +m2ON

4.(2009·青岛模拟)用半径相同的两小球A、B的碰撞验证动量守恒定律,实验

装置示意如图所示,斜槽与水平槽圆滑连接.实验时先不放B球,使A球从斜槽上

某一固定点C由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B球静置于水平槽前端边缘处,让A球仍从C处由静止滚下,A球和B球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O点是重垂线所指的位置,若测得各落点痕迹到O的距离:OM=2.68 cm,OP=8.62 cm,ON=11.50 cm,并知A、B两球的质量比为2∶1,则未放B球时A球落地点是记录纸上的点,系统碰撞前总动量p与碰撞后总动量p′的百分误差

效数字).答案P

25.某同学用图实甲所示装置通过半径相同的A、B两球的碰撞来验证动量守恒定律,图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹,重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近末端的地方,让A球仍从位置G由静止开始向下运动,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.在图甲中O点是水平槽末端R在记录纸上的垂直投影点,B球落点痕迹如图乙所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐

.ppp(结果保留一位有

(1)碰撞后B球的水平射程应取为cm.(2)在以下选项中,本次实验必须进行测量的有

A.测量A球和B球的质量(或两球质量之比)

B.测量G点相对于水平槽面的高度

C.测量R点相对于水平地面的高度

D.A球和B球碰撞后,测量A球落点位置到O点的距离

E.水平槽上未放B球时,测量A球落点位置到O点的距离

F.测量A球或B球的直径

答案(1)64.7(2)ADE

6.如图所示装置来验证动量守恒定律,质量为mA的钢球A用细线悬挂于O点,质量为mB的钢球B放在离地面高度为H的小支柱N上,O点到A球球心的()

距离为L,使悬线在A球释放前伸直,且线与竖直线夹角为α,A球释放后摆到最低点时恰与B球正碰,碰撞后,A球把轻质指示针OC推移到与竖直线夹角β处,B球落到地面上,地面上铺有一张盖有复写纸的白纸D,保持α角度不变,多次重复上述实验,白纸上记录到多个B球的落点.(1)图中s应是B球初始位置到的水平距离.(2)为了验证两球碰撞过程动量守恒,应测得的物理量有:.(3)用测得的物理量表示碰撞前后

量:pA,pA′=BB′=答案(1)落点(2)α、β、L、H

mA2gL(1cos)0mBs

5.实验报告:验证机械能守恒定律 篇五

一、实验目的1、验证基尔霍夫定律,加深对基尔霍夫定律的理解。

2、掌握直流电流表、电压表的使用,以及学会使用电流插头,插座测量个条之路的电流电压。

3、学习测量电路中各个点的电位,电压值,分析电路的工作状态。

4、熟悉常用电子仪器及模拟电路实验设备的使用。

二、原理说明

1、基尔霍夫定律

预习理论课中所学习的基尔霍夫电流定律,反映了电路中任一节点各支路电流之间的约束关系,反映了电流的连续性。该定律可叙述为在任一瞬时,流入任一节点的电流之和必然等于流出该节点的电流之和。

公式的表示为:∑Ik=0

基尔霍夫电压定律反映了电路中任一回路各支路电压之间的约束关系。该定律可叙述为任一瞬时,沿任一闭合回路绕行一周,回路中各支路电压的代数和恒等于零。即

公式的表示为: ∑Uk=0

三、实验仪器与器件1、0-30V可调直流电源

2、基尔霍夫实验电路板

3、交流毫伏表

4、直流电压表

5、直流毫安表

6、万用表

四、电路的简单测量

以电路的某个指定点为参考点,:测量其他个点的点位,两点之间的电压,理解电位和电压的含义及区别。

1,测量仪器及设备

(1)直流数字电压表,直流数字毫安表。

(2)直流电压源在实训操作台上,直流电压在3V,5V,9V,12V,15V,30V等档可以选择。

2、预习本次实验各项实验要求与步骤,明确各实验步骤中的已知条件和操作要求。

3,实训内容

实训电路

(1)测量各支路电流

在按图连接好电路后,接通直流电源电压,电压调到规定的电压值,(见表1)实训前先设定三条支路的电流参考方向,在图中标出好电流及方向。

在电路中串联电流表,注意电流表的插头极性,(红)+接电路的正端,(黑)-接电路的负端。

读出电流表的电流值记录到表1中,注意测量值为正值“+”,即表

示电流是从节点流出,如果测量电流值为负值“-”,表示电流向节点流入。

(2)测量电路的电位

用数字电压表测量电路中的各个元件两端的电压值记录到表2内相应的栏中。

以电路中的为参考点,用数字电压表测量电路中的各电到参考点的电压值记录到表3内相应的栏中。

五、实验报告要求

1,总结实验过程,写出用基尔霍夫的KCL和KVL列出的方程组。2,根据本次测量的结果,说明基尔霍夫定律的正确性。

6.实验报告:验证机械能守恒定律 篇六

,α为系统受到的外力与运动平面间的夹角,其大小与系统受到的重力以及因重力引起的摩擦力大小无连接体之间的相互作用关。

【关键词】连接体;外力;系统

在《验证牛顿运动定律实验》中,为了给小车提供外力,常用的方案是采用沙盘给小车提供外力。在研究加速度与外力关系时,逐渐增加沙盘中沙子的质量,得到了小车的加速度与外力的关系。可以看出将沙盘的重力作为小车的合外力是实验不可避免的系统误差。为此试验中特别强调沙盘的质量要远小于小车的质量。本文针对这一问题进行探讨和延伸。

如图为实验原理图:

将沙盘与沙总质量设为m;小车质量设为M;绳子的拉力设为F。

平衡阻力之后,以整体为研究对象可得:

加速度,这是小车的真实加速度;以小车为研究对象,

,这也是小车的真实加速度;试验中将mg作为小车的外力,加速度

,这是小车的实验加速度;当

时,显然存在,即的条件。

现在,我们分析绳子的拉力F的大小,以M为研究对象可得

分析式中各个量在本例中的含义:

由此可知,连接体之间的相互作用力大小,取决于系统的总质量、未受外力物体的质量和系统受到的外力大小。这样对于连接体之间的相互作用力我们可做出如下推论:

设连接体的质量分别为M、m,可用轻绳、轻杆、轻弹簧或者直接相互作用。外力大小为F,连接体之间的作用力为F0,则可得

1.若m受外力F则,

2.若M受外力F则,

例1 将质量为M和质量为m的两个物块,放在光滑水平面上。现给M施加水平推力F,则M、m之间的弹力大小为多少?

解析:

对整体可得,对m可得

例2 在例1中,如果物块与水平面之间粗糙接触,动摩擦因素相同,则给M施加水平推力F,则(设物体对地滑动)M、m之间的弹力大小为

解析:对整体可得

,对m可得

可得

。可见摩擦力对结果没有影响

例3 将质量为M和质量为m的两个物块,放在光滑固定斜面上(倾斜角θ)。现给M施加沿斜面向上推力F,使它们一起沿斜面上滑,则M、m之间的弹力大小为

解析:

对整体可得,对m可得可得

。可见在斜面上对结果没有影响

例4 在例3中将质量为M和质量为m的两个物块,放在粗糙固定斜面上(倾斜角θ),且两物块与斜面动摩擦因素相同。现给M施加沿斜面向上推力F,使它们一起沿斜面上滑,则M、m之间的弹力大小为

解析:

对整体可得

,对m可得可得

,可见物块与斜面有无摩擦力对结果没有影响。

那么,我们就可以得到这样的结论:

质量为M和m的连接体,无论是在斜面上还是在水平面上;无论接触面是光滑的还是粗燥的,当有平行接触面的外力F作用在M上时,连接体之间的作用力大小都是

例5 如图所示,质量为M和m的两个物块放在水平面上,中间用轻质弹簧连接。第一次用平行水平面的外力F拉M,弹簧型变量为x1;第二次用同样的力F推M,弹簧型变量为x2;第三次用同样的力F拉M,弹簧型变量为x3;第四次用同样的力F推M,弹簧型变量为x4。已知前两次水平面光滑,后两次水平面与滑块有相同的动摩擦因素,且物块均向力的方向运动。则关于四次型变量大小的关系,下列说法正确的是

答案很显然就是x1=x3,x2=x4

接下来我们再讨论,作用在系统上的外力与运动方向不平行的情况下,系统之间的作用力又会满足什么关系。

例4 如图所示,将质量为M和质量为m的两个物块,放在固定斜面上(倾斜角θ),物块与斜面间的动摩擦因素相同。现给M施加与斜面成α角的推力F,使它们一起沿斜面上滑,则M、m之间的弹力大小为

解析:

对整体可得

,对m可得可得

。当为零就是前边我们所讨论的结果了。当μ为零时,结果

。而F和为系统受到的外力。

研究表明,连接体之间的作用力的大小

,α为系统受到的外力与运动平面间的夹角,其大小与系统受到的重力以及因重力引起的摩擦力大小无连接体之间的相互作用关。

参考文献

[1]董传华.大学物理实验[M].上海:上海大学出版社,2003.

7.验证相对论关系实验报告 篇七

摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。

关键词:电子的动量 电子的动能 相对论效应 β磁谱仪 闪烁记数器。

引言:

经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。的速度几近光速,可以为我们研究高速世界所利用。本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。

实验方案:

一、实验内容测量快速电子的动量。测量快速电子的动能。验证快速电子的动量与动能之间的关系符合相对论效应。

二、实验原理

经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。

19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此基础上,爱因斯坦于1905年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。

洛伦兹变换下,静止质量为m0,速度为v的物体,狭义相对论定义的动量p为:

p

m02vmv(5—1)

1mm0/,v/c。相对论的能量E为: 式中

Emc2(5—2)

这就是著名的质能关系。mc2是运动物体的总能量,当物体静止时v=0,物体的能量为E0=m0c2称为静止能量;两者之差为物体的动能Ek,即

Ekmc2m0c2m0c2(当β« 1时,式(5—3)可展开为

1

1)

(5—3)

2p1v112

Ekm0c2(1m0v22)m0c2c22m0(5—4)

即得经典力学中的动量—能量关系。

由式(5—1)和(5—2)可得:

E2c2p2E02(5—5)

这就是狭义相对论的动量与能量关系。而动能与动量的关系为:

EkEE0c2p2m02c4m0c2

(4─6)

这就是我们要验证的狭义相对论的动量与动能的关系。对高速电子其关系如图所示,图中pc用MeV作单位,电子的m0c2=0.511MeV。式(5—4)可化为:

p2c21p2c2

Ek

2m0c220511.以利于计算。

三、验仪器的介绍及方法:

1、实验装置主要由以下部分组成:①真空、非真空半圆聚焦β磁谱仪②β-放射源

Sr-90Y(强度≈1毫居里),定标用γ放射源137Cs和60Co(强度≈2微居里)③200μm厚Al窗NaI(Tl)闪烁探测器④数据处理软件⑤高压电源、放大器、多道脉冲幅度分析器。图2是实验装置图。

图1 实验装置图图2β磁谱仪的结构简图

β源:β源是放射高速运动β电子的源,高能β粒子的速度可接近光速。如其PC为1MeV时,v=0.89c,PC为2MeV时,v=0.97c。实验所使用的90Sr-90Yβ粒子源强度约为1.5 毫居里,在0~2.27MeV的范围内形成一连续的β谱。γ放射源:γ射线是一种波长很短的电磁波。γ射线与物质的相互作用要比带电粒子弱得多,因而它具有较强的穿透本领。我们实验中采用的137Cs与60Co两个γ放射源是作为定标源的,它们的强度约2微居里。

β磁谱仪:图2是β磁谱仪的结构简图,图中间长方形区域是一均匀磁场区,它是由垂直纸面的上、下两层产生均匀磁场的材料组成。而中间的空间可放一与其空间相吻合的真空盒,真空盒与真空泵、真空表相联结。均匀磁场方向是垂直纸面穿过真空盒的,真空盒的放入可使高速电子运动的区域为真空区。在磁场外左侧有一固定架可放置β源。β源放射的电子在保持磁场区B均匀不变的情况下,各个不同动量的电子将以不同半径R的半圆周运动被分离,这也称为磁分离技术。而闪烁探头与多道分析器是进行能量探测与能量幅度甄别的,与计算机相联后,探测到的粒子能量与粒子数将即时地在计算机上显示并图示。这里,闪烁探头是由碘化钠晶体和光电倍增管组成的,碘化钠晶体可把入射的高速B粒子动能转化成可见光脉冲;然后光电倍增管把这些光脉冲转化为电脉冲。磁谱仪长方形区域的右侧小区是放置γ放射源,进行定标与其他实验应用的。

微机与多道分析器:由光电倍增管产生的电脉冲经线性放大器放大后,由微机与多道分析器对它们进行幅度分析,按电脉冲幅度大小微机与多道分析器将其可分成512道或1024道(相当于一阶梯),即不同幅度的电脉冲计入不同的道(阶梯),电脉冲幅度越高,则所处的道数应越大。电脉冲幅度与阶梯道数关系的线性度与斜率可通过调节光电倍增管的高压与增益改变。所以每次实验测量前,需对微机与多道分析器的512道(或1024道)进行定标。定标实验可采用两个γ放射源的已知能谱图进行。

2、实验方法:β源射出的高速β粒子经准直后垂直射入一均匀磁场中(VB),粒子因受到与运动方向垂直的洛伦兹力的作用而作圆周运动。如果不考虑其在空气中的能量损失(一般情况下为小量),则粒子具有恒定的动量数值而仅仅是方向不断变化。粒子作圆周运动的方程为:

dp

evBdt(5—7)

e为电子电荷,v为粒子速度,B为磁场强度。由式(5—1)可知p=mv,对某一确定的动量数

值P,其运动速率为一常数,所以质量m是不变的,故

dvv2dpdv

m,dtR dtdt且

所以

peBR(5—8)

式中R为β粒子轨道的半径,为源与探测器间距的一半。

在磁场外距β源X处放置一个β能量探测器来接收从该处出射的β粒子,则这些粒子的能量(即动能)即可由探测器直接测出,而粒子的动量值即为:peBReBX/2。由于β

90源38

Sr9039Y(0~2.27MeV)射出的β粒子具有连续的能量分布(0~2.27MeV),因此探测器在不同位置(不同就可测得一系列不同的能量与对应的动量值。这样就可以用实验方法确定测量范围内动能与动量的对应关系,进而验证相对论给出的这一关系的理论公式的正确性。

四、实验步骤:

1、检查仪器线路连接是否正确,然后开启高压电源,开始工作; 打开

动闪烁探测器使其狭缝对准

源的出射孔并开始记数测量;

定标源的盖子,移

2、调整加到闪烁探测器上的高压和放大数值,使测得的理的位置

3、选择好高压和放大数值后,稳定 10~20 分钟;

4、正式开始对 NaI(Tl)闪烁探测器进行能量定标,首先测量的1.33MeV 峰位道数在一个比较合的γ能谱,等1.33MeV 光

电峰的峰顶记数达到1000 以上后(尽量减少统计涨落带来的误差),对能谱进行数据分析,记录下1.17 和1.33MeV 两个光电峰在多道能谱分析器上对应的道数CH3、CH4;

5、移开探测器,关上使其狭缝对准

定标源的盖子,然后打开

定标源的盖子并移动闪烁探测器

源的出射孔并开始记数测量,等0.661MeV 光电峰的峰顶记数达到1000

后对能谱进行数据分析,记录下0.184MeV 反散射峰和0.661 MeV 光电峰在多道能谱分析

器上对应的道数CH1、CH2;

6、关上

定标源,打开机械泵抽真空(机械泵正常运转2~3 分钟即可停止工作);

7、盖上有机玻璃罩,打开源的盖子开始测量快速电子的动量和动能,探测器与源的距

离ΔX最近要大于9cm、最远要小于24cm,保证获得动能范围0.4~1.8MeV 的电子;

8、选定探测器位置后开始逐个测量单能电子能峰,记下峰位道数 CH 和相应的位置坐标X;

9、全部数据测量完毕后关闭

10、实验完毕后,需要洗手

源及仪器电源,进行数据处理和计算。

五、数据记录与处理

1、定标数据:高压电源为667kv;放大倍数为0.3倍;放射源位置41.8

表格一

2、使用β源进行探测,β源位置为10.0cm处

表格二(坐标和道数的数据已经取平均值)

备注:选择四个孔分别为第2、4、6、8个

将表中的数据填入到数据处理软件进行数据处理,得到拟合曲线如附图所示以及得到的信息如下表格:

五、实验注意事项

1.闪烁探测器上的高压电源、前置电源、信号线绝对不可以接错; 2.装置的有机玻璃防护罩打开之前应先关闭β源; 3.应防止β源强烈震动,以免损坏它的密封薄膜; 4.移动真空盒时应格外小心,以防损坏密封薄膜;

六、实验结论

通过实验,我不仅巩固了放射源、闪烁探测器的正确使用。同时了解了β磁谱仪测量原理,并在实验中互相组合,从而验证快速电子的动量与动能的相对论关系。在实验过程中,林老师不仅向我们解释了一些实验原理中的难点,更向我们讲了物理学习乃至以后的物理教学过程中应注意的问题,以及解决方法,使我们懂得很多实验以外的知识。对实验现象和实验原理的理解不能只敷衍与表面,要深入探究。对于不理解的知识要提前查资料弄明白。林老师更是严格的指出了我预习报告中诸多的不足之处。本次实验我受益匪浅,相信必定在接下来乃至将来的工作上起到重要的意义。

七、参考文献:

8.数据结构二叉树操作验证实验报告 篇八

成绩:_________

实验七 二叉树操作验证

一、实验目的

⑴ 掌握二叉树的逻辑结构;

⑵ 掌握二叉树的二叉链表存储结构;

⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。

二、实验内容

⑴ 建立一棵含有n个结点的二叉树,采用二叉链表存储;

⑵ 前序(或中序、后序)遍历该二叉树。

三、设计与编码

#include using namespace std;template class BTree;template //***********************二叉树结点类定义********************** class BTreeNode { friend class BTree ;T data;BTreeNode *lchild,*rchild;public: BTreeNode():lchild(NULL),rchild(NULL){} BTreeNode(T d,BTreeNode *r=NULL):data(d),lchild(l),rchild(r){}

*l=NULL,BTreeNode T getdata(){return data;} BTreeNode * getleft(){return lchild;} BTreeNode * getright(){return rchild;} };//***********************END******************************** //***********************二叉树模板类定义******************* template class BTree { public: BTree(T a[],int n);void preorder(void visit(BTreeNode *p));static void preorder(BTreeNode * p,void visit(BTreeNode *p));//递归前序遍历

void inorder(void visit(BTreeNode *p));static void inorder(BTreeNode * p,void visit(BTreeNode *p));//递归中序遍历

void postorder(void visit(BTreeNode *p));static void postorder(BTreeNode * p,void visit(BTreeNode * p));//递归后序遍历

static void fun(BTreeNode *p){cout <

data;}//访问结点 protected: BTreeNode * root;private: T* a;int n;BTreeNode * build0(int i);};

//***********************建树******************************* template BTreeNode * BTree ::build0(int i)//递归建树 { BTreeNode *p;int l,r;if((i <=n)&&(a[i-1]!=)){ p=new BTreeNode ;p->data=a[i-1];l=2*i;r=2*i+1;p->lchild=build0(l);p->rchild=build0(r);return(p);} else return(NULL);}

template BTree ::BTree(T a[],int n){ this->a=a;this->n=n;root=build0(1);cout <<“递归建树成功!”<

//***********************遍历******************************* template void BTree ::preorder(void visit(BTreeNode *p))//递归前序遍历 { preorder(root,visit);cout < void BTree ::preorder(BTreeNode * p,void visit(BTreeNode *p)){ if(p!=NULL){ visit(p);preorder(p->lchild,visit);preorder(p->rchild,visit);} } template void BTree ::inorder(void visit(BTreeNode *p)){ inorder(root,visit);cout < void BTree ::inorder(BTreeNode * p,void visit(BTreeNode *p)){ if(p!=NULL){ inorder(p->lchild,visit);visit(p);inorder(p->rchild,visit);} } template void BTree ::postorder(void visit(BTreeNode *p))//递归后序遍历 { postorder(root,visit);cout < void BTree ::postorder(BTreeNode * p,void visit(BTreeNode *p)){ if(p!=NULL){ postorder(p->lchild,visit);postorder(p->rchild,visit);visit(p);} } void main(){ char *str=“abcd e”;cout<s(str,6);cout <>choice;cout <

{cout <<“递归先序遍历二叉树:”;s.preorder(s.fun);cout <

答:经常忘记对头结点的定义,以至于程序出错,经定义头结点,使程序正常运行。

b)程序运行的结果如何?

9.高一物理机械能守恒定律 篇九

一、预习指导:

1、知道机械能的各种形式,能够分析动能与势能(包括弹性势能)之间的相互转化问题

2、能够根据动能定理和重力做功与重力势能变化间的关系,推导出机械能守恒定律

3、会根据机械能守恒的条件判断机械能是否守恒,能运用机械能守恒定律解决有关问题

4、能从能量转化的角度理解机械能守恒条件,领会运用机械能守恒定律解决问题的优越性

5、阅读课本P69—P71

二、问题思考:

1、我们说功是能量转化的量度,这句话的物理意义是什么?

2、机械能守恒定律的研究对象是什么?

3、物体系机械能守恒的条件是什么?

三、新课教学:

【例l】关于机械能守恒定律的适用条件,下列说法中正确的是

()A.只有重力和弹力作用时,机械能守恒

B.内力只有重力和弹力作用,同时还有其他外力作用,但只要合外力为零.机械能守恒 C.内力只有重力和弹力作用,同时还有其他外力作用,但只要其他外力的功为零,机械能守恒

D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒

【例2】如图所示.用轻绳跨过定滑轮悬挂质量为m1、m2的两个物体,已知m1>m2.若滑轮质量及一切摩擦都不计,系统由静止开始运动的过程中

()A.m1、m2各自的机械能守恒

B.m2减少的机械能等于m1增加的重力势能 C.m2减少的重力势能等于m1增加的重力势能 D.m1、m2的机械能之和保持不变

【例3】质量分别为2m和m的可看作质点的小球A、B,用不计质量不可伸长的细绳相连,跨在半径为R的固定的光滑圆柱的两侧,如图所示.开始时A球和B球与圆柱轴心同高,然后释放,则B球到达最高点时的速度为多少?

四、课后练习:

1.(单选)下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示.图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是

()2.(单选)在下列实例中,不计空气阻力,机械能不守恒的是

()A.做斜抛运动的手榴弹

B.沿竖直方向自由下落的物体 C.起重机将重物体匀速吊起

D.沿光滑竖直圆轨道运动的小球

3.(单选)如图所示,从H高处以v平抛一小球,不计空气阻力,当小球距地面高度为h时,其动能恰好等于其势能,则

()A.h=H/2 B.hH/2 D.无法确定

4.(多选)下列实例中,物体机械能守恒的是

()A.物体沿光滑的斜面向上加速运动

B.在空气阻力不计的条件下,抛出后的手榴弹在空中做抛体运动 C.沿光滑固定的曲面自由下滑的物体 D.物体在竖直平面内做匀道圆周运动

5.(多选)如图所示.两个质量相同的小球A、B分别用线悬在等高的O1、O2点,A球的悬线比B球的长.把两球的悬线均拉到水平位置后,将小球无初速度释放.则经最低点时(以悬点为零势能点)

()A.A球的速度大于B球的速度 B.A球的动能大于B球的动能 C.A球的机械能大于B球的机械能 D.A球的机械能等于B球的机械能

6.如图所示,长度为2r的均匀直杆.它的两端恰放在半径为r的四分之一光滑圆弧AB的两瑞.BC为光滑水平轨道,直杆由静止开始下滑.当直杆全部滑到水平轨道上时的速度为

7.如图所示,斜面的倾角为30°,顶端离地面高度为0.2 m,质量相等的两个小球A、B用恰好等于斜面长的细绳相连.使B在斜面顶端,A在斜面底端.现把B稍许移出斜面,使它由静止开始沿斜面的竖直边下落.所有摩擦均忽略不计,g取10 m/s2.求:

(1)B球刚落地时,A球的速度;

(2)B球落地后,A球向上最多还能运动多远?

8.如图所示,质量为m的物体以某一初速度从A点向下沿轨道运动.不计空气阻力,轨道全部光滑,若物体通过半圆形轨道的最低点B时的速度为3gR,求:

(1)物体在A点时的速度;

10.《机械能守恒定律》说课稿 篇十

各位评委老师上(下)午好!我是物理10号,我今天说课的题目是《机械能守恒定律》,下面我将从说教材,说教法与学法,说教学过程,说板书设计四个方面进行说课。

一、说教材

《机械能守恒定律》是人教版高中物理必修2第七章第8节的内容,机械能守恒定律属于物理规律教学,是对功能关系的进一步认识,是学生理解能量转化与守恒的铺垫,为今后学习动量守恒、电荷守恒打下基础。它结合动量守恒定律是解决力学综合题的核心,而这类问题又常伴随着较为复杂的运动过程和受力特点是充分考查学生抽象思维能力、分析能力、应用能力的关键点。

因此,根据新课标要求,通过本节课教学要实现以下教学目标:

1、知识与技能目标:知道什么是机械能;知道物体的动能和势能可以相互转化;理解机械能守恒定律的内容;掌握机械能守恒的方程式;初步学会从能量转化和守恒的观点来解释物理现象,分析问题的方法,提高运用所学知识综分析、解决问题的能力。

2、情感态度价值观目标:培养学生发现和提出问题,并利用已有知识探索学习新知识的能力;通过教学过程中各个教学环节的设计,如:观察、实验等,充分调动学生的积极性,激发学生的学习兴趣;通过能量守恒的教学,使学生树立科学观点、理解和运用自然规律,并用来解决实际问题。

3、本着课程标准,在吃透教材,了解学生学习特点的基础上确定教学重点、难点如下:重点,掌握机械能守恒定律的推导、建立过程,理解机械能守恒定律的内容;在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式;难点,从能的转化和功能关系出发理解机械能守恒的条件;能正确判断研究对象在所尽力的过程中机械能是否守恒,能正确分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能。

二、说教法和学法

1、教学手段的选用

多媒体演示和自备实验器材,其作用有:将物理情境、规律的推理过程、机械能守恒定律的内容和机械能守恒定律知识方法结构,形象、直观地展示出来,帮助学生思考、分析、推理、理解和领悟;

2、教法:教师指导与学生探究相结合。师生共同演绎推导机械能守恒定律数学表达式的来龙去脉。具体采用了讲授法、讨论法、归纳法相结合的启发式教学方法。通过师生一起探索得出物理规律及使用条件,充分调动学生的积极性,体现出“教师主导,学生主体”的教学原则;

3、学法:为适应高一学生的认识和思维发展水平,根据新课内容要求,展示物理情境,以此作为铺垫,通过设疑,引导、启发学生思考。在归纳机械能守恒定律的使用条件时,引导学生进行讨论,鼓励学生提出自己的观点,并能加以评价,培养学生的学习兴趣以及学习物理的自信心。

三、说教学过程

1、导入新课:

用多媒体展示运动员投出铅球和气垫导轨上做往复运动的滑块两个物理过程,以此激发学生的学习兴趣,为下面的实验研究奠定基础;

2、进行新课:

A、动能与势能的转化

演示实验,依次演示自由落体、竖直上抛、单摆和弹簧振子,提醒学生注意观察物体运动中的动能、势能的变化情况。

通过实验的演示,学生观察、体验到,高度大时速度小,速度小时高度大,进而得到重力势能大时动能小,势能小时动能大。在引导学生分析物体运动状态变化过程中得出重力势能增大(减小)的过程就是动能减小(增大)的过程。

通过上述分析,提出问题,引导学生思考动能和势能的和有什么变化。B、探究规律找出机械能不变的条件 有意识的通过实验的演示(如弹簧振子,在没有气源的情况下出现的实验现象与有气源是的差别),让学生明白机械能守恒是有条件的,只有在受重力和弹力的时候,机械能才是守恒的,一旦有其它力参与做功就会发生机械能与其他形式的能量转化。

a只受重力做功作用分析

现在以自由落体为例,引导学生自主探究。

Eg:设一质量为m的物体在自由下落过程中,经过离地高度为h1(任一点)的A点时速度为V1,下落到离地h2(任一点)的B点时速度为V2。

引导学生由学习过的知识(牛顿定律或者动量定理)分析下落过程中A、B两位置的机械能之间的数量关系,得到重力做的功与动能的变化相等;再根据重力做的功与重力势能的变化也是相等,从而得出在这个过程中动能的变化等于重力势能的变化,通过移项可以发现等号两边分别是A和B点处的机械能,说明只受重力做功时,机械能是不变的。

得出结论后,布置学生课后自主进行平抛和竖直上抛运动时的情况,以进一步认识该结论的普遍意义。

b只受弹力做功分析

提问:势能包括重力势能和弹性势能,只有弹力做功时,机械能也守恒吗? 多媒体展示气垫导轨上的水平弹簧振子,让学生观察振动过程。有学生分析振动过程的能量转化和实验结论,结合前面已经探究过的弹力做功与弹性势能的关系,类比重力做功,进行定性分析。

引导学生分析守恒的条件,归纳结论:物体只受重力或弹力,不受其它力;除重力和弹力外,物体还受其它力,但其它力不做功;除重力和弹力外,物体还受其它力,其它力做功,但其它力做的总功为零。

用课件展示出总结:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,这就叫机械能守恒定律。

c课堂练习

课件展示关于机械能守恒的判断题,让学生判断各种情境中的机械能是否守恒,从而加深学生对新课的印象。

3、课堂总结

本课学习,通过演示实验、归纳总结了动能和势能之间可以发生相互转化;了解了只有重力或者弹力做功的情况下,物体的机械能总量不变;通过简单的例子,巩固了新课的知识。

4、布置课外作业

练习题1,2

四、说板书设计

该板书采用的是重点式,力图将授课内容清晰的展现在学生面前,突出了本课的重难点,以便于学生理解和记忆。

机械能守恒定律

一、动能和势能的转化

二、机械能不变的条件

1、物体只受重力或弹力,不受其它力;

2、除重力和弹力外,物体还受其它力,但其它力不做功;

3、除重力和弹力外,物体还受其它力,其它力做功,但其它力做的总功为零。

11.机械能守恒定律说课案 篇十一

1.学生现状:学生已经学习以前内容,需要进一步学习,深入理解。

2.教学目标:

1、知道什么是机械能,知道物体的动能和势能可以相互转化。

2、理解机械能守恒定律的内容。

3、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。

3、过程与方法目标:

1、学会在具体的问题中判定物体的机械能是否守恒;

2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。

3、情感态度价值观目标:通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问

4.教学难点与重点:

1.机械能。

2.机械能守恒定律以及它的含义和适用条件 机械能守恒定律以及它的含义和适用条件

5.教学方法:

探究:通过两个小实验,同学们自己动手,观察思考发现其中的规律并总结。

讲授:将学生的回答凝练总结,同学着重分析本节重点内容,加深对重点知识的理解。讨论:提问一些小问题,或给出一些材料,学生们讨论得出结果,老师予以适当点改。练习:布置一些练习题下课做巩固着捷克所学知识点。

6.教学程序:

(1)导入新课

通过几个图片把同学们引入到今天所要学的内容上来。同时也激发了学习兴趣,使更容易展开讲课。(2)新课教学

1. 通过几个实验是大家明白机械能守恒定律在自然界中不具有普遍性,需要学习新容; 2. 带着问题的思考,同学们自行学习本节内容,以此来提高同学们的自学能力; 3. 阐述出机械能守恒定律,分析这则定律;

(3)巩固与联系(4)布置作业

为使学生们将所学知识与实际生活相联系,布置了如下作业: 这里准备了一个关于节约能源的小短片,大家看后下课结合今天所学知识,写一篇简短的观后感言,这是给大家留得作业。

另外也布置了教材上的课后题。

7. 板书设计:

由于本节内容是实验,讲授为主,所以半数之将学习框架和重点内容罗列出来。见教案

8.小结:

(1)机械能守恒定律普遍适用。

12.基尔霍夫定律电工实验报告 篇十二

教师:

教学单位:

专业:

班级:

名:

学号:

实验日期:

实验成绩:

批阅教师:

日期:

一、实验项目名称 基尔霍夫定律 二、实验目的:

1.验证基尔霍夫定律 2.加深对参考方向的理解 3.进一步掌握仪器仪表的使用方法,学习电路的测量方法。

三、实验设备及材料 1.直流稳压电源 2 台 2.支流数字电压表 2 块 3.直流数字电流表 3 块 4.万用表 1 块 四、实验原理简述:

基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

1.

基尔霍夫电流定律 在电路中,对任一节点,流入该节点各支路电流的代数和恒等于零,即

(1)

例如,对于图 1 电路中的节点 N,有

=0

图 1 KCL 示例

2.

基尔霍夫电压定律 在电路中,对任一回路,所有支路电压的代数和恒等于零,即

(2)

例如,对于图 2 电路中的回路,有:

= 0

图 2 KVL 示例 运用基尔霍夫电流定律时,必须预先确定的支路电流的参考方向。运用基尔霍夫电压定律时,必须预先确定个支路电压的参考方向,并约定回路的绕行方向。基尔霍夫定律表达式中的电流和电压都是代数量。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。

五、实验内容与步骤 (一)实验测试电路图及步骤 1.验证基尔霍夫电流定律 按图 3 所示连接电路,并连接测量仪器,如图 4 所示。按照表 1 中的 和

数值设置电源电压。用直流数字电流表测量电流、和。将测量结果填入表 1。验证基尔霍夫电流定律。

图 3 验证基尔霍夫电流定律的电路

仿真平台实验图

表 1

2.验证基尔霍夫电压定律 图 5 所示为验证基尔霍夫电压定律的电路,电路中包含Ⅰ、Ⅱ、Ⅲ共 3 个回路。各回路的绕行方向分别用虚线箭头表示。按图 5 连接电路,并连接测量仪器,如图 6所示。按照表 2 中的 和

数值设置电源电压。用直流数字电压表测量电压、、、和

。将测量结果填入表 2。验证基尔霍夫电压定律。

图 5 验证基尔霍夫电压定律的电路

图 6

上一篇:水电站施工组织方案下一篇:社区邻里节活动