质点教案

2024-08-13

质点教案(通用5篇)

1.质点教案 篇一

1.1

质点 参考系和坐标系

【教学目标】

(1)理解质点的概念;

(2)知道参考系的概念及与运动的关系;

(3)能正确的分析和建立参考系。【教学重点】

质点的概念、参考系的选取、坐标系的建立。【教学难点】

实际物体可以看作质点的条件。

【教学过程】

第一节 质点参考系 坐标系

(一)主要内容

1、机械运动

(1)定义:物体相对于其他物体的位置变化,叫做机械运动,简称运动。

(2)运动的绝对性和静止的相对性:宇宙中的一切物体都在不停地运动,无论是巨大的天体,还是微小的原子、分子,都处在永恒的运动之中。运动是绝对的,静止是相对的。

2、物体和质点

(1)定义:用来代替物体的有质量的点。

1.质点是用来代替物体的具有质量的点,因而其突出特点是“具有质量”和“占有位置”,但没有大小,它的质量就是它所代替的物体的质量。

2、质点没有体积,因而质点是不可能转动的。任何转动的物体在研究其自转时都不可简化为质点。

3、质点不一定是很小的物体,很大的物体也可简化为质点。同一个物体有时可以看作质点,有时又不能看作质点,要具体问题具体分析。

(2)物体可以看成质点的条件:如果在研究的问题中,物体的形状、大小及物体上各部分运动的差异是次要或不起作用的因素,就可以把物体看做一个质点。

(3)突出主要因素,忽略次要因素,将实际问题简化为物理模型,是研究物理学问题的基本思维方法之一,这种思维方法叫理想化方法。质点就是利用这种思维方法建立的一个理想化物理模型。

(二)问题与讨论

(1)能否把物体看作质点,与物体的大小、形状有关吗?(无关)

(2)研究一辆汽车在平直公路上的运动,能否把汽车看作质点?(可以)要研究这辆汽车车轮的转动情况,能否把汽车看作质点?(不能)

(3)原子核很小,可以把原子核看作质点吗?(作为整体研究时才可以)

例1 下列情况中的物体,哪些可以看成质点(ACD)

A.研究绕地球飞行时的航天飞机

B.研究汽车后轮上一点的运动情况的车轮

C.研究从北京开往上海的一列火车

D.研究在水平推力作用下沿水平地面运动的木箱

课堂训练:

(1)下述情况中的物体,可视为质点的是(ACD)

A.研究小孩沿滑梯下滑

B.研究地球自转运动的规律

C.研究手榴弹被抛出后的运动轨迹

D.研究人造地球卫星绕地球做圆周运动

(2)下列各种情况中,可以把研究对象看作质点的是(CD)

A.研究小木块的翻倒过程

B.研究从桥上通过的一列队伍

C.研究在水平推力作用下沿水平面运动的木箱

D.汽车后轮,在研究牵引力来源的时

3、参考系

(1)定义:宇宙中的一切物体都处在永恒的运动之中,在描述一个物体的运动时,必须选择另外的一个物体作为标准,这个被选来作为标准的物体叫做参考系。一个物体一旦被选做参考系就必须认为它是静止的。

(2)选择不同的参考系来观察同一个物体的运动,得到的结果可能是不同的。

例2:人坐在运动的火车中,以窗外树木为参考系,人是运动的。以车厢为参考系,人是静止的。

(3)参考系的选择:描述一个物体的运动时,参考系可以任意选取,选取参考系时要考虑研究问题的方便,使之对运动的描述尽可能的简单。在不说明参考系的情况下,通常应认为是以地面为参考系的。

(4)绝对参考系和相对参考系:(看书)

例3:对于参考系,下列说法正确的是(CD)

A.参考系必须选择地面

B.研究物体的运动,参考系选择任意物体其运动情况是一样的 C.选择不同的参考系,物体的运动情况可能不同

D.研究物体的运动,必须选定参考系

课堂训练:(1)甲物体以乙物体为参考系是静止的,甲物体以丙物体为参考系是运动的,那么以乙物体为参考系,丙是(B)

A.一定是静止的B.一定是运动的C.有可能是静止的或运动的D.无法判断

(2)关于机械运动和参照物,以下说法正确的有(A)

A.研究和描述一个物体的运动时,必须选定参照物

B.由于运动是绝对的,描述运动时,无需选定参照物 C.一定要选固定不动的物体为参照物

D.研究地面上物体的运动时,必须选地球为参照物

4、坐标系

(1)坐标系的建立:如果物体做直线运动,为了定量的描述物体的位置变化,可以以这条直线为X轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。

5、科学漫步:全球卫星定位系统(GPS)1.2 时间和位移

(一)【教学目标】

(1)知道时间和时刻的含义及区别,知道在实验中测量时间的方法;

(2)掌握位移的概念,它是表示质点位置变动的物理量,是矢量,可以用有向线段来表示;

(3)知道路程和位移的区别;

(4)知道直线运动的位置和位移的关系。

【教学重点】

时间和时刻的概念和区别;位移的矢量性、概念。【教学难点】

位移和路程的区别。【教学过程】

第二节 时间和位移

1、时刻和时间间隔

(1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。

(2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。

例1:下列说法中指的是时间的有ACEF,指的是时刻的有BDG。

A.第5秒内 B.第6秒初 C.前2秒内 D.3秒末

E.最后一秒内 F.第三个2秒 G.第五个1秒的时间中点。

课堂训练:

(1)关于时间和时刻,下列说法正确的是(D)

A.物体在5s时就是指物体在5s末时,指的是时刻

B.物体在5s时就是指物体在5s初时,指的是时刻

C.物体在5s内就是指物体在4s末到5s末的这1s时间

D.物体在第5s内就是指物体在4s末到5s末的这1s的时间

2、路程和位移

(1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。(2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。

(3)位移和路程的区别:

(4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的直线运动时位移大小才等于路程。

例2:中学的垒球场的内场是一个边长为16.77m的正方形,在它的四个角分别设本垒和一、二、三垒.一位球员击球后,由本垒经一垒、一垒二垒跑到三垒,他运动的路程是多大?位移是多大?位移的方向如何?

课堂训练:

(1)以下说法中正确的是(B)

A.两个物体通过的路程相同,则它们的位移的大小也一定相同

B.两个物体通过的路程不相同,但位移的大小和方向可能相同

C.一个物体在某一运动中,位移大小可能大于所通过的路程

D.若物体做直线运动,位移的大小就等于路程

(2)如图甲,一根细长的弹簧系着一个小球,放在光滑的桌面上,手握小球把弹簧拉长,放手后小球便左右来回运动,B为小球向右到达的最远位置,小球向右经过中间位置O时开始计时,其经过各点的时刻如图乙所示。若测得OA=OC=7cm,AB=3cm,则自0时刻开始:

A.0.2s内小球发生的位移大小是7cm,方向向右,经过的路程是7cm B.0.6s内小球发生的位移大小是7cm,方向向右,经过的路程是13cm

C.0.8s 内小球发生的位移是0,经过的路程是20cm

D.1.0s内小球发生的位移大小是7cm,方向向左,经过的路程是27cm

(3)关于质点运动的位移和路程,下列说法正确的是(AB)

A.质点的位移是从初位置指向末位置的有向线段,是矢量

B.路程就是质点运动时实际轨迹的长度,是标量

C.任何质点只要做直线运动,其位移的大小就和路程相等

D.位移是矢量,而路程是标量,因而位移不可能和路程相等

(4)下列关于路程和位移的说法,正确的是(C)

A.位移就是路程

B.位移的大小永远不等于路程

C.若物体作单一方向的直线运动,位移的大小就等于路程

D.位移是矢量,有大小而无方向,路程是标量,既有大小,也有方向

(5)关于质点的位移和路程,下列说法正确的是(D)

A.位移是矢量,位移的方向就是质点运动的方向

B.路程是标量,也是位移的大小

C.质点做直线运动时,路程等于其位移的大小

D.位移的数值一定不会比路程大

(6)下列关于位移和路程的说法,正确的是(C)

A.位移和路程的大小总相等,但位移是矢量,路程是标量

B.位移描述的是直线运动,路程描述的是曲线运动

C.位移取决于始、末位置,路程取决于实际运动路径

D.运动物体的路程总大于位移

3、矢量和标量

(1)矢量:既有大小、又有方向的物理量。

(2)标量:只有大小,没有方向的物理量。

4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。

1.2 时间和位移

(二)【教学目标】

(1)理解匀速直线运动和变速直线运动的概念;

(2)知道什么是位移-时间图象以及如何用图象来表示位移与时间的关系;

(3)知道匀速直线运动s-t图象的意义;

(4)知道公式和图象都是描述物理量之间关系的数学工具且各有所长、相互补充。

【教学重点】

匀速直线运动s-t图象;变速直线运动s-t图象。【教学难点】 s-t图象的理解。

【教学过程】

第二节 时间和位移

1、匀速直线运动

(1)定义:物体在一条直线上运动,如果在任意相等的时间里通过的位移相等,这种运动称为匀速直线运动。

(2)匀速直线运动的特点:应该是“在任何相等的时间里面位移相等”的运动,现实生活中匀速直线运动是几乎不存在的,是一种理想化的物理模型。其特点是位移随时间均匀变化,即位移和时间的关系是一次函数关系。

2、变速直线运动

(1)定义:物体在一条直线上运动,如果在相等的时间内位移不相等,这种运动叫变速直线运动。

(2)变速直线运动的位移和时间的关系:不是一次函数关系,其图象为曲线。

(3)变速直线运动的分类:

匀变速直线运动:速度均匀改变的变速直线运动。

非匀变速直线运动:速度不是均匀改变的变速直线运动。

例1:物体在一条直线上运动,关于物体运动的以下描述正确的是(C)

A.只要每分钟的位移大小相等,物体一定是作匀速直线运动 B.在不相等的时间里位移不相等,物体不可能作匀速直线运动 C.在不相等的时间里位移相等,物体一定是作变速直线运动

D.无论是匀速还是变速直线运动,物体的位移都跟运动时间成正比

3、位移--时间图象(s-t图)

(1)描述:表示位移和时间的关系的图象,叫位移-时间图象,简称位移图象。

(2)物理意义:描述物体运动的位移随时间的变化规律。

移所用的时间。

4、匀速直线运动的s-t图

(3)坐标轴的含义:横坐标表示时间,纵坐标表示位移。由图象可知任意一段时间内的位移和发生某段位1)匀速直线运动的s-t图象是一条倾斜的直线,或某直线运动的s-t图象是倾斜直线则表示其作匀速直线运动。

(2)s-t图象中斜率(倾斜程度)大小表示物体运动快慢,斜率(倾斜程度)越大,速度越快。(3)s-t图象中直线倾斜方式(方向)不同,意味着两直线运动方向相反(4)s-t图象中,两物体图象在某时刻相交表示在该时刻相遇。(5)s-t图象若平行于t轴,则表示物体静止。

(6)s-t图象并不是物体的运动轨迹,二者不能混为一谈。(7)s-t图只能描述直线运动。

5、变速直线运动的s-t图象为曲线

6、图象的应用:

(1)求各时刻质点的位移和发生某一位移对应时间;

(2)求速度;

(3)判断物体的运动性质。

例2:某同学以一定速度去同学家送一本书,停留一会儿后,又以相同的速率沿原路返回家,图3中哪个图线可以粗略地表示他的运动状态(B)

例3:如图所示为甲、乙两物体相对于同一原点运动的s-t图,下列说法正确的是(BD)

A.在0-t2时间内甲和乙都做匀变速直线运动

B.甲、乙运动的出发点相距S1

C.乙比甲早出发t1时间

D.乙运动的速率大于甲运动的速率

例4:如图所示为A、B、C三个物体作直线运动的s-t图。由图可知:B物体作匀速直线运动,A C物体作变速直线运动。三个物体运动的总路程分别是14m,10m,10m。

课堂训练:

(1)下列关于匀速直线运动的说法中正确的是(A B)

A.匀速直线运动是速度不变的运动 B.匀速直线运动的速度大小是不变的 C.任意相等时间内通过的位移都相同的运动一定是匀速直线运动

D.速度方向不变的运动一定是匀速直线运动

(2)关于质点作匀速直线运动的位移-时间图象以下说法正确的是(D)

A.图线代表质点运动的轨迹

B.图线的长度代表质点的路程

C.图象是一条直线,其长度表示质点的位移大小,每一点代表质点的位置

D.利用s-t图象可知质点任意时间内的位移,发生任意位移所用的时间

(3)如图所示,是A、B两质点沿同一条直线运动的位移图象,由图可知(AD)

A.质点A前2s内的位移是1m B.质点B第1s内的位移是2m

C.质点A、B在8s内的位移大小相等

D.质点A、B在4s末相遇

课后作业:

(1)如图所示为甲、乙两质点作直线运动的位移-时间图象,由图象可知(AC)

A.甲、乙两质点在1s末时相遇

B.甲、乙两质点在1s末时的速度大小相等

C.甲、乙两质点在第1s内反方向运

D.在第1s内甲质点的速率比乙质点的速率要大

2.质点、参考系和坐标系的教案 篇二

——教案

1.教学目标

(1)理解质点的定义,知道质点是一个理想化的物理模型。知道质点是一种科学的抽象,知道科学抽象是一种普遍的研究方法。初步体会物理模型在探索自然规律中的作用;

(2)理解参考系的概念,知道在不同的参考系中对同一个运动的描述可能是不同的;(3)理解坐标系概念,会用一维坐标系定量描述物体的位置以及位置的变化。2.过程与方法体

(1)会物理模型在探索自然规律中的作用,让学生将生活实际与物理概念相联系,通过几个具体的例子让学生自主讨论,在讨论与交流中,自主升华为物理概念。(2)通过参考系的学习,知道从不同角度研究问题的方法,让学生从熟悉的常见现象和已有经验出发,体验不同参考系中运动的相对性,提示参考系在确定物体运动时客观存在的必要性和合理性,促使学生形成勤于观察、勤于思考的习惯,提高学生自主获取知识的能力。

3.课堂引入

(1)利用多媒体播放一段反映物体运动的图片,雄鹰在空中翱翔,足球在绿茵场上飞滚,连静静的山川也在“坐地日行八万里”地球的运动)。请同学们思考回答:这些场景中哪些物体是在运动的?在物理学中,什么叫做机械运动?举例说明。(2)对学生的举例分析给予评价,并根据学生的回答进一步总结机械运动的概念。回答:物理学上把一个物体对另一个物体相对位置变化运动称之为机械运动。(3)指导学生分析视频资料,指出:宇宙中的一切物体都在不停地运动,运动是宇宙间永恒的主题,也是日常生活中常见的现象,诗人可以用“飞流直下三千尺,疑是银河落九天”,来描绘气势磅礴的瀑布,画家也可以用美丽的画笔描绘出动感十足的情景,那么,我们怎样描绘物体的机械运动呢?即怎样地描述物体上各点的位置及其随时间的变化呢? 4.新课教学

1)物体和质点

1.研究物体的运动,首先要确定物体的位置。物体都具有大小和形状,在运动中物体的各点的位置变化一般说来是不同的,所以要详细描述物体的位置及其变化,并不是一件简单的事情。在地球绕太阳转动中,地球在绕太阳公转,注意地球同时又在自转,所以地球的各部分离太阳的远近在不断变化。

2.地球是一个庞然大物,直径约为12800km,与太阳相距1.5×108km,也就是说地球直径约是它与太阳距离的万分之一。当我们讨论地球的公转时怎么看待地球?有什么巧妙的方法? 3.向学生提问。(答:采用科学抽象的方法,即不考虑物体各部分的差异,把物体简化成为没有大小、形状的点,或者说用一个有质量的点来代替物体。)

4.可见,引入质点是为了使物体的位置有一个确切的概念,使物体的复杂运动转化成点的运动。

5.总结得出:①质点的定义:用来代替物体的有质量的点叫做质点。即没有形状、大小、体积而具有质量的一个点,质点具有物体的全部质量。②质点是人们为了使实际问题简化而引入的理想化模型。引入理想化模型,抓住主要矛盾,忽略次要矛盾,尽可能把复杂问题简单化,是物理学上经常用到的一种研究问题的方法──科学抽象。

6.进一步说明:物理学对实际问题的简化,必须从实际出发,撇开不考虑的(只能是与当前考察无关的因素),和对当前考察影响很小的次要因素。

讨论:关于质点简化的条件,一个物体能否抽象成质点,并不是取决于物体的形状和体积大小,这要看具体情况而定。① 动的物体一般可以看作质点

做平动的物体,由于物体上各点的运动情况相同,可以用一个点代表整个物体的运动,在这种情况下,物体的大小、形状就无关紧要了,可以把整个物体当质点。

例如:平直公路上行驶的汽车,车身上各部分的运动情况相同,当我们把汽车作为一个整体来研究它的运动的时候,就可以把汽车当作质点。当然,假如我们需要研究汽车轮胎的运动,由于轮胎上各部分运动情况不相同,那就不能把它看作质点了。

注意:同一物体在不同情况下有时可看质点,有时不可以看作质点,一列火车从北京开到上海,研究火车的运行的时间,可将火车看成质点,而火车过桥时,计算火车过桥的时间,不可以将火车看成质点。②有转动但转动为次要因素

例如:研究地球公转时,可把地球看作质点;研究地球自转时,不能把地球看作质点。

③物体的形状、大小可忽略,如:乒乓球旋转对球的运动的较大的影响,运动员在发球、击球时都要考虑,就不能把乒乓球简单看作质点。2)参考系

1.下面我们运用下质点的概念,例子:人走动手竖直向上抛一物体空气的摩擦力忽略不计,现在我们只研究该物体的行进轨迹,那么我们可以只考虑它是一个只有质量的点。

问:同学们观察到该物体的运行轨迹是什么?学生回答的时候黑板上画图描绘。问:为什么观察到不同的运动轨迹呢?答:因为观察者所处的位置,即观察角度不同。

例子:教师双手并列向前推,向学生提问:根据机械运动的定义,从我的左手观察我的右手是否运动了?(俩个人坐着不动,地球在运动,坐地日行八万里)答:没有。

根据我前面讲的俩个例子,我们总结出:自然界的一切物体都处于永恒的运动中,绝对静止的物体是不存在的;运动是绝对的,又具有相对性。因此,要描述一个物体的运动,首先要选定某个其他物体作参考,观察物体相对于这个物体的位置是否随时间变化,以及怎样变化。描述物体运动时,另外选来作为标准的物体,称为参考系。

练习:平常说的“一江春水向东流、地球的公转、钟表的时针在转动、太阳东升西落,分别说什么物体相对什么参考系在运动?

3)坐标系

一江春水向东流,如果此时河流上有条小船,在岸上的我们要如何定量的描述小船的位置及位置的变化。(提示学生思考:描述必须能反映物体(或人)的运动特点(直线)、运动方向、各点之间的距离等因素。)我们可以选定一个参照,在参照系上建立适当的坐标系。选大地为参考系,人站的位置为原点O,河道近似取直线,水流方向为X轴正方向,设立单位长度,建立直线坐标系,这样我们就可以描述小船的运动了。

问:如果物体在平面或三围空间上运动(例如滑冰运动员、飞机起飞),我们应如何建立坐标系?

答:可以建立一个直角二维或三维坐标系,此时可以用(x,y)或(X,Y,Z)表示物体的位置。

4.课堂小结

1.质点

(1)机械运动:一个物体对另一个物体相对位置变化运动称之为机械运动。(2)质点的定义:用来代替物体的有质量的点叫做质点。即没有形状、大小、体积而具有质量的一个点,质点具有物体的全部质量。

(3)质点简化的条件性

①平动的物体一般可以看作质点;

②有转动但转动为次要因素;

③物体的形状、大小可忽略。2.参考系

(1)被选来作为标准的另外的物体就叫做参考系;

(2)同一个物体选择不同的参考系,观察结果可能会有所不同;

(3)比较两个物体的运动时必须选择同一参照系;

(4)参考系的选取是任意的。3.坐标系

(1)一维坐标;

(2)二维坐标;

(3)三维坐标;(4)要注意以下几点:

①坐标系相对参考系是静止的;

②坐标的三要素:原点、正方向、标度单位;

③用坐标表示质点的位置;

3.质点教案 篇三

★★知识点:

机械运动的定义:物体空间位置随时间变化的运动。

质点:有质量的物质的点。提出质点的定义后,再向学生解释质点是一种理想化的模型,在物理学中,突出问题的主要方面,忽略次要因素,建立理想化的物理模型,并将其作为研究对象,是经常采用的一种科学研究方法,质点就是这种物理模型之一。而后者小车的运动不能把它当做质点是因为它不满足可以把物体当做质点的条件。

实际物体在下列三种情况下都可简化为质点:

(1)物体的大小和形状对研究问题的影响可忽略不计。

(2)物体上的各点的运动情况都是相同的,所以研究它上面某“点”的运动规律就可以代表它的整体运动情况了,故此物体也可当质点处理。

(3)有转动、但相对平动而言可以忽略时,也可以把物体视为质点。

参考系:用来做参考的物体。参考系可以任意选择,但参考系选择得当会使问题的研究变得简单方便。参考系选择原则:使观测方便和运动的描述尽可能简单。研究物体的运动应该将参考系看作是静止的。

坐标系是建立在参考系的基础上建立起来的,用以定量的描述物体位置的变化,这个知识点比较简单,主要是让学生根据课本上的例题体会坐标系的应用。

1、质点――理想模型

质点是一种科学抽象,是在研究物体运动时,抓住主要因素,忽略次要因素,对实际物体的近似,是一个理想化模型。一个物体能否视为质点,要具体情况具体分析。一个物体能否看作质点,主要取决于物体的大小和形状在所研究的问题中是否属于次要的、可以忽略的因素,而不是仅仅取决于物体的大小。地球虽然很大,但在研究地球绕太阳的公转时,地球的大小相对它到太阳的距离可以忽略,故可视为质点;乒乓球虽然小,在研究它的旋转对运动的影响时,却不能看成质点。

2、参考系:研究物体的运动应该将参考系看作是静止的。☆关于机械运动的认识

[例1] 下列哪些现象是机械运动

A.神舟5号飞船绕着地球运转B.西昌卫星中心发射的运载火箭在上升过程中 C.钟表各指针的运动D.煤燃烧的过程

解析:A、B、C三种现象中物体都有机械位置的变化,所以是机械运动;D煤的机械位置没有变化,所以不是机械运动。故ABC正确

☆关于质点的应用

[例2]在研究下列哪些运动时,指定的物体可以看作质点()

A.从广州到北京运行中的火车 B.研究车轮自转情况时的车轮. C.研究地球绕太阳运动时的地球 D.研究地球自转运动时的地球

解析:物体可简化为质点的条件是:物体的大小和形状在所研究的问题中应属于无关或次要的因素。一般说来,物体平动时或所研究的距离远大于物体自身的某些几何尺寸时,便可简化为质点。

答案:AC ☆关于参考系选择的应用

[例3] 第一次世界大战期间,一名法国飞行员在2000 m高空飞行时,发现脸旁有一个 小东西,他以为是一只小昆虫,敏捷地把它一把抓过来,令他吃惊的是,抓到的竟是一颗子弹。飞行员能抓到子弹,是因为(B)

A.飞行员的反应快 B.子弹相对于飞行员是静止的

C.子弹已经飞得没有劲了,快要落在地上了 D.飞行员的手有劲 ☆用坐标描述质点位置及位置变化

[例4] 质点由西向东运动,从A点出发到达C点再返回B点静止。如图,若AC=100m,BC=30m,以B点为原点,向东为正方向建立直线坐标,则:出发点的位置为 m,B点位置是 m,C点位置为 m,A到B位置变化是 m,方向。C到B位置变化为 m,方向.解析:以B为原点、建立坐标系,如图 A(-70m)B(0m)C(+30m)

A到B的变化+70向东;C到B变化为-30向西 ★★质点、参考系和坐标系练习题 【巩固教材—稳扎稳打】

1.下列关于质点的说法正确的是A.质点是一种理想化的物理模型,但实际上可以存在 B.因为质点没有大小,所以与几何中的点是一样的 C.凡是质量小或体积小的物体都能看作质点D.如果物体的形状和大小对所研究的问题没有影响,属于无关或次要因素时,即可以把物体看成质点

2.下列物体中,不能看作质点的是A.计算从北京开往上海的途中与上海距离时的火车;B.研究航天飞机相对地球的飞行周期时,绕地球飞行的航天飞机;C.沿地面翻滚前进的体操运动员;D.比较两辆行驶中的车的快慢。E.研究乒乓球的旋转F.研究汽车通过某一路标所用的时间J.研究石英钟上秒针的运动H.研究汽车在斜坡上有无翻倒的危险

3下列关于参考系的说法中,正确的说法是A.只有静止的物体才能被选做参考系B.对物体运动的描述与参考系的选择无关C.描述一个物体的运动时,一定要选择参考系D.做曲线运动的物体,无论选择哪个物体为参考系,其运动轨迹不可能为一直线 4.下列关于参考系的描述中,正确的是A.参考系必须是和地面连在一起的物体;B.被研究的物体必须沿与参考系的连线运动;C.参考系必须是正在做匀速直线运动的物体或是相对于地面静止的物体;D.参考系是为了研究物体的运动而假定为不动的那个物体;

5.甲物体以乙物体为参考系是静止的,甲物体以丙物体为参考系是运动的,那么以乙物体为参考系,丙物体 A.一定是静止的 B.一定是运动的C.可能是运动的,也可能是静止的 D.无法判断 6.关于参考系的选择,下列说法错误的是()A.描述一个物体的运动,参考系可以任意选取

B.选择不同的参考系,同一运动,观察的结果可能不同

C.观察或研究物体的运动,必须选定参考系

D.参考系必须选定地面或与地面连在一起的物体

7.关于质点,下列说法中正确的是()A.只要体积小就可以视为质点

B.若物体的大小和形状对于所研究的问题属于无关或次要因素时,可把物体当作质点 C.质点是一个理想化模型,实际上并不存在 D.因为质点没有大小,所以与几何中的点是一样的

8在有云的夜晚,抬头望月,觉得月亮在云中穿行,这时选取的参考系是()A.月亮

B.云 C.地面

D.星 研究下列情况中的运动物体,哪些可看作质点()A.研究一列火车通过铁桥所需时间B.研究汽车车轮的点如何运动时的车轮 C.被扔出去的铅球 D.比较两辆汽车运动的快慢 【重难突破—重拳出击】

1.有关参照物的说法中,正确的是()A.运动的物体不能做参照物 B.只有固定在地面上的物体才能做参照物C.参照物可以不同,但对于同一个物体,运动的描述必须是相同的 D.要研究某一个物体的运动情况,必须先选定参照物

2.下列各对物体中,可以认为保持相对静止的是()A.在空中加油的加油机和受油机 B.在稻田工作的联合收割机和卡车 C.在平直公路上匀速行驶的各种车辆 D.流水和随水漂流的小船

3.在研究下列哪些问题时,可以把物体看成质点()A.求在平直马路上行驶的自行车的速度B.比赛时,运动员分析乒乓球的运动

C.研究地球绕太阳作圆周运动时D.研究自行车车轮轮缘上某点的运动,把自行车看作质点()A.A船肯定是向左运动的 B.A船肯定是静止的 C.B船肯定是向右运动的 D.B船可能是静止的 4.如图1-1所示,由于风的缘故,河岸上的旗帜向右飘,在河面上的两条船上的旗帜分别向右和向左飘,两条船运动状态是

A

图1-1

B 5.甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动;乙中乘客看甲在向下运动;丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的运动情况可能是()A.甲向下、乙向下、丙向下 B.甲向下、乙向下、丙向上 C.甲向上、乙向上、丙向上

D.甲向上、乙向上、丙向下

6.两辆汽车在平直公路上行驶,甲车内一个人看乙车没有动,而乙车内的一个人看见路旁的树木向西运动,如果以大地为参照物,上述观察说明()A.甲车不动,乙车向东运动 B.乙车不动,甲车向东运动 C.甲车向西,乙车向东运动 D.甲、乙两车以相同的速度向东运动

7.桌面离地面的高度是0.9 m,坐标系的原点定在桌面上,向上方向为坐标轴的正方向,有A、B两点离地面的距离分别为1.9 m和0.4 m。那么A、B的坐标分别是()A.1 m, 0.5 m B.1.9 m,0.4 m C.1 m,-0.5 m D.0.9 m ,-0.5 m 8.第一次世界大战期间,一名法国飞行员在2000 m高空飞行时,发现脸旁有一个小东西,他以为是一只小昆虫,敏捷地把它()A.飞行员的反应快 B.子弹相对于飞行员是静止的 C.子弹已经飞得没有劲了,快要落在地上了 D.飞行员的手有劲

9地面观察者看雨滴竖直下落时,坐在匀速前进的列车车厢中的乘客看雨滴是()A.向前运动 B.向后运动 C.倾斜落向前下方 D.倾斜落向后下方

10下列各物体中,能被视为质点的有()A.停泊在港湾中随风摇摆的小船 B.满载战机远征伊拉克的“小鹰号”航空母舰 C.马拉松比赛的运动员 D.表演精彩动作的芭蕾舞者

11.某人坐在甲船中看到乙船在运动,那么相对河岸不可能的运动情况是()A.甲船不动,乙船运动 B.甲船运动,乙船不动 C.甲、乙两船都在运动 D.甲、乙两船以相同速度同向运动

12下列说法中正确的是()A.被选作参考系的物体是假定不动的 B.一乘客在车厢内走动的时候,他说车是运动的 C.研究地面上物体的运动,必须选取地面为参考系 D.质点运动的轨迹是直线还是曲线,与参考系的选取有关 【巩固提高—登峰揽月】

1.“坐在公共汽车车厢内的人看到窗外另一辆靠得很近的汽车向前开动了,此时这人感到自己的车子在后退,实际上这是错觉,他坐的汽车并没有动”的描述中,所选择的参照物至少有几个?是哪几个?

4.质点教案 篇四

您身边的高考专家

多媒体教学设计

一、实验探究

打开“5.2质点在平面内的运动.ppt”并切换到第二屏,如图:

分别点击其中的甲、乙、丙三个按钮,展示试管的三种不同状态.甲可倒转,乙为蜡块匀速上升,丙为试管匀速向右的同时蜡块匀速上升(在动画上右击,然后选择“放大”可以做更细微的观察).让学生根据动画思考回答所给问题,然后切换到第三屏给出总结如图:

二、理论探究

1.屏幕切换到第四屏,如图:

),文件解压后就可使用,具体链接地址为:http:///?action=copyright!show &id=955

5.高中物理质点的运动公式总结 篇五

一、直线运动

1、匀变速直线运动

s2(定义式)

2、有用推论 vt2v02as tvv03、中间时刻速度 vt2v平t

4、末速度 vtv0at

21、平均速度 v平

5、中间位置速度 vs27、加速度a212vvtv0vt2t

6、位移sv平tv0tat0222vtv0 {以v0为正方向,a与v0同向(加速)a0;反向则a0} t28、实验用推论saT {s为连续相邻相等时间(T)内位移之差}

9、主要物理量及单位:初速度(v0):m/s;加速度(a):m/s;末速度(vt):m/s;时间(t)秒(s);

2位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)、平均速度是矢量;

(2)、物体速度大,加速度不一定大;

(3)、avtv0只是量度式,不是决定式;t

(4)、其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t图、v--t图、速度与速率、瞬时速度。

2、自由落体运动

1、初速度 v00

2、末速度 vtgt3、下落高度h12gt(从v0位置向下计算)

4、推论vt22gh 2注:(1)、自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

22(2)、ag=9.8m/s≈10m/s(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

3、竖直上抛运动

1、位移sv0t2t12gt

2、末速度vtv0gt(g=9.8m/s2≈10m/s2)2202v03、有用推论vv2gs

4、上升最大高度Hm(抛出点算起)

2g5、往返时间t2v0(从抛出落回原位置的时间)g

注:(1)、全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)、分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)、上升与下落过程具有对称性,如在同点速度等值反向等。

二、曲线运动、万有引力

1、平抛运动

1、水平方向速度:vxv0

2、竖直方向速度:vygt

3、水平方向位移:xv0t

4、竖直方向位移:y12gt

5、运动时间t22y2h(通常又表示为(t)ggvyvxgt v0

6、合速度v222vxvyv0(gt)2,合速度方向与水平夹角β:tan

7、合位移:sx2y2,位移方向与水平夹角α: tanygt x2v0

8、水平方向加速度:ax0;竖直方向加速度:ayg

注:(1)、平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)、运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)、α与β的关系为tan2tan;

(4)、在平抛运动中时间t是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2、匀速圆周运动

1、线速度vs2r22f

2、角速度tTtTv222r()2r

3、向心加速度arTmv22m2rmr()2mvF合

4、向心力F向rT5、周期与频率:T1

6、角速度与线速度的关系:vr f7、角速度与转速的关系2n(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(v):m/s;角速度():2rad/s;向心加速度:m/s。

注:(1)、向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)、做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功。

3、万有引力

T24

21、开普勒第三定律:3k{R:轨道半径,T:周期,k:常量(与行星质量无关,RGM取决于中心天体的质量)}

Gm1m2-112(G=6.67×10N·m/kg,方向在它们的连线上)2rGMmGMmg;g

3、天体上的重力和重力加速度:{R:天体半径(m),M:天体质R2R22、万有引力定律:F量(kg)}

GMGMr34、卫星绕行速度、角速度、周期:v;;T2{M:中心

rr3GM天体质量}

5、第一(二、三)宇宙速度v1g地R地GMv211.2km/s;v316.7km/s 7.9km/s;

R地m42(R地h)GMm6、地球同步卫星{h≈36000km,h:距地球表面的高度,(R地h)2T2R地:地球的半径}

注:(1)、天体运动所需的向心力由万有引力提供,F万; 向F

(2)、应用万有引力定律可估算天体的质量密度等;

(3)、地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)、卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)、地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高中物理力学公式总结

常见的力、力的合成与分解

1、常见的力

1、重力Gmg(方向竖直向下,g=9.8m/s≈10m/s,作用点在重心,适用于地球表面附近)

2、胡克定律Fkx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3、滑动摩擦力FFN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}

4、静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)

22Gm1m2-112

2G(=6.67×10N·m/kg,方向在它们的连线上)

r2kqq9226、静电力F122(k=9.0×10N·m/C,方向在它们的连线上)

r5、万有引力F

7、电场力FEq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8、安培力FBILsin(为B与L的夹角,当LB时: FBIL,B//L时: F0)

v//B时: f0)

9、洛仑兹力fqvBsin(为B与v的夹角,当vB时: fqvB,高中物理动力学公式总结

运动和力

1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2、牛顿第二运动定律:F合ma或a,F合 {由合外力决定,与合外力方向一致} m,F各自作用在对方,平衡力

3、牛顿第三运动定律:FF {负号表示方向相反, F、与作用力反作用力区别,实际应用:反冲运动}

4、共点力的平衡F合0,推广 {正交分解法、三力汇交原理}

5、超重:FNG,失重:FNG {加速度方向向下,均失重,加速度方向向上,均超重}

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

注: 平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

高中物理振动和波公式总结

机械振动与机械振动的传播

1、简谐振动Fkx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2、单摆周期T2l {l:摆长(m),g:当地重力加速度值,成立条件:摆角g10o;lr}

3、受迫振动频率特点:ff驱动力

4、发生共振条件: f驱动力f固,Amax,共振的防止和应用

5、机械波、横波、纵波

6、波速vsf {波传播过程中,一个周期向前传播一个波长;波速大小由介质本tT身所决定}

7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}

注:

(1)、物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)、加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)、波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)、干涉与衍射是波特有的;

(5)、振动图象与波动图象;

(6)、其它相关内容:超声波及其应用/振动中的能量转化。

高中物理分子动理论、能量守恒定律公式总结

1、阿伏加德罗常数NA=6.02×10/mol;分子直径数量级10米

3-102、油膜法测分子直径dV32 {V:单分子油膜的体积(m),S:油膜表面积(m)} S3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4、分子间的引力和斥力(1)rr0,f引f斥,F分子力表现为斥力;(2)rr0,f引f斥,F分子力表现为引力;(3)rr0,f引f斥;(4)r10r0,f引f斥0,F分子力0,E分子势能0

5、热力学第一定律WQU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),U:增加的内能(J),涉及到第一类永动机不可造出

6、热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出}

7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:(1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)、温度是分子平均动能的标志;

(3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)、分子力做正功,分子势能减小,在r0处f引f斥且分子势能最小;

(5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大U0;吸收热量,Q0

(6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)、r0为分子处于平衡状态时,分子间的距离;

(8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

高中物理气体的性质公式总结

1、气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

336

体积V:气体分子所能占据的空间,单位换算:1m=10L=10mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

521atm=1.013×10Pa=76cmHg(1Pa=1N/m)

2、气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3、理想气体的状态方程:

pVp1V1p2V2 {=恒量,T为热力学温度(K)}

TT1T

2注:(1)、理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)、公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

高中物理电场公式总结

-191、两种电荷、电荷守恒定律、元电荷:(e=1.60×10C);带电体电荷量等于元电荷的整数倍

2、库仑定律:Fk922Q1Q2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×r210N·m/C,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3、电场强度:EF(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:qkQ {r:源电荷到该位置的距离(m),Q:源电荷的r2检验电荷的电量(C)}

4、真空点(源)电荷形成的电场E电量}

5、匀强电场的场强EUAB {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} d6、电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7、电势与电势差:UABAB,UABWABEAB qq8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10、电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11、电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

12、电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器

21/

214、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt/2,Vt=(2qU/m)

15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

2抛运动平行电场方向:初速度为零的匀加速直线运动d=at/2,a=F/m=qE/m

注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

2(6)电容单位换算:1F=10μF=10PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10J;

(8)其它相关内容:静电屏蔽/示波管、示波器及其应用/等势面。

高中物理电磁感应公式总结

1、[感应电动势的大小计算公式]

1、E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2、E=BLV垂(切割磁感线运动){L:有效长度(m)}

3、Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}

24、E=BLω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

22、磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4、自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,Δt:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点

(2)自感电流总是阻碍引起自感电动势的电流的变化;

36(3)单位换算:1H=10mH=10μH。

(4)其它相关内容:自感〔见第二册P178〕/日光灯。

高中物理交变电流公式总结

正弦式交变电流

1、电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2、电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3、正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.、理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

25、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失功率P损′=(P/U)R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻);

6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁2感强度(T);S:线圈的面积(m);U输出)电压(V);I:电流强度(A);P:功率(W)。

注:(1)、交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;(2)、发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;(3)、有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)、理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;(5)、其它相关内容:正弦交流电图象/电阻、电感和电容对交变电流的作用。

高中物理电磁振荡和电磁波公式总结 1/

21、LC振荡电路T=2π(LC);f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

82、电磁波在真空中传播的速度c=3.00×10m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:(1)、在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

(2)、麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

(3)、其它相关内容:电磁场 /电磁波 /无线电波的发射与接收 /电视雷达。

高中物理光的反射和折射公式总结

光的反射和折射(几何光学)

1、反射定律α=i {α;反射角,i:入射角}

2、绝对折射率(光从真空中到介质)n=c/v=sin i/sin r {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速,i :入射角,r:折射角}

3、全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:(1)、平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)、三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)、光导纤维是光的全反射的实际应用 ,放大镜是凸透镜,近视眼镜是凹透镜;

(4)、熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)、白光通过三棱镜发色散规律:紫光靠近底边出射。

高中物理光的本性公式总结

光既有粒子性,又有波动性,称为光的波粒二象性

1、两种学说:微粒说(牛顿)、波动说(惠更斯)

2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{ :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}

3、光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)

4、薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4

5、光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播

6、光的偏振:光的偏振现象说明光是横波

7、光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用

注:(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线 /光电效应的规律光子说 /光电管及其应用/光的波粒二象性 /激光 /物质波。

高中物理功和能公式总结

功是能量转化的量度

1、功:WFscos(定义式){W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角}

2、重力做功:Wabmghab {m:物体的质量,g=9.8m/s≈10m/s,hab:a与b高度

22差(habhahb)}

3、电场力做功:{q:电量(C),WabqUab Uab:a与b之间电势差(V)即Uabab}

4、电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

5、功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6、汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8、电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

29、焦耳定律:Q=IRt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

222210、纯电阻电路中I=U/R;P=UI=U/R=IR;Q=W=UIt=Ut/R=IRt

211、动能:Ek=mv/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12、重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14、动能定理(对物体做正功,物体的动能增加):

2W合=mvt/2-mvo/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt/2-mvo/2)}

2215、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv1/2+mgh1=mv2/2+mgh16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;

0OOOo

(2)O≤α<90 做正功;90<α≤180做负功;α=90不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);

(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;

6-19(6)能的其它单位换算:1kWh(度)=3.6×10J,1eV=1.60×10J;

2*(7)弹簧弹性势能E=kx/2,与劲度系数和形变量有关。

高中物理恒定电流公式总结

1.电流强度:I(s)} q{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间tU {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} RL2 3.电阻、电阻定律:R{:电阻率(Ω·m),L:导体的长度(m),S:导体横截面积(m)}

SE或EIrIR,也可以是EU内U外,{I:电路中的4.闭合电路欧姆定律:IrR总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:WUIt,PUI{W:电功(J),U:电压(V),I:电流(A),t:时间

2.欧姆定律:I(s),P:电功率(W)}

6.焦耳定律:QI2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

UU22t 7.纯电阻电路中:由于I,WQ,因此WQUItIRtRR8.电源总动率、电源输出功率、电源效率:P总IE,P出IU,P出{I:电路总电流(A),P总E:电源电动势(V),U:路端电压(V),:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串R1R2R3

1111 R并R1R2R

3电流关系 I总I1I2I3 I总I1I2I3

电压关系 U总U1U2U3 U总U1U2U3

功率分配 P P 1P2P31P2P3总P总P10.欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节R0使电表指针满偏,得

IgE

rRgR0

接入被测电阻RX后通过电表的电流为

IgEE rRgR0RxR中RX

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:

电压表示数:UURUA

电流表外接法:

电流表示数:IIRIV

RX的测量值UUAURRARXR真 IIRUURRRVXR真 IIRIVRVRX

RX的测量值

选用电路条件RXRV [或RX

选用电路条件RXRV [或RXRARV] RARV]

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件RPRX

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件RPRX

注1)单位换算:1A=10mA=10μA;1kV=10V=10mA;1MΩ=10kΩ=10Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

3636

E

2(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为;

2r

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用。

高中物理磁场公式总结

1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A·m

2、安培力FBIL;LB {B:磁感应强度(T),F:安培力(F), I:电流强度(A), L:导线长度(m)}

3、洛仑兹力fqvB注vB;质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),v:带电粒子速度(m/s)}

4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)、带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动vv0(2)、带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下

mv222mv2m2a)F Fmrm()rqvB;v;T向洛rTqBqB(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)、安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)、磁感线的特点及其常见磁场的磁感线分布要掌握〔〕;

上一篇:大学生宿舍关系调查问卷策划书下一篇:教师访万家活动个人总结