初三数学证明题

2024-08-08

初三数学证明题(共12篇)

1.初三数学证明题 篇一

数学证明题证明方法(转)

2011-04-22 21:36:39|分类:|标签: |字号大中小 订阅

2011/04/2

2从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:

(1)按照题意画出图形;

(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;

(3)在“证明”一项中,写出全部推理过程。

一、直接证明

1、综合法

(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.2、分析法

(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二、间接证明

反证法

1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:

反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:

对原结论否定的假定的提出,相当于增加了一个已知条件.4反证法主要适用于以下两种情形:

(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;

(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形

2.初三数学证明题 篇二

一、读题

1. 读题要细心, 有些学生一看到某一题前面部分有

似曾相识的感觉, 就直接写答案, 这种还没有弄清楚题目讲的是什么意思, 题目让你求证的是什么都不知道, 这非常不可取, 我们应该逐个条件的读, 给的条件有什么用, 在脑海中打个问号, 再对应图形来对号入座, 结论从什么地方入手去寻找, 也在图中找到位置.

2. 要记.

这里的记有两层意思.第一层意思是要标记, 在读题的时候每个条件, 你要在所给的图形中标记出来.如给出对边相等, 就用边相等的符号来表示;第二层意思是要牢记, 题目给出的条件不仅要标记, 还要记在脑海中, 做到不看题, 就可以把题目复述出来.

3. 要引申.

难度大一点的题目往往把一些条件隐藏起来, 所以我们要会引申, 那么这里的引申就需要平时的积累, 平时在课堂上学的基本知识点掌握牢固, 平时训练的一些特殊图形要熟记, 在审题与记的时候要想到由这些条件你还可以得到哪些结论, 然后在图形旁边标注, 虽然有些条件在证明时可能用不上, 但是这样长期的积累, 便于以后难题的学习.

对于读题这一环节, 我们之所以要求这么复杂, 是因为在实际证题的过程中, 学生找不到证明的思路或方法, 很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件, 而将已知记在心里并能复述出来就可以很好地避免这些情况的发生.

二、分析

指导学生用数学方法中的“分析法”, 执果索因, 一步一步探究证明的思路和方法.教师用启发性的语言或提问指导学生, 学生在教师的指导下经过一系列的质疑、判断、比较、选择, 以及相应的分析、综合、概括等认识活动, 思考、探究, 小组内讨论、交流、发现解决问题的思路和方法.而对于分析证明题, 有三种思考方式:

1. 正向思维.对于一般简单的题目, 我们正向思考, 轻而易举可以做出.

2. 逆向思维.

顾名思义, 就是从相反的方向思考问题.运用逆向思维解题, 能使学生从不同角度、不同方向思考问题, 探索解题方法, 从而拓宽学生的解题思路.这种方法是推荐学生一定要掌握的.在初中数学中, 逆向显, 数学这门学科知识点很少, 关键是怎样运用, 对于初中几何证明题, 最好用的方法就是用逆向思维法.如果学生已经上九年级了, 证明题不好, 做题没有思路, 那一定要注意了:从现在开始, 总结做题方法.有些学生认真读完一道题的题干后, 不知道从何入手, 建议从结论出发.例如:可以有这样的思考过程:要证明某两个角相等, 那么结合图形可以看出, 有可能是通过证两条边相等, 等边对等角得出;或通过证某两个三角形全等即可;要证三角形全等, 结合所给的条件, 看还缺少什么条件需要证明, 证明这个条件又需要什么, 是否需要做辅助线, 这样思考下去……我们就找到了解题的思路, 然后把过程正着写出来就可以了.这是非常好用的方法.

3. 正逆结合.

对于从结论很难分析出思路的题目, 我们可以结合结论和已知条件认真的分析, 初中数学中, 一般所给的已知条件都是解题过程中要用到的, 所以可以从已知条件中寻找思路, 比如给我们某个角的角平分线, 我们就要想到会得到哪两个角相等, 或者根据角平分线的性质会得到哪两条线段相等.给我们梯形, 我们就要想到是否要做辅助线, 是作高, 或平移腰, 或平移对角线, 或补形等等的辅助线.正逆结合, 战无不胜.

三、书写过程

分析完了, 理清思路了.就要根据证明的思路, 用数学的语言与符号写出证明的过程.

证明过程的书写, 其实就是把证明的思路从脑袋中搬到纸张上.这个过程, 对数学符号与数学语言的应用要求较高, 在讲解时, 要提醒学生任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合, 不能无中生有、胡说八道, 要有根有据!证明过程书写完毕后, 对证明过程的每一步进行检查, 是非常重要的, 是防止证明过程出现遗漏的关键.

四、巩固提高

课后布置相应的练习, 让学生及时巩固, 再现所学知识, 并利用类比的方法进行新知识的求解证明, 进一步掌握求解证明的方法技巧, 从而提高学生的能力.

以上就是我们研究的初中数学几何证明题“读”、“析”、“述”、“练”的教学模式.虽然实践表明:“读、析、述、练”这种几何证明题教学模式, 有助于激发学生学习证明题的兴趣;有助于学生数学解题水平的提高;有助于学生数学学习能力的发展.但我们在以后的教学过程中, 还将不断改进、不断完善, 以便能更有效地提高我校初中数学教学的效率.

3.初中数学几何证明题教学探讨 篇三

关键词:初中数学;几何证明题;提高质效

提及初中数学几何证明题,不少学生就头皮发麻,找不到思路,面对各种各样的图形和线条就犯晕,几乎束手无策,更不用说作出精确的辅助线了;有的学生则是风风火火地写了满满一张纸,仔细一看,逻辑混乱,不知所云;还有的学生步骤简单,跳跃幅度大,因果关系没有整理清晰,关键步骤没有写清楚便匆匆得到要证明的结论,多多少少有些滥竽充数的嫌疑,自然也就拿不到证明题的完整分数了。 对于数学教师来讲,初中几何证明题也是教学上的一大难点,似乎在教学中花了不少的力气,但还是有不少的学生对几何证明题的掌握程度无法令人满意,达不到新一轮课程改革的基本要求。 如何針对初中数学几何证明题的特点,调动学生的主观能动性,提高几何证明题的教学效果,我结合个人教学实际,谈几点粗浅看法。

一、尊重教材

苏教版初中数学几何教材中,有几个重点环节,如平行线、轴对称图形、中心对称图形、相似图形等,这些章节的知识几乎无一例外都有证明题可供考查。 与这些知识点相关的证明题,一般来说难度不小,对于刚刚接触几何知识的初中生来讲,是一个很大的挑战。 要抓好这部分证明题的教学,我认为首先就是要尊重教材。

教材是一切教学工作的根源。 教材中有很多经典的例题,这些例题几乎可以涵盖初中几何所有的知识点,可以说,把教材上的例题讲通讲透,学生能完全消化教材的例题,应该说学生就可以解决百分之八十的基本证明题。 现实状况下,有些几何教师对证明题的讲解存在认识的误区,认为没有什么值得仔细讲、反复讲的,尽快讲完直接进入课后练习。 这种教学方式是不科学的,也是不合理的,我认为教材上的例题,至少要到边到角地讲三遍,每一遍都有不同的任务,第一遍是让学生大致了解题目要求证明的结论和题目提供的条件;第二遍是让学生明白如何通过给定的条件和现有的定理逐步得到要证明的结论,第三遍则是让学生做好细节上的处理工作。

二、做好细节的规范书写

初中几何证明题有着严谨的格式要求,证明题的书写还需要思路明确、步骤清晰、过程精练,这样的证明过程才能得到更高的评价。 教学实际中,通常遇到学生证明步骤烦琐,证明格式不规范,箭头指来指去,看得头晕眼花,不少数学老师对此大为光火。 其实,更多的时候,我们要反思自己在教学中是否做得到位,做得细心。

有的数学教师对于证明题示例的细节上把握不够,他们认为只要我能把证明思路、关键的步骤给学生演示一下就够了,至于其他的地方,没有必要过于苛求。 比如在板书的过程中,有的为了赶进度,图简单省事,一些看似不重要的证明步骤一笔带过,有的书写不够规范,有的字迹过于潦草,黑板上箭头指来指去,如同一幅军事作战指挥图,学生看起来很累,也很容易产生歧义。

如果教师是这种教学心态,那么也无法搞好几何证明题教学工作的,首先几何证明题本身就是一个严谨、严密的逻辑推理过程,没有做好细节自然就漏洞百出,所以,要充分认识到细节的重要性,为学生做好细节示范。 其次,学高为师,身正为范,这也是对教师教学工作的一个基本要求。 如果教学时间不是很充足,宁愿放弃示范也不能匆匆了事,一定要把握细节,注意火候,只有我们自己做得足够好,才能理直气壮对学生提要求。

三、抓好强化训练

初中几何证明题的教学,离不开强化训练。 这种强化训练既要训练学生的逻辑思维,还要训练学生的答题规范性。 比如,在三角形、多边形和圆这些章节的几何证明题中,有不少的题目要求学生作辅助线,不然难以解答。

要能准确作出辅助线,并熟练地运用各种定理来证明几何题,就需要平时进行一定量的强化训练。 这种强化训练一定不能走入了题海的误区,训练的题目最好是由老师提前把关,量不能太大、太复杂让学生产生畏难的心理,也不能过于简单,我认为以书本上的例题为参考,适当提高点难度为宜。 比如,我们可以在一堂课专门训练如何作辅助线,只要作出了辅助线,我们不要求学生完完整整地书写出整个证明过程,但要注意作出辅助线后续的工作,防止学生误打误撞,只要求他们说出证明的思路就可以进入下一题了。

通过一定量的题目进行强化训练,学生面对各种看似复杂的图形问题,能凭着直觉作出精确的辅助线,作出了辅助线之后解题的思路也就渐渐呈现出来,能较大幅度提高证明题的解题效率。

总而言之,初中数学几何证明题是整个初中数学教学的一大难点,作为数学教师要抓好教材例题的讲解,教学上遇到困难及时带领学生回归教材,多多少少能获得启发和提示。 同时也要端正教学心态,在板书和示范上尽量做细做实,切忌一笔带过,草草了事。最后要以一定量的题目及时强化训练,帮助学生牢固掌握知识点和定理的运用,这样才能提高几何证明题的教学质效。

4.中考数学证明题 篇四

(1)说明AE切圆o于点D

(2)当点o位于线段AB何处时,△ODC恰好是等边三角形〉?说明理由

答案:一题:显然三角形DOE是等边三角形:

理由:

首先能确定O为圆心

然后在三角形OBD中:BO=OD,再因角B为60度,所以三角形OBD为等边三角形;

同理证明三角形OCE为等边三角形

从而得到:角BOD=角EOC=60度,推出角DOE=60度

再因为OD=OE,三角形DOE为等腰三角形,结合上面角DOE=60度,得出结论:

三角形DOE为等边三角形

第三题没作思考,有事了,改天再解

二题:

要证明三角形ODE为等边三角形,其实还是要证明角DOE=60度,因为我们知道三角形ODE是等腰三角形。

此时,不妨设角ABC=X度,角ACB=Y度,不难发现,X+Y=120度。

此时我们要明确三个等腰三角形:ODE;BOD;OCE

此时在我们在三角形BOD中,由于角OBD=角ODB=X度

从而得出角BOD=180-2X

同理在三角形OCE中得出角EOC=180-2Y

则角BOD+角EOC=180-2X+180-2Y,整理得:360-2(X+Y)

把X+Y=120代入,得120度。

由于角EOC+角BOD=120度,所以角DOE就为60度。

外加三角形DOE本身为等腰三角形,所以三角形DOE为等边三角形!

图片发不上来,看参考资料里的1如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,pB、pC分别是△ABC的外角平分线,且相交于点p。

求证:点p在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加

14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6.在三角形ABC中,角ABC=60,点p是三角ABC内的一点,使得角ApB=角BpC=角CpA,且pA=8pC=6则pB=2p是矩形ABCD内一点,pA=3pB=4pC=5则pD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNpQ,1)证明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠

3(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题

1.两个角的和与这两角的差互补,则这两个角()

A.一个是锐角,一个是钝角B.都是钝角

C.都是直角D.必有一个直角

2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()

3.下列说法正确的是()

A.一条直线的垂线有且只有一条

B.过射线端点与射线垂直的直线只有一条

C.如果两个角互为补角,那么这两个角一定是邻补角

D.过直线外和直线上的两个已知点,做已知直线的垂线

4.在同一平面内,两条不重合直线的位置关系可能有()

A.平行或相交B.垂直或平行

C.垂直或相交D.平行、垂直或相交

5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()

A.平行B.垂直

C.在同一条直线上D.或平行、或垂直、或在同一条直线上

答案:1.D2.C3.B4.A5.A回答人的补充2010-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500cm如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12回答人的补充2010-07-0311:25如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长FG交AD的延长线于K)

1.连接并延长FG交AD的延长线于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠

22.延长AC交BC延长线与E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF求证∠1=∠2

答案:证三角形BFE全等三角形DEF。因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形对应角相等)

就给这么多吧~~N累~!回答人的补充2010-07-1900:341已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5已知ΔABC,AB>AC,AD是角平分线,p是AD上任意一点。求证:AB-AC>pB-pC。

6已知ΔABC,AB>AC,AE是外角平分线,p是AE上任意一点。求证:pB+pC>AB+AC。

7已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形2

1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形4

1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3已知∠AOB,p为角平分线上一点,pC⊥OA于C,∠OAp+∠OBp=180°,求证:AO+BO=2CO。

4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7已知ΔABC,∠A与∠C的外角平分线交于p,连接pB,求证:pB平分∠B。

8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

5.数学证明题 篇五

数学证明题

证明:作PF∥BG,交BC于点P

∵GF∥BP,PF∥BG

∴四边形BPFG为平行四边形

∴BG=PF

∠FPC=∠B=∠FAC

又∵∠1=∠2,CF=CF

∴△CFP≌△CFA

∴FP=AF

∵∠1=∠2,∠1+∠AEC=90°=∠2+∠DFC

∴∠AEC=∠DFC=∠AFE

∴AE=AF

又AF=FP=BG

∴AE=BG

7证明 在△ABC和△ACD中

因为

AB=CD(已知)BC=AD(已知)AC=AC(公共边)

所以△ABC≌△ACD(SSS)

所以∠BAC=∠DCA(全等三角形的对应角相等)

因为∠ABC=∠BCD(已知)

所以AB‖CD(内错角相等,两直线平行)

所以∠ABC+∠BCD=180度(两直线平行,同旁内角互补)

因为∠BAC=∠DCA(已证)

所以∠BAC=180°/2=90°(等式性质)

所以AB⊥AC(垂直的定义)

8

,∠ABC=∠BCD

所以AB平行CD

所以,∠CAB+∠ACD=180

证三角形ABC与ACD相似

因为AC是公共边

所以相似比为1

所以全等,

所以,∠CAB=∠ACD=90

证明:连接BD

∵∠ABC=∠BCD

∴AB‖CD

∵AB=CD

∴四边形ABCD是平行四边形

∵BC=AD

∴平行四边形ABCD是矩形

9

证明:

(a+b-c)-4ab

=(a+b-c+2ab) (a+b-c-2ab)

=[(a+b) -c][(a-b) -c]

=(a+b+c)(a+b-c)(a-b+c)(a-b-c)

因a、b、c是△ABC的三条边的.长

则a+b+c>0, a+b>c,a +c>b, b+c>a

则a+b+c>0,a+b-c>0,a-b+c>0,a-b-c<0

则(a+b+c)(a+b-c)(a-b+c)(a-b-c) <0

则(a+b-c)-4ab<

10

(a+b-c)-4ab<0

(a+b-c)-(2ab)<0

(a+b-c-2ab)(a+b-c+2ab)<0

((a-b)-c)((a+b)-c)<0

(a-b-c)(a-b+c)(a+b-c)(a+b+c)<0

因为 a-(b+c)<0 (a+c)-b>0 (a+b)-c>0 a+b+c>0 (因为 三角形 任意两边的和大于第3边)

所以 原式<0

证明:原式=(a+b-c+2ab)(a+b-c-2ab)

=[(a+b)-c] [(a-b)-c]

=(a+b+c) (a+b-c) (a-b+c) (a-b-c)0

6.初中数学证明题解答 篇六

求证:4|n

(x1,x2,x3,xn中的数字和n均下标)

2.在n平方(n≥4)的空白方格内填入+1和-1,每两个不同行且不同列的方格内数字的和称为基本项。

求证:4|所有基本项的和

1.y1=x1*x2,y2=x2*x3,……,yn=xn*x1

==>

y1,y2,..,yn∈{-1,1},且y1+..+yn=0.设y1,y2,..,yn有k个-1,则有n-k个1,所以

y1+..+yn=n-k+(-k)=n-2k=0

==>n=2k.而y1*y2*..*yn=(-1)^k=^2=1

==>k=2u

==>n=4u.2.设添的数为x(i,j),1≤i,j≤n.基本项=x(i,j)+x(u,v),i≠u,j≠v.这时=x(i,j)和x(u,v)组成两个基本项

x(i,j)+x(u,v),x(u,v)+x(i,j),和x(i,j)不同行且不同列的x(u,v)有(n-1)^2个,所以每个x(i,j)出现在2(n-1)^2个基本项中.因此所有基本项的和=2(n-1)^2.设x(i,j)有k个-1,则

所有基本项的和=2(n-1)^2=

=2(n-1)^

2显然4|2(n-1)^2,所以4|所有基本项的和.命题:多项式f(x)满足以下两个条件:

(1)多项式f(X)除以X^4+X^2+1所得余式为X^3+2X^2+3X+

4(2)多项式f(X)除以X^4+X^2+1所得余式为X^3+X+2

证明:f(X)除以X^2+X+1所得的余式为X+

3X^4+X^2+1=(X^2+X+1)·(X^2-X+1)

X^3+2X^2+3X+4=(X^2+X+1)·(X+1)+X+3

X^3+X+2=(X^2+X+1)·(X-1)+X+3

====>f(X)除以X^2+X+1所得的余式为X+3

各数平方的和能被7整除.”“证明”也称“论证”,是根据已知真实白勺判断来确某一判断的直实性的思维形式.只有正确的证明,才能使一个真判断的真实性、必然性得到确定.这是过去同学们较少涉足的新内容、新形式.本刊的“有奖问题征解”中就有不少是证明题(证明题有代数证明题和几何证明题等),从来稿看,很多同学不会证明.譬如上题就是代数证明题,不少同学会取出一组或几组连续的自然数,如O+1+2+3+4+5+6z一91—7×13,1+2+3+4+5+6+7z一140—7×2O后,便依此类推,说明原题是正确的,以为完成了证明.其实,这叫做“验证”,不叫做证明.你只能说明所取的数组符合要求,而不能说明其他的数组就一定符合要求,“验证”不具备一般性、必然性.这道题的正确做法是:证明设有一组数n、n+

1、n+

2、n+

3、n+

4、n+

5、n+6(n为自然数),‘.‘+(n+1)+(n+2)2+(n+3)2+(n+4)2+(n+5)2+(n+6)2一n2+(n2+2n,4-1)+(n2+4n+4)+(n2+6n+9)+(n2+8n+16)+(n2+10n+25)+(n+12n+36)一7nz+42n+91—7(nz+6n+13),.‘.n+(n+1)2+(n+2)2+(n+3)2+(n+4)2+(n+5)+(n+6)能被7整除.即对任意连续7个自然数,它们平方之和都能被7整除.(证毕)显然,因为n可取任意自然数,因此n,n+1,n+2,n+3,n+4,n+5,n+6便具有一般性,所得结论也因此具有然性.上面的证明要用到整式的乘法(或和的平方公式)去展开括号,还要逆用乘法对加法的分配律进行推理.一般来说,代数证明的推理,常要借助计算来完成.证明中的假设,应根据具体情况灵活处理,如上例露勤鸯中也可设这7个数是n一

3、n一

2、n一

1、n、n+

1、n+

7.一道经典证明题剖析 篇七

如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证:AE=EF.

分析:显然AE与EF相等的数量关系,急需二者分别所在的形状———三角形之间的形状关系决定,图中AE与EF直观的三角形不能全等, 因此需构造全等的三角形来证明, 由条件∠AEF=90°易得∠BAE=∠FEC.由此构造EF所在的直角三角形与Rt△BAE全等的三角形, 即过点F作FG上BC交BC延长线与G, 由条件可 知构造十 分正常 , 如能证明Rt△PEG≌Rt△EAB,问题就能解决.图中两个直角三角形对应角相等,但在边的元素上要对应相等实属困难, 看来构造与Rt△BAE全等困难.当这种构造思路出现障碍时,不得不另辟蹊径,与△ECF全等的三角形呢? 要知道∠ECF=135°,为特殊角且有∠CEF=∠BAE,利用要证的AE=CH,且∠AHE=∠ECF=135°,连接EH则易证△AHE≌△ECF,此法为课本上提示之法,显然有如图2所示构造出的辅助线.

变式:如果把“点E是边BC的中点”改为“点E是边BC上(出B、C外 )的任意一个点”,其他条件不变 ,那么结论“AE=EF”仍然成立吗?

类比在AB上截取AH=EC, 连接EH证△AHE≌△ECF即可.

义务教育阶段的正方形的素材中, 像这样经典题如果就满足于这样简单的研究,不是新课程标准所提倡的.由于正方形这个这个特殊的平行四边形有着美妙的性质,因此猜想,证明是否还有独到的方法呢? 假如还有其他方法,如何突破? 还是从最特殊的中点找感觉.

正方形的对角线性质丰富,如图3尝试连接对角线,先连AC,将AE构置于△AEC中 ,显然△AEC与△ECF不全等 , 能否构造出于△ECF全等的三角形? 再尝试连接BD交AC于O,连接EO,正方形的性质展现着其威力 ,与△ECF全等的三角形不知不觉中构造出来,根据寻找对应元素相等的原则,于是延长PC过点E作FB⊥BC交FC的延长线与点G, 即构造△EGF≌△E-CA,如图4辅助线构造.从图中由大截小 ,大补小的感觉能否推广到一般呢?

连接AC,过点E作EH⊥BC交FC的延长线于G,关键是过点E作垂线,如此类比推广此题才有点新味.

还有别的途径吗? 思维既兴奋又抑制,不知路在何方,此时更需回到母题,如能换视野看看,那才是真功夫.最初简单的构造没有成功,能否给我们别的方向,如把AE连接起来,此图形结构多像赵爽弦图的一部分,用“勾股定理”能证明吗?

8.中学数学证明题应培养的几种思想 篇八

关键词:数学证明题 联系性 严密性 反证法 归谬法

笔者从事高中数学教学多年,发现数学证明题令中学生特别头痛。无论大考小考,学生失分多在数学证明题上面。近年来,笔者在教学思路和教学方法上稍做了些调整,发现调整后学生数学证明能力大有提高。笔者认为,要提高学生的数学证明能力,就应加强培养学生以下几个方面的素质:

一、培养各知识点的联系性思想

数学是一门具有严格逻辑体系的学科,各知识点的联系是非常密切的。例如立体几何中的公理1:直线上的两点在一个平面上,那么这条直线也在这个平面上。这是典型的点线关系,一条直线可以由两点来确定位置。再例如证明面面平行应先从线面平行出发,证明面面垂直应先从线面垂直出发。可见线面关系可以用来证明面面关系,反之已知面面关系可以显现线面关系,这就是各知识点的密切联系。在教学中我们要让学生高度认识到这一点。把各个零散的知识串联成一个完整的知识模块,这样有利于对数学知识的整体把握,夯实基础知识,是解答数学证明题的保障。

二、培养逻辑推理的严密性思想

学生在证明过程中,极容易想当然,而忽视推理的严密性,从而导致推导缺乏理论依据,条理不清,思维混乱。这是数学证明题的大忌。因此,在学习定理或性质的时候,教师要讲明这种逻辑关系,实现推理的层层推进,不急不躁。这样才能实现完善的数学证明。

造成推理不够严密的主要原因在概念模糊、判断失误、推理错误等几个方面,因此我们要帮助学生强化对概念的理解,从而提高判断与推理的准确性。在平时的训练中,我们还要及时对学生做题时的错误判断和不够严密的推理进行纠错、反思和归纳,培养学生逻辑推理的严密性思想,最后达到数学证明推理的无隙可乘。

三、培养间接证明的反证法思想

反证法是数学证明的上乘方法,是在综合法、演绎法等方法难于证明的时候惯用的方法。例如,证明面面平行的判定定理:“一个平面内的两条相交直线分别与另一个平面平行,那么这两个平面平行”很难正面证明,因此我们要用反证法,要让学生从两点正确认识它的依据:第一点,证明P成立,等价于证明非P不成立;第二点,证明P则Q,等价于证明非Q则非R(R可以是原命题的条件P,也可以是已知的定理或性质、法则)。对于第二点,有些学生误认为反证法就是证明原命题的逆否命题,这是错误的认识。教学中我们应让学生了解这两者之间本质的区别。把握好这两者之间的区别与联系,有利于学生深刻理解反证法思想,从而运用好反证法思想证明数学题。

四、培养间接否定的归谬法思想

归谬法与反证法有不同之处,归谬法是论证某一论题为假的反驳方法。为了反驳某一论题,首先假定它是真的,然后由此却推出一个荒谬的结论,最后根据充分条件假言推理的“否定后件就要否定前件”的规则。这种思想如运用得好,可以大大提高我们的数学思维能力,从而提高数学证明能力。

五、培养数学证明的良好思想情操

数学证明题对众多学生来讲是难题,主要是因为学生缺少对待数学证明题的良好思想情操。数学证明虽说没有诗与画的美妙,可它的构思确像艺术一样灵巧。打开数学思维的闸门,用巧妙的方法,把各知识点按照特定方式组织起来,构筑成一个完美的“数学建筑”。在这个过程中,只要形成良好的数学思维习惯,就能享受到完成数学证明的成就感。培养好这种良好思想情操,即培养了数学证明的兴趣,还从而提高了证明的效率。

以上几种思想笔者认为在数学证明过程中非常重要。把握各个知识的联系,吃透各个知识点,这是实现证明的基础;利用严密的推理,培养学生逻辑思维的能力,这是完善数学证明过程的要求;运用恰当的证明方法与思路,这是实现数学证明的必然选择;培养良好的数学证明情操,提高学习数学证明题的兴趣,这样才能让学生轻松、快乐地学习数学证明,进而提高学习数学学科的兴趣。

9.初二数学证明题测试 篇九

1、如图,AB∥CD,且∠ABE=120°,∠CDE=110°,求∠BED的度数。

2、已知,∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC

求证:BD∥GE∥

AH

3、如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C。求证:∠A=∠

F

4、如图,AB∥CD,直线MN分别交AB,CD于E,F,EG平分∠BEF,FG平分∠EFD.求证:EG⊥FG

5、如图,线段AM∥DN,直线l与AM,DN分别交于点B,C,直线l绕BC的中点P旋转(点C由D点向N点方向移动)

(1)线段BC与AD,AB,CD围成的图形在初始状态下,形状是△ABD(即△ABC),请你写出变化过程中其余的各种特殊四边形的名称。

(2)任取变化过程中的两个图形,测量AB,CD的长度后,分别计算每一个图形中的AB+CD(精确到1厘米),比较这两个和是否相等,试说明理由。

【模拟试题】(答题时间:30分钟)

一、选择题

1.如图1,AB∥CD,则下列结论成立的是()A.∠A+∠C=180° B.∠A+∠B=180°C.∠B+∠C=180° D.∠B+∠D=180°

(1)(2)(3)(4)

2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是()A.相等B.互补C.相等或互补D.相等且互补

3.如图2,∠B=70°,∠DEC=100°,∠EDB=110°,则∠C等于()A.70° B.110°C.80°D.100° 4.如图3,下列推理正确的是()

A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NBD.∵MC∥ND,∴∠1=∠3 5.如图4,AB∥CD,∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.80°D.65°

二、填空题

1.如图5,已知AB∥CD,∠1=65°,∠2=45°,则∠ADC

=________.(5)(6)(7)(8)

2.如图6,已知∠1=∠2,∠BAD=57°,则∠B=________.3.如图7,若AB∥EF,BC∥DE,则∠B+∠E=________.4.如图8,由A测B的方向是________.三、解答题

10.初中数学圆证明题 篇十

1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD

2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,弧ABAF,BF和AD交于E,求证:AE=BE.

5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.求∠ACM的度数.

7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.

(1)求证:OP∥CB;

(2)若PA=12,DB:DC=2:1,求⊙O的半径.

如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE•的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

如图,BC是半圆O的直径,EC是切线,C是切点,割线EDB交半圆O于D,A是半圆O上一点,AD=DC,EC=3,BD=2.5

11.一道几何证明题思路剖析 篇十一

从命题者提供答案看,是由条件BA=BA′联想到等腰三角形,进而想到证明BD为底边AA′的高,思路是顺畅的,也无可厚非,但证明用了3次三角形相似,显然超过了课程标准要求.这促使笔者深思、细研,思索着有没有其它解法?

解题是由条件出发,运用已有定义、定理、法则,通过运算、推理得到结论的过程.因此,题干条件是什么、能得到什么结论、需要什么条件、条件与结论之间用什么方法打通、有哪些思路,这是解题者必须思考的问题.那么该题有其它通性通法吗?

结合本题,结论是证明D为AA′的中点,那么,遇到中点问题(已知中点或证明中点)我们还可以想到什么呢?从另一角度考虑,是否可以构造“8”字型或“A”字型或其他思路,这难道不是通性通法呢?

3解题反思

3.1关注解题通法,增强学生的解题能力

优秀的几何题一般存在多种解法,而辅助线通常是解决问题的桥梁,巧妙的辅助线常能“柳暗花明又一村”,与标准答案不同的上述几种解法,其巧妙之处在于添加了辅助线,辅助线使未知与已知有了更紧密的联系,无需通过证明3次相似,证明过程大为简洁,体现了数学方法的多样性,同时也从侧面说明这是一道难得的好题,是训练学生数学思维的好素材.由此可见,通过一题多解,可以加深和巩固学生所学知识,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识横向和纵向的内在联系,掌握各部分知识的转化关系,从而达到培养思维广阔性的目的.

3.2重视学会解题,拓展学生的思维空间

在解题教学中,题目是载体,解题是过程,方法和规律的揭示、策略和思想的形成是目的,因此,解题教学切忌就题论题,片面追求容量,忽视教学功能的发掘、开发.引导学生学会解题层面的回顾与反思:如解题中用到了哪些知识?解题中用到了哪些方法?这些知识和方法是怎样联系起来的?自己是怎么想到它们的?困难在哪里?关键是什么?遇到什么障碍?后来是怎么解决的?是否还有别的解决方法、更一般的方法或更特殊的方法、沟通其他学科的方法、更简单的方法?同样的方法能用来处理更一般性的命题吗?命题能够推广吗?条件能减弱吗?结论能加强吗?这些方法体现了什么样的数学思想?调动这些知识和方法体现了什么样的解题策略?

3.3关注模型思想,强化学生的识模能力

拿到一道试题,在理解题意后,立即思考问题属于哪一主题、哪一章节?与这一章节的哪个类型的问题比较接近?解决这个类型的问题有哪些方法?哪个方法可以首先拿来试用?这一想,下手的地方就有了,前进的方向也大体确定了,这就是解题中的模式识别.运用模式识别可以简洁回答解题中的两个基本问题,从何处下手?向何方前进?我们说就从辨认题型模式入手,向着提取相应方法、使用相应方法解题的方向前进.正如本文中所提到的构造“A字型”、“8字型”或“共点双垂直型”等基本模型,因此在平时的教学中,教师要引导学生从习题中提炼出常用的基本模型,再推广模型,并通过典型问题帮助学生认识模、用模,从而强化学生对基本模型的理解.

参考文献

[1]钱德春.对数学解题“繁”与“简”的辨析与思考[J].中学数学杂志,2015

(10):17-21

[2]沈岳夫.对一道“新定义”型折叠题的解法探析[J].数理化学习(初中版),2015(11):2-3

12.初三数学证明题 篇十二

中学数学新课标将原初中平面几何中的部分内容, 移到高中作为选讲内容.其中有些是现行初中课标教材删减的内容, 如:直角三角形中的射影定理, 圆的弦切角、相交弦、切割线定理.查阅2009年实施课标高考的各省平面几何选作题, 发现初中生也都能做.

例1 (2009年广东文) 如图1, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=30°, 则圆O的面积等于__.

解法1: (利用圆周角与圆心角的关系) 连结OA、OB, 因为∠ACB=30°, 所以∠AOB=60°, △AOB为等边三角形.因此圆O半径 r=OB=AB=4, 从而圆O的面积S=πr2=16π.

解法2: (用三角形中的正弦定理) 设△ABC外接圆圆O半径为 r, 则由正弦定理有

2r=ABsinACB=4sin30°=8,

得 r=4.故圆O面积S=πr2=16π.

例2 (2009年广东理) 如图2, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=45°, 则圆O的面积等于__.

简析:可参考例1的两种解法, 求得圆O的半径r=22, 则圆O面积为8π.

点评:以上两例, 在初中平面几何中也属于基本题.可见高考题中的题目也有简单题, 甚至连初中生也很容易做出.

例3 (2009年江苏卷) 如图3, 在四边形ABCD中, △ABC≌△BAD.求证:AB//CD.

证明1:由△ABC≌△BAD, 得∠ACB=∠BDA, 则A、B、C、D四点共圆, 因而∠CAB=∠CDB.

再由△ABC≌△BAD, 又得∠CAB=∠DBA.

所以∠CDB=∠DBA, 从而AB//CD.

证明2:同上证得A、B、C、D四点共圆, 得∠ADC+∠ABC=180°.

又由全等三角形得∠DAB=∠ABC,

则∠ADC+∠DAB=180°, 所以AB//CD.

点评:证明1和证明2的关键是利用了四点共圆, 则同弧所对的圆周角相等.再由内错角或同旁内角的方法证得两线平行.实际上, 本例还有多种证法, 如分别由两个全等三角形的顶点C、D作底边AB上的高, 由高相等, 立得结论;又如过对角线的交点作AB的垂线, 可证四边形关于这条垂线成轴对称.

例4 (2009年宁夏海南) 如图4, 已知△ABC的两条角平分线AD和CE相交于H, ∠B=60°, F在AC上, 且AE=AF. (1) 证明:B、D、H、E四点共圆; (2) 证明:CE平分∠DEF.

证明: (1) 在△ABC中, 由∠B=60°, 知

∠BAC+∠ACB=120°.

又AD、CE是角平分线, 所以∠HAC+∠ACH=60°, 则∠AHC=120°.

于是∠EHD=∠AHC=120°.

因为∠EHD+∠B=180°, 所以B、D、H、E四点共圆.

(2) 由B、D、H、E四点共圆, 得∠AHE=∠B=60°.

再连结BH, 知BH平分∠B, 则

∠HED=∠HBD=30°.

又由AE=AF, AH平分∠EAF, 得AH⊥EF, 则∠HEF=30°.

可见∠HED=∠HEF=30°, 所以CE平分∠DEF.

点评:对于 (1) 小题, 也可利用三角形的外角关系来证∠BDH+∠BEH=180°.另外, (1) 小题的结论为 (2) 小题的证明提供了重要条件, 这是系列问中常见的情形.应注意在解证后一小题时, 不要忽视前一小题的结论.

例5 (2009年辽宁省) 如图5, 已知△ABC中, AB=AC, D是△ABC外接圆劣弧AC上的点 (不与点A, C重合) , 延长BD至E. (1) 求证:AD的延长线平分∠CDE; (2) 若∠BAC=30°, △ABC中BC边上的高为2+3, 求△ABC外接圆的面积.

解: (1) 由条件知ABCD是圆内接四边形, 则∠CDF=∠ABC, ∠EDF=∠ADB=∠ACB.

又AB=AC, 知∠ABC=∠ACB, 故∠CDF=∠EDF, 从而AD的延长线DF平分∠CDE.

(2) 如图6, 设△ABC外接圆的圆心为O, 连结AO并延长交BC于H.由AB=AC, 知AH⊥BC.连结OC, 则∠OCA=∠OAC=15°.又∠ACB=75°, 则∠OCH=60°.设圆半径为 r, 则ΟΗ=32r.由r+32r=2+3, 得 r=2.从而外接圆面积为4π.

评析:上述各例都与圆有关.这是因为圆可与全等三角形, 相似三角形, 四边形等知识交汇, 构建成综合性较强的试题, 从而能较全面地考查学生分析探究、综合归纳、逻辑推理能力.下面一组高考题供研习.

1. (2008年广东) 已知PA是圆O的切线, 切点为A, PA=2, AC是圆O的直径, PC与圆O交于点B, PB=1, 则圆O的半径R=__.

2. (2008年宁夏、海南) 如图7, 过圆O外一点M作它的一条切线, 切点为A, 过点A作直线AP垂直直线OM, 垂足为P. (1) 证明:OM·OP=OA2; (2) N为线段AP上一点, 直线NB垂直直线ON, 且交圆O于点B.过点B的切线交直线ON于K.证明:∠OKM=90°.

3. (2008年江苏) 如图8, 设△ABC的外接圆的切线AE与BC的延长线交于点E, ∠BAC的平分线与BC交于点D.求证:ED2=EC·EB.

4. (2007年广东) 如图9, 圆O的直径AB=6, C为圆周上一点, BC=3.过C作圆的切线 l, 过A作 l 的垂线AD, AD分别与直线 l、圆交于点D、E, 则∠DAC=__, 线段AE的长为__.

5. (2007年宁夏、海南) 如图10, 已知AP是⊙O的切线, P为切点, AC是⊙O的割线, 与⊙O交于B、C两点, 圆心O在∠PAC内部, 点M是BC的中点. (1) 证明A, P, O, M四点共圆; (2) 求∠OAM+∠APM的大小.

练习题提示与答案:

1.连AB, 用特殊直角三角形;也可用切割线定理.答:3.

2.用直角三角形中射影定理.

3.用切割线定理.

4.用Rt△AEB≌Rt△BAC, 30°, 3.

5. (1) 连OP、OM, 用对角互补; (2) 90°.

上一篇:浅谈多媒体在数学教学中的作用下一篇:戴德父亲节主题班会