温度传感器的工作原理(通用7篇)
1.温度传感器的工作原理 篇一
电磁流量传感器的工作原理 电磁流量传感器是根据法拉第电磁感应定律设计的,在测量管轴线和磁场磁力线相互垂直的管壁上安装一对检测电极,电磁流量传感器当导电液体沿测量管在交变磁场中,与磁力线成垂直方向运动时,flow-meters.c、n导电液体切割磁力线产生感应电动势,电磁流量传感器此感应电动势由测量管上的两个检测电极检出如图1。用下列公式表示:
E=BVD(V)
式中:E-感应电动势 V
B-磁场的磁通密度 T
V-导电液体平均流速 m/s
D-导管的内径 m
2.温度传感器的工作原理 篇二
为了保证FD图像质量稳定,其温度控制单元必须恒定,偏差不超过±0.5℃/2分钟。如果超出范围或工作状态异常会切断X线,使整机停止工作。使术者束手无策,给患者带来生命危险。因此,技术人员必须定期查看冷却液高度是否在标准范围内。平板冷却单元有两部分构成,分别为硬件和控制部分:
1 硬件部分
平板冷却单元(FD cooling unit)、温度传感器(Temperature Sensors)、平板探测器(FD)、冷却——采用Glycoshell SF(乙二醇和水混合液)
2 控制部分
(1)系统实时控制(RTC real time controller)采用CAN总线控制。
(2)电源系统(power unit)采用CAN总线控制。
(3)CAN(Control Area Net)是一种串行数据总线,1993年成为国际标准。CAN是一种多主总线,每个节点均写成为主机,且节点之间可以进行通信,通信介质为双交线,利用Sw1状态开关设置十六进制代码通信,转换波特率为500kBit/s
3 工作原理
平板冷却单元通过循环泵把冷却液通过管道输送到温度传感器后,再送到平板探测器,最高温度55℃。平板冷却单元有两条CAN总线:一条控制电源,另一条控制温度。其有三个通道测量温度,分别是:冷却单元槽内温度,每(8~10)分钟发送“AX-ACU”信号;实时检测冷却液通过传感器模块温度记录;FD自身温度传给传感器。
传感器模块是靠近FD的探测单元,是温度控制核心部件,有三个测量信号。冷却液的流速大于0.5升/分;槽内冷却液的冷却等级;控制FD继电器工作状态。如果三个信号都是“LOW”电平,正常工作。如果有任意一个异常,都会产生一个“ERROR”信号-“No Xray available in 30min”,使手术台上的医生处理30分钟后,中断X线保护平板(还有5分钟保护级)。这是比较人性化的设计,即保证以人为本,又给术者处理善后时间。
4 故障维修
故障现象(1)正在手术中,突然提示:No Xray,available in30min。这时导丝恰好在右冠脉狭窄处,提示设备有故障。医生在余下时间30分钟内完成手术,我们也放松紧张心情。(2)再踩脚闸透视或拍片都无射线且提示:NO Xray,warm up…。(3)关机,再启动设备,仍提示如上错误。透视或拍片提示:No Xray Fluoro and acquisition not possible。
检测和维修(1)进入本机维修界面“local service”。故障代码“2065 AX-ACU”和“2067 AX-ACU”提示FD自身和冷却液温度;检测冷却单元功能设置;检测冷却单元灯的状态。
(2)检测system version:VB30的RTC(real time controller)和主机间的CAN通讯,确定故障FD温度异常。
(3)除温度异常外,还发现冷却单元灯detector off的红灯亮,进一步证明由于温度异常使旁路继电器工作,切断探测器电源。
(4)根据故障提示和工作原理,我们利用数字万用表检查平板冷却单元的电源(input:230VAC、+5V、±15V),查看冷却液面高度、冷却液的流动性均在正常范围内。由于提示探测器电源异常,说明CAN总线通讯正常。那么,只剩下温度传感器。
(5)于是卸下Temp.sensors X 13 WLK-AX13插头,测量pin1-6静态电阻为4.7MΩ,而正常值为210Ω。而对应平板侧M101 X20插座也为如此,排除中间线路和接插件有故障,断定温度传感器损坏。
故障排除更换同型号配件PIXIUM4700后,开机。发现冷却单元detector off的红灯亮,且下面initialization和bypass黄色灯也亮。通过原理可知,冷却液实际温度与设置参考偏差不超过±0.5℃/2min。如果超出范围或工作状态异常会切断X线,使整机停止工作。加热30分钟后,机器恢复正常。
5 总结
(1)SIEMENS AXIOM ARTIS DFA是当今最智能化直接数字X减影机,特别是在有故障时,人性化提示使我们技术人员能早知到故障严重性,为临床医生提供帮助。在维修机器时,要充分利用自身的维修程序进行故障压缩。
(2)所有资料为英文,而原理介绍又少。要求我们技术人员勤了解设备,勤阅读资料。
(3)此类设备大多在三甲医院使用,医院都购买保修。但由于该设备不但用于检查,同时也用于治疗,在当今医疗市场下,人命关天,马虎不得,因此在现场必须第一时间提供支持,是医院技术人员责任。
摘要:介绍了AXIOMARTIS数字平板减影机的构成和工作原理,以及温度传感器故障的排除过程。
关键词:平板探测器,平板冷却单元,温度传感器,数字减影机
参考文献
[1]林森财,郭军涛,张金钟.西门子数字减影DigitronⅢ原理结构及改造[J].中国医疗设备,2008(2):109-110.
[2]金城.数字减影机应用过程中的质量保证[J].医疗设备信息,2007(3):110-111.
[3]刘卫东,钟伟清.影响DSA图像质量因素的临床应用探讨[J].医学影像学杂志,2003(6):421.
3.氧传感器的工作原理与检修 篇三
【关键词】氧传感器;工作原理;检修
一.发动机氧传感器的类型
汽车发动机燃油喷射系统采用的氧传感器分为二氧化锆(zrO2)式和二氧化钛(TiO2)式两种类型。而常见的氧传感器又有单引线、双引线和三根引线之分,单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。其中应用最多的是氧化锆式氧传感器。
二.发动机氧传感器的构造
二氧化锆型氧传感器由二氧化锆管、起电极作用的衬套以及防止二氧化锆管损坏和导入汽车的带孔护罩等构成如图1所示。
三.氧传感器的工作原理
氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用,其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆骨外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。在排气高温作用下氧气发生分离,由于锆管内侧氧离子浓度高,外侧氧在两个表面电极有氧浓度差,氧离子就从浓度高的一侧向低的一侧流动,从而产生电动势,所以二氧化锆传感器实际为一种容量较小的化学电池,也称氧浓度差电池。 当混合气稀,空燃比大时,排气中的氧含量高,传感器元件内、外侧氧浓度差小,氧化锆元件内、外侧两电极之间产生的电压很低,当混合气浓时,排气中几乎没有氧传感器内、外侧氧浓度差很大。内、外侧电极之间产生的电压高(约1V)。在理论空燃比附近,氧传感器输出电压信号值有一突变。二氧化锆管内外涂有铂起催化作用,能使排气中氧气与一氧化碳、碳化氢等发生反应,减少排气中氧含量,使外侧铂表面的氧几乎不存在,提高了传感器的灵敏度。 氧传感器的输出特性与排气温度有关,二氧化锆式氧传感器的工作温度在300℃以上。当排气温度低于一定值约时,氧传感器的输出特性不稳定,因此氧传感器一般都安装在排气温度较高的位置。为此,有些车上海装有排气温度传感器,当排气温度传感器的信号达到一定值后,控制单元才根据氧传感器的信号进行空燃比反馈修正。其特点是抗铅;较少依赖于排气温度;起动后迅速进入闭环控制。
四.氧传感器的常见故障
(一)氧传感器中毒
氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。
(二)积碳
由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。
(三)氧传感器陶瓷碎裂
氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。
(四)加热器电阻丝烧断
对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。
(五)氧传感器内部线路断脱
内部线路有虚焊 松脱或者断路。找一个新的氧传感器进行检测,如果故障消失则是氧传感器的毛病,反之,则是线路的问题,需更换线路。
五.氧传感器的检修
(一)分工况检测
氧传感器输出的信号电压(指ECU 导线侧连接器端子对地的电压)应当符合下面的要求——a.点火开关位于ON 位置时,信号电压大约为0V;b.发动机冷机怠速运转时,信号电压大约为0V;c.发动机预热后怠速运转时,信号电压大约为0 V~1.0V;d.发动机预热后加速运转时,信号电压大约为0.5 V~1.0V;e.发动机预热后减速运转时,信号电压大约为0 V~0.4V。
(二)灵敏度检测
起动发动机,让发动机以2500 r/min 的转速运转3min,使氧传感器达到工作温度。发动机继续以2500r/min 的转速运转,同时测量氧传感器的信号电压,如果信号电压在0.1 V~1.0V 之间波动的次数为10 s 内大于8 次,说明氧传感器的灵敏度正常。否则,应当更换氧传感器。
(三)模拟检测
拔下一根发动机的真空软管,模拟混合气变稀,若氧传感器的信号电压下降到0.1 V~0.3V;堵住空气滤清器的进气口,模拟混合气变浓,若氧传感器的信号电压上升到0.8 V~1.0V,说明氧传感器工作正常。如果氧传感器的信号电压不发生上述变化,说明氧传感器有故障,应该予以更换。
六.氧传感器故障的案例
(一)案例
(1)故障现象
一辆丰田LEXUS LS400轿车,已经跑了10万多公里,车主反映车子加速没有以前顺畅,松油门时怠速有轻微的振动,发动机故障灯时亮时不亮,油耗也明显增加。
(2)故障的诊断
读取故障码,故障代码显示为混合气过浓或过稀,从而得到大概的故障部位在进气系统、燃油供给系统、点火系统。可能的主要故障部件为空气流量计、水温传感器、节气门位置传感器、油压调节器、点线圈、高压线、火花塞及氧传感器。本着先易后难的原则逐一进行检测,推断故障所在因为空气流量计、水温传感器、节气门位置传感器都有一个确定的故障码,如有问题,都会被控制单元记录下来,会有故障码读出,根据故障自诊断情况,这些部件都没有故障代码,基本可以确定上诉部件没有故障。而氧传感器是受其它因素影响较多的元件,应该先检测其它的元件,最后检查氧传感器。检发现其余元件没有损坏,问题则出在氧传感器上。
(3)故障的检修
根据电路图,断开发动机ECU与氧传感器的联接,对氧传感器进行检测,测量左右两边的主氧传感器加热元件的电阻,都在5.1~6.3Ω之间,没有问题,接着测量ECU端子HTL和HTR对搭铁的电压在9~14V之间,也没有问题。只有检查氧传感器的工作情况了。按要求装好拆下的拆下的部件,起动发动机,并热车到正常的工作温度,连接诊断插座上的E1和TE1端子,用万用表的正极表棒连接到插座的VF1和VF2端子,负极表棒连接到E1,高怠速(2500r/min)运转2分钟以加热氧传感器,然后将发动机速保持在2500r/min。分别计算电表在0~5V之间的波动次数(正常应在每10秒内波动8次左右),测得的波动次数为零。始终保持在0V,问题可能是氧传感器信号问题。再测量端子OX1、OX2端子跟E1之间的电压在0.5V以下,只有0.1~0.2V(正常应在0.5V以上),这就说明氧传感器不工作,问题终于找到了。由于氧传感器不能正常地把信号反馈给发动机ECU,不能对喷油器的喷油肪宽进行控制和修正,产生混合气过稀、过浓现象,导致出现了前诉问题。最后更换2个氧传感器和火花塞后,试车故障再也没有出现。
七.汽车氧传感器的发展趋势
中国开创性地提出了“新型汽车氧传感器产业” 及替代品产业概念,在此基础上,从四个维度即“以人为本”、“科技创新”、“环境友好”和“面向未来”准确地界定了“新型汽车氧传感器产业” 及替代产品的内涵。根据“新型汽车氧传感器产业” 及替代品的评价体系和量化指标体系,从全新的角度对中国汽车氧传感器产业发展进行了推演和精准预测,在此基础上,对中国的行政区划和四大都市圈的汽车氧传感器产业发展进行了全面的研究。
参考文献:
[1]杨邦朝,简家文,张益康.氧传感器与现代生活[J].世界产品与技术,200l .
[2]杨邦朝,简家文等.氧传感器原理与进展[J].传感器世界,2002 (8).
4.爆震传感器工作原理 篇四
爆震传感器工作原理 爆震传感器是汽车发动机控制系统(电脑板)中常用的部件。它的功能是检测发动机有无爆震现象,并将爆震传感器信号送入电脑板,爆震传感器按结构和控制型式有好几种,使用最多的是压电式。它的原件是陶瓷压电晶体。爆震传感器装在发动机的机体上,陶瓷压电晶体承受发动机振动而振荡,使其变形而产生电压信号,当发动机爆震时的震动频率与振荡片的固有频率相符合时。压电晶体产生共振,此时压电晶体将产生最大的电压信号。正确的点火正时对发动机性能非常重要,随着发动机转速的升高,点火必须提前,提前不足会使动力下降,过分提前可造成燃烧室过热,引起爆震,长期燃烧会加速发动机磨损甚至损坏发动机。用了爆震传感器后就有效的抑制了爆震的发生。
爆震传感器信号主要功能是根据爆震调整点火正时,在电脑板维修时,这个信号故障发生率很低,往往不作测试,除非驾驶员有要求时才用到这个信号。
5.温度传感器的工作原理 篇五
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。
可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类 :
传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感
器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
常见传感器的应用领域和工作原理列于表1.1。
按照其用途,传感器可分类为:
压力敏和力敏传感器 位置传感器
液面传感器 能耗传感器
速度传感器 热敏传感器
加速度传感器 射线辐射传感器
振动传感器 湿敏传感器
磁敏传感器 气敏传感器
真空度传感器 生物传感器等。
以其输出信号为标准可将传感器分为:
模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:
(1)按照其所用材料的类别分
金属 聚合物 陶瓷 混合物
(2)按材料的物理性质分 导体 绝缘体 半导体 磁性材料
(3)按材料的晶体结构分
单晶 多晶 非晶材料
与采用新材料紧密相关的传感器开发工作,可以归纳为下述三
个方向:
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。
按照其制造工艺,可以将传感器区分为:
集成传感器薄膜传感器厚膜传感器陶瓷传感器
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。
完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。
6.温度传感器的工作原理 篇六
和实现过程。整个设计包括使用AD590的模拟温度采集传感器专用仪表放大 器AD620的信号处理系统由ADC0804构成的模数转换电路采用AT89C52组 成的单片机系统数码管显示系统和整机所需的供电系统。
关键字温度检测系统AD590AT89C52
Ⅰ Abstract The temperature check system in modern industry is that uses some special method to process and display the environmental temperature.Tradition uses PTC or NTC resistance to be using process to there be existing much defects as the temperature sensor way, supposes that what be detected the temperature has a bad accuracy, systematic reliability is bad, has much difficulties to design, and the cost of e ntire system is expensive.To use this method already unable satisfied modern industry produces the need being hit by the high-accuracy temperature under the control.Use the special temperature transducer could improve the systematic function of temperature detecting.This article elaborated the high-accuracy temperature having set forth a because of special temperature transducer AD590 checks the main body of a book systematically designing and realizing process.Entire design is included: Use the AD590 temperature transducer to detect the analog temperature, instrumentation amplifier AD620 signal process system, change the analog signal to digital signal circuit of ADC0804, the AT89C52 MUC system and the power system.Key wordtemperature check systemAD590AT89C52
Ⅱ 目录 摘 要.............................................................Ⅰ
Abstract............................................................Ⅱ 目 录.............................................................Ⅲ 1 绪论..............................................................1 1.1简介..........................................................2 1.2 温度控制系统的国内外现状......................................2 1.3 温度控制系统方案..............................................2 1.4 论文的主要任务和所做的工作....................................2 2设计方案以及论证..................................................4 2.2 温度传感部分..................................................4 2.3 A/D转换部分..................................................5 2.4数字显示部分..................................................6 3 电路设计.........................................................8 3.1 硬件电路设计.................................................8 3.1.1 温度采集电路...............................................8 3.1.2 AD转换电路.................................................8 3.1.3 单片机电路.................................................10 3.1.4 显示电路...................................................14 3.1.5 电源电路...................................................16 3.2 软件系统设计.................................................16 3.2.1 主程序设计.................................................16 3.2.2 AD转换程序.................................................17 3.2.3 温度采样...................................................18 3.2.4温度标度转换算法...........................................19 3.3 特殊元器件介绍..............................................22 4 总结.............................................................24 参考文献.........................................................25 附录.............................................................26
1 绪论
1.1 简介 当代社会温度检测系统被广泛应用于社会生产、生活的各个领域。业、环境检测、医疗、家庭等多方面均有应用。同时单片机在电子产品中的应用 已经越来越广泛。
在很多电子产品中也将其用到温度检测和温度控制。目前温度测量系统种类 繁多功能参差不齐。有简单的应用于家庭的如空调电饭煲、太阳能热水器 电冰箱等家用电器的温度进行检测和控制。采用AT89C51单片机来对温度进行 控制不仅具有控制方便、组态简单和灵活性大等优点而且可以大幅度提高被 控温度的技术指标从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点为自动化和各个测控领域中广
在工 泛应用的器件在日常生活中成为必不可少的器件尤其是在日常生活中发挥的 作用也越来越大。因此单片机对温度的控制问题是一个日常生活中经常会遇到 的问题。
本论文以上述问题为出发点设计实现了温度实时测量、显示、控制系统。以AD590为采集器AT89S51为处理器空调相应电路为执行器来完成设计任务 提出的温度控制要求。设计过程流畅所设计的电路单元较为合理。该设计在硬 件方案设计单元电路设计元器件选择等方面较有特色。1.2 温度控制系统的国内外现状 通过网上查询、翻阅图书了解到目前国内外市场以单片机为核心的温度控制
系统很多而且方案灵活且应用面比较广可用于工业上的加热炉、热处理炉、反应炉在生活当中的应用也比较广泛如热水器室温控制农业中的大棚温 度控制。以上出现的温度控制系统产品根据其系统组成、使用技术、功能特点、技术指标。选出其中具有代表性的几种如下
1.虚拟仪器温室大棚温度测控系统在农业应用方面虚拟仪器温室大棚温度
测控系统是一种比较智能经济的方案适于大力推广改系统能够对大棚内的 温度进行采集然后再进行比较通过比较对大棚内的温度是否超过温度限制进 行分析如果超过温度限制温度报警系统将进行报警来通知管理人员大棚内 的温度超过限制大棚内的温控系统出现故障从而有利于农作物的生长提高 产量。本系统最大的优点是在一台电脑上可以监测到多个大棚内的温度情况从
而进行控制。该系统LabVIEW虚拟仪器编程通过对前面板的设置来显示温室大 棚内的温度并进行报警进而对大棚内温度进行控制。该系统有单片机温度
传感器串口通信和计算机组成。计算机主要是进行编程对温度进行显示、报警和控制等温度传感器是对大棚内温度进行测量显示单片机是对温度传 感器进行编程去读温度传感器的温度值并把半温度值通过串口通信送入计算 机串口通信作用是把单片机送来的数据送到计算机里起到传输作用。2.电烤箱温度控制系统
该方案采用美国TI公司生产的FLASH型超低功耗16位单片机MSP430F123 为核心器件通过热电偶检测系统温度用集成温度传感器AD590作为温度测量 器件利用该芯片内置的比较器完成高精度AD信号采样根据温度的变化情况 通过单片机编写闭环算法从而成功地实现了对温度的测量和自动控制功能。其 测温范围较低,大概在0-250之间具有精度高相应速度快等特点。3.小型热水锅炉温度控制系统
该设计解决了北方冬季分散取暖采用人工定时烧水供热耗煤量大浪费人
力温度变化大的问题。设计方案硬件方面采用MCS-51系列8031单片机为核心 扩展程序存储器2732 AD590温度检测元件测量环境温度和供水温度ADC0809 进行模数转换同向驱动器7407、光电耦合器及9103的功放完成对电机的控制。软件方面建立了供暖系统的控制系统数学模型。本系统硬件电路简单,软件程序 易于实现。它可用于一台或多台小型取暖热水锅炉的温度控制,可使居室温度基 本恒定,节煤,节电,省人力。1.3 温度控制系统方案 结合本设计的要求和技术指标通过对系统大致程序量的估计和系统工作速
度的估计考虑价格因素。选定AT89S51单片机作为系统的主要控制芯片8 位模数转换器AD0804采用AD509进行温度采集温度设定范围为-10℃~ 45℃ 通过温度采集系统对温度进行采集并作A/D转换再传输给单片机。以空调 机为执行器件通过单片机程序完成对室内温度的控制。1.4 论文的主要任务和所做的工作 本论文主要是完成一种低成本、低价格、功能齐全、及温度测量、温度显示、温度控制于一体的单片机温度控制系统的理论设计。包括硬件电路和主要的软件 设计。
研究的关键问题是室温的精确测量温度采集器AD590温度控制电路设 计单片机与A/D转换电路、显示电路以及软件设计。
根据本设计所要完成的任务本论文完成了如下工作 1介绍了研究和设计的背景和意义调查并综述了当前温度控系统市场的国内外 现状 提出了符合设计要求的高精度温度控制系统方案并阐述了其工作原理。3 完成了硬件电路的设计它包括温度采集系统电路包含89S51单片机模数 转换器ADC0804等芯片的接口电路通过AD590实现的温度控制采集电路;键盘接口和LED显示电路。基本完成了软件部分设计它包括主程序流程图A/D转换子程序显示子程 序主程序清单。2设计方案以及论证
2.1设计方案 经过查阅国内外相关资料现代工业控制的温度采集系统虽然传感器种类不 同但总体框架比较类似。通过仔细比较绘制出整体框架图如下
2.2 温度传感部分 方案1 基于PTC或NTC电阻的设计
热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由
半导体陶瓷材料组成 利用温度引起电阻变化。若电子和空穴的浓度分别 为n、p迁移率分别为μn、μp则半导体的电导为
σ=qnμn+pμp
因为n、p、μn、μp都是依赖温度T的函数所以电导是温度的函数 因此可由测量电导而推算出温度的高低并能做出电阻-温度特性曲线这 就是半导体热敏电阻的工作原理
热敏电阻包括正温度系数PTC和负温度系数NTC热敏电阻以 及临界温度热敏电阻CTR。
使用热敏电阻设计而成的温度检测系统利用“惠更斯”电桥提取出 温度的变化然后通过高共模抑制比的仪表放大器将信号放大把模拟信 号信号送入模数转换电路进行模拟到数字信号的转变从而将信号送入单 片机进行处理最终由数码管显示出当前的温度值。整体框图如下 但热敏电阻精度、重复性、可靠性较差不适用于检测小于1 ℃的信号而
且线性度很差不能直接用于A/D转换应该用硬件或软件对其进行线性化补偿。
方案2
采用集成温度传感器如常用的AD590和LM35。
AD590是电流型温度传感器。这种器件是以电流作为输出量指示温度其典 型的电流温度敏感度是1μA/K.它是二端器件使用非常方便作为一种高阻电 流源他不需要严格考虑传输线上的电压信号损失噪声干扰问题因此特别适合 作为远距测量或控制用。另外AD590也特别适用于多点温度测量系统而不必 考虑选择开关或CMOS多路转换开关所引起的附加电阻造成的误差。
由于采用了一种独特的电路结构并利用最新的薄膜电阻激光微调技术校 准使得AD590具有很高的精度。并且应用电路简单便于设计。
方案选择选择方案2。理由电路简单稳定可靠无需调试与A/D连接 方便。2.3 A/D转换部分 模/数转化器是一种将连续的模拟量转化成离散的数字量的一种电路或器件 模拟信号转换为数字信号一般需要经过采样保持和量化编码两个过程。针对不同 的采样对象有不同的A/D转换器ADC可供选择其中有通用的也有专用的。有些ADC还包含有其他功能在选择ADC器件时需要考虑多种因素除了关键参 数、分辨率和转换速度以外还应考虑其他因素如静态与动态精度、数据接口 类型、控制接口与定时、采样保持性能、基本要求、校准能力、通道数量、功耗、使用环境要求、封装形式以及与软件有关的问题。ADC按功能划分可分为直接 转换和非直接转换两大类其中非直接转换又有逐次分级转换、积分式转换等类 型。
A/D转换器在实际应用时除了要设计适当的采样/保持电路、基准电路和
多路模拟开关等电路外还应根据实际选择的具体芯片进行模拟信号极性转换等 的设计。
方案1采用分级式转换器这种转换器采用两步或多步进行分辨率的闪烁 式转换进而快速地完成“模拟-数字”信号饿转换同时可以实现较高的分辨 率。例如在利用两步分级完成n位转换的过程中首先完成m位的粗转换然后 使用精度至少为m位的数/模转换器ADC将此结果转换达到1/2的精度并且与 输入信号比较。对此信号用一个k位转换器k+m<=n转换最后将两个输出结 果合并。
方案2采用积分型A/D装换器如ICL7135等。双积分型A/D转换器转换 精度高但是转换速度不太快若用于温度测量不能及时地反应当前温度值 而且多数双击分型A/D转换器其输出端多不是而二进制码而是直接驱动数码管 的。所以若直接将其输出端接I/O接口会给软件设计带来极大的不方便。方案3采用逐次逼近式转换器对于这种转换方式通常是用一个比较输 入信号与作为基准的n位DAC输出进行比较并进行n次1位转换。这种方法类 似于天平上用二进制砝码称量物质。采用逐次逼近寄存器输入信号仅与最高位 MSB比较确定DAC的最高位DAC满量程的一半。确定后结果0或1 被锁存同时加到DAC上以决定DAC的输出0或1/2。
逐次逼近式A/D转换器如ADC0804、AD574等其特点是转换速度快精 度也比较高输出为二进制码直接接I/O口软件设计方便。由于ADC0804 设计时考虑到若干种模/数转换技术的优点所以该芯片非常适合于过程控制、微控制器输入通道的结合口电路、智能仪器和机床控制等应用场合并且价格低 廉降低设计成本。
方案选择选择方案3。理由用ADC0804采样速度快配合温度传感器应 用方便价格低廉降低设计成本。 2.4 数字显示部分 通常用的LED显示器有7段或8段“米”字段之分。这种显示器有共阳极和
共阴极两种。共阴极LED显示器的发光二极管的阴极连接在一起通常此公共阴 极接地。当某个发光二极管的阳极为高电平时发光二极管点亮相应的段被显 示。同样共阳极LED显示器的工作原理也一样。方案1采用静态显示方式。在这种方式下各位LED显示器的共阳极或 共阴极连接在一起并接地或电源正每位的段选线分别与一8位的锁存器 输出相连各个LED的显示字符一旦确定相应锁存器的输出将维持不变直到 显示另一个字符为止正因为如此静态显示器的亮度都较高。若用I/O口接口 这需要占用N*8位I/O口LED显示器的个数N。这样的话如果显示器的个数 较多那使用的I/O接口就更多因此在显示位数较多的情况下一般都不用静 态显示。
方案2采用动态显示方式。当多位LED显示时通常将所有位的段选线相应 的并联在一起由一个8位I/O口控制形成段选线的多路复用。而各位的共阳 极或共阴极分别有相应的I/O口线控制实现各位的分时选通。其中段选线占用 一个8位I/O口而位选线占用N个I/O口N为LED显示器的个数。由于各 位的段选线并联段码的输出对各位来说都是相同的因此同一时刻如果各 位选线都处于选通状态的话那LED显示器将显示相同的字符。若要各位LED 能显示出与本为相同的字符就必须采用扫描显示方式即在某一时刻只让某 一位的位选线处于选通状态而其他各位的位选线处于关闭状态同时段选线 上输出相应位要显示字符的段码。
方案选择选择方案2。理由非常节约I/O口亮度高节约CPU的使用 率。3 电路设计
3.1 硬件系统设计 3.1.1 温度采集电路
温度采集系统主要由AD590、AD620组成如图所示 选用温度传感器AD590AD590具有较高精度和重复性重复性优于0.1℃ 其良好的非线形可以保证优于0.1℃的测量精度利用其重复性较好的特点通
过非线形补偿可以达到0.1℃测量精度。由AD590采集到的温度信号通过AD620, 一款低功耗、高进度的仪表放大器进行线性放大在AD620的外部只需要通过 一只电阻即可将放大倍数从1-1000倍进行调整。在本电路系统中我们需要将 输出最大值和最小值调整在0-5V之间便于A/D进行转换以提高温度采集电 路的可靠性。
集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵 敏度一般为10mV/K温度0℃时输出为0温度25℃时输出为2.982V。电流输 出型的灵敏度为1 μA/K。这样便于A/D转换器采集数据。3.1.2 AD转换电路 在学习和实验过程当中对于AD转换芯片通常使用美国国家半导体公司
生产的AD0809芯片进行模拟信号到数字信号的转换。AD0809相关资料齐全 使用广泛但是对于本设计略显奢侈AD0809可以同时转换8路模拟输入但 本设计中只需要转换一路模拟输入。因此我放弃使用AD0809转而使用美国 国家半导体公司的同类产品AD0804一款与AD0809同类型的模数转换芯片。在达到系统要求的同时降低了电路的成本减小了电路的体积简化了电路的 复杂程度。 用单片机控制ADC时多数采用查询和中断控制两种方式。查询法是在单片
机把启动命令送到ADC之后执行别的程序同时对ADC的状态进行查询以检 查ADC变换是否已经完成如查询到变换已结束则读入转换完毕的数据。中断 控制是在启动信号送到ADC之后单片机执行别的程序。当ADC转换结束并向单 片机发出中断请求信号时单片机响应此中断请求进入中断服务程序读入转 换数据并进行必要的数据处理然后返回到原程序。这种方法单片机无需进行 转换时间管理CPU效率高所以特别适合于变换时间较长的ADC。本设计采用 查询方式进行数据收集。由于ADC0804片内无时钟故运用8051提供的地址锁 存使能信号ALE经D触发器二分频后获得时钟。因为ALE信号的频率是单片机时 钟频率的1/6如果时钟频率为6MHz,则ALE信号的频率为1MHz经二分频后为 500kHz与AD0804时钟频率的典型值吻合。由于AD0804具有三态输出锁存器 故其数据输出引角可直接与单片机的总线相连。并将A/D的ALE和START脚连在 一起以实现在锁存通道地址的同时启动ADC0804转换。启动信号由单片机的写 信号和P2.7经或非门而产生。在读取转换结果时用单片机的读信号和P2.7 经或非门加工得到的正脉冲作为OE信号去打开三态输出锁存器。根据所选用的 是查询、中断、等待延时三种方式之一的条件去执行一条输入指令读取A/D 转换结果。
ADC0804是一个8位逐次逼近的A/D转换器。AD0804的转换时间为100μs。在CPU启动A/D命令后便执行一个固定的延时程序延时时间应略大于A/D 的转换时间延时程序一结束便执行数据读入指令读取转换结果。本设计选 用Motorola公司的基准源TL431产生参考电压2.50V即一位数字量对应10mV 即1℃。所以用起来很方便。具体电路如下
3.1.3 单片机电路 单片微型计算机简称单片机。它在一块芯片上集成了各种功能部件中央处
理器CPU、随机存取存储器RAM、只读存储器ROM、定时器/计数器和各 种输入/输出I/O接口如并行I/O口、串行I/O口和A/D转换器等。它们 之间相互连结构成一个完整的微型计算机。
单片机的发展经历了四个阶段第一阶段19711974年主要是美国INTEL 公司从早先的第一台MCS-4微型计算机到后来功能较强的8位微处理器
Intel8008和FAIRCHILD公司的F8微处理器。这些微处理器虽说还不是单片机 但从此拉开了研制单片机的序幕。第二阶段19741978初级单片机阶段 以INTEL公司的MCS-48为代表。这个系列的单片机内集成有8位CPU并行I/O 口8位定时器/计数器寻址范围不大于4K且无串行口。第三阶段1978 1983高性能单片机阶段。在这一阶段的单片机普遍带有串行口多级中断处 理系统和16位定时器/计数器。片内ROMRAM容量加大且寻址范围可达64K 字节有的片内还带有A/D转换器接口。这类单片机有INTEL公司的MCS-51 MOTOROLA公司的6801和ZILOG公司的Z8等。其中MCS-51系列产品由于其优 良的性能价格比特别适合我国的国情MCS-51系列单片机有可能稳定相当一
段时期。现在国内的MCS-51热正在升温随着我国经济建设步伐的加大MCS-51 系列单片机必将在各个领域大显身手。第四阶段1983现在8位单片机巩 固发展及16位单片机推出阶段。此阶段主要特征是一方面发展16位单片机及专
用单片机另一方面不断完善高档8位单片机改善其结构以满足不同用户的 需要。
MCS-51系列属高档单片机近年来INTEL公司在提高该系列产品性能方面 做了不少工作相继推出了不少新产品8052/8752/8032、低功耗的CHMOS工艺 芯片80C51/87C51/80C31、具有高级语言编程的芯片8052AH-BASIC、高性能的 C252系列等。在本次设计中我们采用了MCS-51系列中的89C51来完成产品的CPU 的功能。
89C51是一种带4K字节闪烁可编程可擦除只读存储器FPEROM—Falsh Programmable and Erasable Read Only Memory的低电压高性能CMOS8位微 处理器俗称单片机。89C2051是一种带2K字节闪烁可编程可擦除只读存储器 的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL 高密度非易失存储器制造技术制造与工业标准的MCS-51指令集和输出管脚相 兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中ATMEL的89C51 是一种高效微控制器89C2051是它的一种精简版本。89C单片机为很多嵌入式 控制系统提供了一种灵活性高且价廉的方案。
89C51的主要特性有与MCS-51 兼容4K字节可编程闪烁存储器寿命
1000写/擦循环数据保留时间10年全静态工作0Hz-24Hz三级程序存储 器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个
中断源可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路。下面按其引脚功能分为四部分叙述这40条引脚的功能 1 主电源引脚VCC和GND VCC40脚接+5V电压。GND20脚接地。
2 外接晶体引脚XTAL1和XTAL2 XTAL1 和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器 ,就构成了内部
振荡方式。由于单片机内部有一个高增益反相放大器当外接晶振后就构成了 自激振荡器并产生振荡时钟脉冲。
3 控制或与其它电源复用引脚RST/VPD、ALE/PROG、PSEN和EA/VPP RST/VPD当振荡器运行时在此引脚上出现两个机器周期的高电平将使单 片机复位。在此引脚与VSS引脚之间连接一个约10KΩ的下拉电阻与VCC引 脚之间连接一个约10μF的电容可以保证可靠地复位。VCC掉电期间此引脚 可接上备用电源以保持内部RAM的数据不丢失。当VCC主电源下掉到低于 规定的电平而VPD在其规定的电压范围5土0.5V内VPD就向内部RAM 提供备用电源。ALE/PROG当访问外部存储器时ALE允许地址锁存的 输出用于锁存地址的低位字节。即使不访问外部存储器ALE端仍然以不变的 频率周期性地出现正脉冲信号此频率为振荡器频率的1/6。因此它可用作对 外输出的时钟或用于定时目的。然而要注意的是每当访问外部数据存储器时 将跳过一个ALE脉冲。ALE端可以驱动吸收或输出电流8个LS型的TTL 输入电路。对于EPROM型的单片机如8751在EPROM编程期间此引脚 用于输入编程脉冲PROG。PSEN此脚的输出是外部程序存储器的读选通 信号。在从外部程序存储器取令或常数期间每个机器周期两次PSEN有效。
但在此期间每当访问外部数据存储器时这两次有效的PSEN信号将不出现。PSEN同样可以驱动吸收或输出8个LS型的TTL输入。EA/VPP当EA端
保持高电平时访问内部程序存储器但在PC程序计数器值超过0FFFH对 8051/8751/80C51或1FFFH对3052时将自动转向执行外部程序存储器内 的程序。当EA保持低电平时则只访问外部程序存储器不管是否有内部程序 存储器。对于常用的8031来说无内部程序存储器所以EA脚必须常接地 这样才能只选择外部程序存储器。对于EPROM型的单片机如8751在EPROM 编程期间此引脚也用于施加21伏的编程电源VPP。4 输入/输出I/0引脚P0、P1、P2、P3共32根 P0口39脚--32脚是双向8位三态I/O口在外接存储器时与地址总 线的低8位及数据总线复用能以吸收电流的方式驱动8个LS TTL负载。P1 口l脚--8脚是8位准双向I/O口。由于这种接口输出没有高阻状态输入 也不能锁存故不是真正的双向I/O口。能驱动吸收或输出电流4个LS TTL 负载。对8052、8032 P1.0引脚的第二功能为T2定时/计数器的外部输入P1.1 引脚的第二功能为T2EX捕捉、重装触发即T2的外部控制端。对EPROM编
程和程序验证时它接收低8位地址。P2口21脚--28脚是8位准双向I/O 口。在访问外部存储器时它可以作为扩展电路高8位地址总线送出高8位地址。
在对EPROM编程和程序验证期间它接收高8位地址。P2可以驱动吸收或 输出电流4个LS TTL负载。P3口l0脚--17脚是8位准双向I/O口在 MCS-51中这8个引脚还用于专门功能是复用双功能口。P3能驱动吸收或 输出电流4个LS TTL负载。作为第一功能使用时就作为普通I/O口用功 能和操作方法与P1口相同。作为第二功能使用时各引脚的定义如表3.1所示。值得强调的是P3口的每一条引脚均可独立定义为第一功能的输入输出或第二 功能。P3口的第二功能定义 口线
引脚 第二功能 P3.0 10 RXD串行输入口 P3.1 11 TXD串行输入口 P3.2 12 INT0外部中断 0
P3.3 13 1 INT外部中断1 P3.4 14 T0 定时器0外部输入 P3.5 15 T1 定时器1外部输入
P3.6 16 WR外部数据存储器写脉冲
P3.7 17 RD外部数据存储器读脉冲
3.1.4 显示电路
显示电路采用锁存器74HC573和数码管组合的方式进行显示温度数值。数码管是单片机应用电路中常用的显示器件。每个数码管由8个发光二极管组 成。数码管有共阴极和共阳极两种类型。共阴极数码管内部8个二极管的阴极被 连接在一起和引脚com相接在使用是引脚应接低电平当数码管其余的某个引 脚接高电平则相应的发光二极管被点亮。共阳极数码管com端应接高电平当 数码管其余的某个引脚接低电平则相应的发光二极管被点亮。在使用过冲当中 我们需要在每个数码管的每一位段选上串联电阻限制导通电流来保证发光二极 管不被烧坏。本设计中选用共阳极数码管。a共阴数码管原理图 b共阳数码管原理图 1 2 3 4 5 6 7a b c d e f g8dp9GND a bf c g d e dp a bf c g d e VCC1 2 3 4 5 6 7a b c d e f g8dp dp9 c共阴数码管电路符号图 d共阳数码管电路符号图 锁存器
74HC573是一款高速低功耗TTL锁存器它能够锁存8位数据最高锁存17ns 变化的数据。本设计中使用一组I/O口用来传送数码管的段选同时使用该组 I/O口的高四位传送位选。这样一来可以大大提高I/O口的使用效率。同时 使用另外两个I/O口控制两个锁存器的锁存端是能段来控制锁存器的工作。关于74HC573的锁存使用说明如下图
显示总体电路如下
3.1.5 电源电路
一个优秀系统中的电源电路极为重要电源的好坏可以直接影响整机的工 作。本设计中采用线性稳压系统提供信号处理电路所需的正负15V电压和单片 机、数字电路、数码管所需的5V电压。电源系统的设计原理是通过工频变压器 将市电220V 50Hz的交流电变为双13V 50Hz的低压交流电再通过全桥整流变 为脉动的正电压经过电容滤波、78、79系列线性稳压芯片稳压最终输出稳 定的+15V、-15V和+5V直流电压供系统相应电路模块使用。电源部分电路图如下所示
3.2 软件系统设计 本系统的单片机程序使用C语言编写相比汇编语言C语言具有使用灵
活、移植性强、易于上手、方便使用、可完成高级功能等特点。3.2.1 主程序设计 程序启动后首先清理系统内存然后进行采集并通过A/D转换后传输
到单片机再由单片机控制显示设备显示现在的温度然后系统进入待机状态 等待再次检测温度。
3.2.2 AD转换程序
89S51给出一个脉冲信号启动A/D转换后ADC0809对接受到的模拟信号进 行转换这个转换过程大约需要100μs,系统采用的是固定延时程序所以在预 先设定的延时后89S51直接从ADC0809中读取数据。
主程序开始 采集温度 查询温度 调A/D程序
调显示程序 要控制温度
键盘输入设定值 和设定值比较 启动加热/降温
温度采集和比较 与设定值相等
是 N 否 是
否
3.2.3 温度采样
采样子程序流程图如图所示。
A/D入口 启动
A/D转换 查询EOC 读取转换数据 压缩BCD码 作未压缩处理
整理好的十位和个位 分别存入某地址单元
子程序结果
3.2.4温度标度转换算法
A/D转换器输出的数码虽然代表参数值的大小但是并不代表有量纲的参数
值必须转换成有量纲的数值才能进行显示标度转换有线性转换和非线性转换 两种本设计使用的传感器线性好在测量的量程制内基本能与温度成线性关系。温度标度转换程序TRAST目的是要把实际采样的二进制值转换的温度值
转换成BCD形式的温度值。对一般的线性仪表来说标度转换公式为 AX=0A+)AA0 mNN NN0 m 0X
式中0A为一次仪表的下限 Am为一次量程仪表的上限为实际测量值工程量为仪表下限所对应的数字量 Nm为仪表上限所应的数字量 NX为测量所得数字量。例如若某热处理仪表量程为200—800℃在某一时刻计算机采样得到的 二进制值U(K)=CDH则相应的温度值为 采样值起始地址送 R0 采样次数送R2 启动AD590 延时
A/D完成 所有采样结束 返回 Y N N AX=0A+)AA0 mNN NN0 m 0X=200+800-200255205=682℃
根据上述算法只要设定热电偶的量程则相应的温度转换子程序TARST
N0 很容易编写只要把这一算式变成程序将A/D转换后经数字滤波处理后的值代 入即可计算出真实的温度值。具体算法如图所示。 保护现场 R0←Am, R1 ←0A 计算 NX-N0 R0←Nm, R1 ←N0 计算 Am-0A 计算)AA0 m/NN0m R0←NX, R1 ←N0 计算 Nm-N0 计算)AA0 mNN NN0 m 0X
R2—0A AX=0A+)AA0 mNN NN0 m 0X
DATA←AX 返 回 3.3 特殊元器件介绍 温度传感器AD590 简介
AD590温度传感器是一种已经IC化的温度传感器它会将温度转换为电流 其规格如下
1、温度每增加1℃它会增加1μA输出电流
2、可测量范围为-55℃至150℃ 3、供电电压范围为+4V至+30V AD590的输出电流值说明见表。
其输出电流是以绝对温度零度-273℃为基准温度每增加1℃它会增
加1μA输出电流因此在室温25℃时其输出电流Iout=273+25=298μA。AD590温度与电流的关系 温度与电流的关系 摄氏温度 AD590电流 经10KΩ电压 0℃ 273.2 uA 2.732V 10℃ 283.2 uA 2.832 V 20℃ 293.2 uA 2.932 V 30℃ 303.2 uA 3.032 V 40℃ 313.2 uA 3.132 V 50℃ 323.2 uA 3.232 V 60℃ 333.2 uA 3.332 V 100℃ 373.2 uA 3.732 V 主要特性如下
1 流过器件的电流mA等于器件所处环境的热力学温度开尔文度 数
2AD590的测温范围为-55℃+150℃。
3AD590的电源电压范围为4V30V。电源电压可在4V6V范围变化 电流变化1mA相当于温度变化1℃。AD590可以承受44V正向电压和20V反向 电压因而器件反接也不会被损坏。4输出电阻为710MΩ。
5精度高。AD590共有I、J、K、L、M五档其中M档精度最高在-55℃ +150℃范围内非线性误差为±0.3℃。 AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均
温度的具体电路广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好常用于测温和热电偶的冷端补 AD590实际应用电路举例 分析
1AD590的输出电流I=273+TμAT为摄氏温度因此测量的电压 V为273+TμA×10K=2.73+T/100V。为了将电压测量出来又务须使输出 电流I不分流出来我们使用电压跟随器其输出电压V2等于输入电压V。2由于一般电源供应教多器件之后电源是带杂波的因此我们使用齐 纳二极管作为稳压组件再利用可变电阻分压其输出电压V1需调整至2.73V 3接下来我们使用差动放大器其输出Vo为100K/10K×V2-V1=T/10 如果现在为摄氏28℃输出电压为2.8V输出电压接AD转换器那么AD转换 输出的数字量就和摄氏温度成线形比例关系。
AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均
温度的具体电路广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好常用于测温和热电偶的冷端补偿。4 总结 AT89C51单片机体积小重量轻抗干扰能力强对环境要求不高价格
低廉可靠性高灵活性好本文的温度控制系统只是单片机广泛应用于各行 各业中的一例。
设计实现了温度实时测量、显示。本设计温度控制电路具有较高的抗干扰性 实时性方案具有较高的测量精度温度控制实时性更高。在设计过程中首先 在老师的指导下熟悉了系统的工艺进行对象的分析按照要求确定方案。然后 进行硬件和软件的设计。通过设计使我掌握了微型机控制系统I/O接口的使用方 法模拟量输入/输出通道的设计常用显示程序的设计方法数据处理及线性 标度技术基本算法的设计思想。
在做毕业设计之前我对单片机的基本知识了解甚少而C语言虽是接触过 可是没有具体的设计和编辑过所以花了大量的时间去做准备工作。在老师的指 导和帮助下克服了一系列困难终于完成了本设计基于本人能力有限该设计 还有许多不足之处有待改进。
参考文献 [1]钱聪.电子线路分析与设计[M].西安:陕西人民出版社,2000.[2]谈文心,钱聪,宋云娴.模拟集成电路原理与应用[M].西安:西安交通大学出版 社,1994.[3]孙肖子 ,邓建国,陈南钱聪.电子设计指南[M].西安:高等教育出版社,2006.[4]HAN Zhi-jun Liu Xin-min.DIGITAL TEMPERATURE SENSOR DS18B20 AND ITS APPLICATION [J].Nanjing: Journal of Nanjing Institute of Technology(Natural Science Edition).2003 [5]SHEN Li-li,CHEN Zhong-rong.Design of Multi-Channel Test System of Measuring Temperature for Grain Storage Based on CPLD and DS18B20[J].Nanjing: Nanjing University of Information Science & Technology.2008 [6]You Guanjun Hu Yihua Liu Shenlong Zhao Tianxiang.THE CIRCUITRY OF AD590 IC TEMPERATURE SENSOR AND THE APPLICATION IN TEMPERATURE MEASUREMENT AND CONTROL[J].COLLEGE PHYSICAL EXPERIMENT,2000.[7]张国勋.缩短ICL7135A/D采样程序时间的一种方法[J].电子技术应用 1993第一期.[8]高峰.单片微型计算机与接口技术[M].北京:科学出版社2003 [9]刘伟,赵骏逸,黄勇.一种基于C8051单片机的SOC型数据采录的设计与实现 [A].天津:天津市计算机协会单片机分会编 2003 [10]何立民.单片机高级教程[M].北京:北京航空航天大学出版社,2000 [11]李元.数字电路与逻辑设计[M].南京:南京大学出版社,1997 [12]苏丽萍.电子技术基础[M].西安:西安电子科技大学,2006 [13]徐江海.单片机实用教程[M]:机械工业出版社,2003 [14]谢文和.传感器技术及其应用[M]:高等教育出版社,2004 [15]孟立凡,蓝金辉.传感器原理与应用[M].电子工业出版社,2000 [16]江晓安.模拟电子技术 第二版[M].西安:西安电子科技大学出版社,2004
附录 单片机应用程序 #include
7.温度传感器的应用分析 篇七
关键词:DTS;光纤传感器;温度传感器;测温系统;电力系统;设备温度 文献标识码:A
中图分类号:TP212 文章编号:1009-2374(2015)16-0054-02 DOI:10.13535/j.cnki.11-4406/n.2015.16.026
在当前科技的发展中,温度逐渐成为了工程应用领域绝对重要的监测对象,为得到准确检测范围跨度的温度信息,采用这种光纤温度传感器具有极大的优势,在数据采集的过程中不会发生温度传感器的单规点移动,使数据具有延时性,从而降低了温度测量数据的准确度,此系统适用于电力、化工、冶金等多个领域对实时温度的测量和监控,拥有广泛研究前景。
1 DES分布式光纤传感器测温原理
综合看来,此系统在温度信号载体方面主要采用了拉曼分布式光纤温度传感器这一形式,利用光纤中的自发拉曼散射温度效应原理实现了实际测温,具体说来,其经过运用OTDR技术的分布式光纤传感器技术,能动态测量和分析相应跨度的分布式温度,究其测温机理而言,其利用了后向拉曼散射光谱的温度响应效应,也就是当其雪崩二极管(APD)探测时,一旦接触到较微弱的Anti-Stokes反斯托克斯光散射信号,系统会对应地自动输出幅值为几十纳伏的信号电压。除此之外,加之光信号在耦合、滤波等环节中均会形成光能量的损失,随即出现了温度信息被淹没或面临噪声的不利工况。基于此现状,该系统运用了微弱信号放大过滤处理技术对其存在的噪声等干扰信号进行了处理,使得采集、传输Anti-Stokes反斯托克斯、Stokes斯托克斯光波信号中所造成的信号测量误差得到了消除,并结合对设置定标区技术方法的应用,将上述两种光波信号中的干扰分量进行了消除,使得APD探测器响应度差异等,会一定程度上使影响到温度信号测量结果大幅降低,在此基础上,获得了较为准确的温度信号,其涉及到的温度信号测量公式如下:
式中:c表示光波光速,也就是传输过程中的偏移量;h表示普朗克系数;波尔兹曼系数则用k表示;DTS系统采集到的绝对温度值则用T表示。
综合以往相关的文献资料可看出,对于分布式光纤传感器的DTS测温系统而言,其测量精度也可以达到0.5℃范围内,而对应的测量距离最长可以达到30km,最高的温度信号空间定位精度可精确到0.25m范围内,而相应的分辨率最高也能达到0.01℃范围内的水平,这些数据都显示出了此系统即使在恶劣环境中,同样能使温度信号的检测和控制精度得到较大的提高。
2 DTS分布式光纤传感器系统简介
在新时期的发展过程中,作为一款结构复杂的温度在线检测控制产品,DTS分布式光纤传感器系统适用于干扰对象较多、环境恶劣以及检测范围跨度大的工农业领域,能实现对其温度的实时准确检测和控制。综合来看,其由光路模块、高级应用软件、控制光纤、辅助的外围集成电路模块等组成。
在系统运行的过程中,通过电路模块的控制信号,然后借助对电路驱动半导体激光器的驱动,致使二者发生高速脉冲,在耦合的情况下,生成需要的光纤信号,在接下来的分光光路的转换中,促使其进入到传感光纤中,后续运用中,经探测器、高速采集电路等,使得相应的监测对象温度信号的采集任务得以完成,而半导体激光器产生的激光脉冲,会借助分光耦合特性发生背向散射光,具体细分,有Stokes(斯托克斯)光、Rayleigh(瑞利)光及Anti-Stokes(反斯托克斯)光,其中第一种光对温度信号不敏感,可将其作为参考光;第三种光具有温度敏感性,为温度信号光,在此过程中,经过分光光路、光滤波器滤波后,分光光路、光滤波器滤波后将第一种光和第三种光波有效分离,然后经APD探测器接收,由高速数据采集模块进行自动采集,进而实现向客户PC机的上传,历经这一过程,结合系统温度信号及温度分布曲线等的显示,完成了整个过程的检测控制。
3 分布式光纤传感器在工程中的实际应用分析
从当前的应用及发展现状来看,DTS测温系统在众多领域,尤其是特殊恶劣环境过程控制中都有重要作用,在未来社会发展中具有广阔的应用前景。本文结合电力行业中的温度测控方面,对DTS系统在其中的应用进行了分析。具体说来,作为一个复杂的,电、热、磁等共同存在的环境,电力系统中有较多的电压电气设备基于安全稳定以及经济节能等方面的考虑,大多都需要用到动态监测温度信号。在电力系统中的应用方面,分布式光纤传感器一般是结合不同的电气设备温度信号监测技术手段,实现了对光纤光栅测温仪和光纤温度测温仪的整合,在此种方式的基础上,对测温控制系统进行了完善,其涉及的逻辑组成结构图如图1所示:
如图1,在供配电系统中,基于电缆分布较为分散的现状,一般情况下有很多的点需要进行温度检测,所以现场工程机1选用的测温仪为本次研究中的分布式光纤传感器测温仪,结合实际运用的需要,笔者集中设置了变压器、开关等一次设备,另外,在现场工程机2的测温仪选用方面,选用的是系统中光纤光栅传感器的测温仪,通过此形式,让光纤温度传感器测温系统更加实用,并使其涉及到的技术经济效益得到了提高,优化了对其的实用。
结合本次实际应用及后续分析看来,本文的研究有效结合了光纤光栅温度传感器和分布式光纤温度传感器,在资源及技术整合的前提下,其对电力系统中的温度监测方面具有举足轻重的作用,借助其良好的屏蔽性能,对电力系统中强大的温度场和电能场干扰进行了有效避免,并在使用的过程中表现出耐辐射、耐高压等诸多优点,在电力系统测温系统运行经济可靠性的有效提高方面发挥着重要作用。
4 结语
综上所述,在新时期的众多领域,DTS分布式光纤传感器都有着良好的应用前景,本文结合其在电力系统中安全监测方面的应用,对其进行了积极探讨,实现了对发电厂、变电站等主要电气设备温度的实时监控,这种运作模式的发展过程中,为全厂(站)的安全监测控制在温度信号方面做出了有力支撑,对于存在的安全隐患等,运行人员能及时发现并实施针对性措施,有效地确保了整个电力生产安全稳定以及节能高效的发展,对于我国电力系统的高效经济运行具有十分重要的现实
意义。
参考文献
[1] 刘兰书.高精度荧光光纤温度传感器及其应用技术研究[D].中国科学院研究生院(西安光学精密机械研究所),2011.
[2] 凌艺春.高响应温度传感器在液压系统中的应用分析[J].液压与气动,2012,(7).
[3] 吴楠.光纤温度传感器工作原理及实际应用分析[J].企业技术开发,2011,(20).
【温度传感器的工作原理】推荐阅读:
汽车检测与维修毕业设计(论文)-温度传感器检测与维修-精品09-06
光电传感器原理及应用的探讨论文08-16
传感器原理与应用答案09-07
传感器原理及工程应用概述10-15
墨的温度11-03
温度的句子赏析07-29
有温度的句子10-03
有温度的机器作文10-24
无线网络传感器的研究10-31
母爱的温度作文300字07-13