北师大版七上2.9《有理数的乘方》教案

2024-08-06

北师大版七上2.9《有理数的乘方》教案(精选3篇)

1.北师大版七上2.9《有理数的乘方》教案 篇一

2.8 有理数的除法

学习目标:

1.理解、体会有理数的除法法则,以及与乘法运算的关系。2.会进行有理数的除法运算。3.会求有理数的倒数。学习重难点:

1.正确运用有理数除法法则进行有理数除法运算

2.理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件

一、学前准备:

1、知识链接:

①小学里学过的除法的意义是什么,它与乘法互为

运算。

② 举例:

互为倒数,是

的倒数,没有倒数。

2、预学教材:(自学课本P55-57,并完成以下题目)

【问题】 例如8÷(-4)怎样求? 根据除法意义填空: ∵-2 ×(-4)=8 ∴8÷(-4)= ① ∵8×(-14)= ②由①、②可得到:8÷(-4)8×(-

14)③ ;

观察③式两边的相同点:被除数 ;不同点:①除号变成 ②除数变成它的

预学检测:

(1)8(-2)=8()

(2)6(-3)=6()

13(3)6()=-65

二、课堂导学:

探究活动

(一):

试一试 :(-10)÷2=?

因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10 显然有(-5)×2=-10,所以(-10)÷2=-5 我们还知道:(-10)×

12=-5 由上式表明除法可转为乘法.即:(-10)÷2=(-10)× 再试一试:(-12)÷(-3)=?

=-5

【总结】: 除以一个数,等于乘以这个数的倒数(除数不能为0).

•用字母表示成a÷b=a×

2、变式训练:

(1)(-42) 12;(2)

3、参考例题2完成教材P56随堂练习

141.51b,(b≠0).

(3)0(-3)(4)1÷(—9)探究活动

(二):

1.计算:(1)(-36)÷9(2)(-63)÷(-9)(3)(-

1225)÷

(4)0÷3(5)1÷(-7)(6)(-6.5)÷0.13(7)(-45)÷(-

25)(8)0÷(-5)

提出问题:在大家的计算过程中,有没有新的发现?(学生分组讨论)

【总结】:有理数除法法则

两数相除,得正,异号得,并把 相除。

零除以任何一个 的数,都得

2.变式训练:

(1)(+48)÷(+6);(2)3215;32(3)4÷(-2);(4)0÷(-1000).3.完成教材P56习题2.12 1题

三、学习评价:

当堂检测:

1.—4的倒数是,0.2的倒数是.—

349的倒数是。

2.的倒数等于本身,的相反数等于本身,的绝对值等于本身,•一个数除以 等于本身,一个数除以 等于这个数的相反数. 3.计算

(1)60015(2)180.6(3)(—36)÷(—9)

3.516132284(5)472 7185(4)(6)(-18)÷(-12)0÷(-)4.选做题:若ab≠0,则

aabb可能的取值是_______.

学习小结:

四、能力拓展:

1.若ab<0,则ab的值是()

A、大于0 B、小于0 C、大于或等于0 D、小于或等于0 2.下列说法正确的是()

A、任何数都有倒数 B、-1的倒数是-1 C、一个数的相反数必是分数 D、一个数的倒数必小于1 3.已知|a|=-1,则a为()

a A.正数 B.负数 C.非正数 D.非负数

4.若a+b<0,b>0,则下列成立的是()

a A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 5.填空:

(1)若a、b互为倒数,则-13ab=

.(2)若ab=1,且a=-123,则b .

6.计算:

(1)(-63)÷7(2)1131;(3)0 ÷82(4)(-6)÷(-4)÷(-

54)

(5)0.2538

(6)若a、b、c为有理数,且aabbcc=-1,求

abcabc的值

五、学后反思:

349)(—

2.北师大版七上2.9《有理数的乘方》教案 篇二

(二)[教学目标] 1.熟练进行有理数的乘除混合运算,能运用简便算法计算; 2.掌握有理数的加减乘除混合运算顺序,并能准确进行运算; 3.能解决有理数混合运算的应用题. [教学过程设计]

一、复习有理数的乘除法法则.

二、例题讲解

例1 计算:

112)÷(-4)×; 42941(2)63×(-1)+(-)÷(-0.9).

97(1)-54×(-2[说明](1)用两种方法计算;(2)(3)将除法转化为乘法,再运用乘法的法则进行计算也可以从左至右依次进行计算,有理数的除法的符号法则与有理数的乘法法则是一样的;(4)先算乘除,再算加减.

2观察下列解题过程,看有没有错误.如果有,请说明错误的原因,并给予纠正;如果没有错误,请指明用了什么运算律.

32=-9÷1=-9. 2332[分析] -9÷是乘除混合运算,应该从左到右按顺序进行计算,或者运用除法的法则将除法统一成23计算:-9÷乘法,再按乘法法则进行计算.

答:解法有错误,错误的原因是在只含乘除的同级运算里,没有按从左到右的顺序进行,而错误地先算32,正确的解答是: 233222-9÷=-9×=-4.

2333[说明]这是一个不注意就会出现的错误,另外,本例是阅读理解错题,是当前中考的一个特点题型. 例3 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何? 例

4已知a的相反数是

1三、练习

(一)教材P47中10,13; 21a3b,b的倒数是-2,求的值.

2a2b3

(二)补充练习1.计算:

(1)(-0.4)÷(+0.02)×(-5);(2)2÷(-341)×÷(-5); 777(3)(-5)÷(-15)÷(-3);(4)(-1313713)÷(-1)-(+)÷(-).

248164138;(2)-209÷19. 5392.计算:

(1)-1÷(-5)×3.某冷冻厂的一个冷库现在的室温是-4℃,现有一批食品需要在-30℃冷藏.如果每小时降温4℃,问几小时能降到所需要的温度?

4.某人用1000元人民币购进一批货物,第二天出售,获利10%;过几天后又以上次售出价的90%购进一批同样的货,由于卖不出去,两天后他将其按第二次购进价的九折全部卖出.他在这两次交易中盈亏如何? 5.下面的解题过程是否正确?若正确,请指明运用了什么运算律;若不正确,请指明错误的原因,并作出正确解答.

11221)÷().

***解:原式=(-)÷-(-)÷+(-)÷-(-)÷

***1

2=-+-+

7184291 =.

911116.计算:1÷(1-)÷(1-)÷(1-)÷…÷(1-).

23410计算:(-

四、作业

3.北师大版七上2.9《有理数的乘方》教案 篇三

教学内容:P58-60 教学目的:

1、要求学生会将有理数除法转换成乘法计算;

2、让学生进一步认识到化归思想在数学学习中的应用 教学分析:

重点:除法法则的运用。

难点:如何通过实例引入有理数除法法则。教学过程

一、知识导向:

本节课是在学习乘法法则的基础上,根据除法是乘法的逆运算以及有理数乘法法则,通过实例引入有理数除法法则,在其过程中应对学生逐渐渗透数学上的重要的化归思想。在除法运算的学习中应着重促使学生对法则的应用。

二、新课

1、知识基础:

其一:有理数的乘法法则;

其二:小学所学习的除法运算与乘法运算的关系

2、知识形成: 引例:(6)2?

根据乘法与除法是互为逆运算,有:

(?)26

又根据有理数的乘法运算,有:

(3)26 所以:(6)23 同时:(6)13 21 2所以:(6)2(6)概括:乘积是1的两个数互为倒数;

除以一个数等于乘以这个数的倒数;(零不能作除数)

两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数,都得零。

例 计算:(1)(18)6(2)()()(3)

例 化简下列分数:(1)

三、巩固训练: P601、2、3、4

四、知识小结:

五、家庭作业: P61.1、2、3、4

六、每日预题:

如何计算一个正方形的面积、体积?

152564()2551224(2)

上一篇:动物感人图片集下一篇:便利店营业员个人工作总结2020