线面垂直的判定定理说课

2024-07-03

线面垂直的判定定理说课(10篇)

1.线面垂直的判定定理说课 篇一

本节课学生学习的起点是如何利用判定定理证明线面、面面垂直。障碍点是线线、线面、面面垂直的相互转化,并能灵活应用相互转化。因此本节课的重点是如何灵活应用线线、线面、面面垂直的相互转化完成垂直关系的证明

课题:垂直关系

教学分析

垂直关系是一种非常重要的位置关系,它不仅应用较多,而且是平行关系的转化手段,可以说垂直关系是立体几何的核心内容之一,也是高考热点内容。

垂直的性质定理在立体几何中有着特殊的地位和作用。在巩固线线垂直和面面垂直的基础上,讨论垂直的性质定理及其应用时,要注意是立体几何最难的定理,往往是一个复杂问题的开端,先由面面垂直转化为线面垂直,否则无法解决问题。

三维目标

1.探究垂直的判定定理,培养学生的空间想象能力。

2.掌握垂直的判定定理的应用,培养学生分析问题、解决问题的能力。

3.探究垂直的性质定理,进一步培养学生的空间想象能力。

4.垂直的性质定理的应用,培养学生的推理能力。

5.通过垂直的性质定理的学习,培养学生的转化思想。

重点难点

教学重点:(1)垂直关系的判定定理及其应用(2)垂直的性质定理

教学难点:(1)应用判定定理解决问题(2)性质定理的应用

课时安排:1课时.教学手段:多媒体.教学过程:

一、知识回顾

1、线面垂直的判定方法

(1)定义——如果一条直线和一个平面内的任意一条直线都垂直,则直线与平面垂直。

(2)判定定理——如果一条直线和一个平面内的两条相交直线都垂直,则直线与平面垂直。

lbalbabAla

2线面垂直的性质

(1)如果一条直线和一个平面垂直则这条直线垂直于平面内的任意一条直线。

(2)性质定理——如果两条直线同垂直于一个平面,则这两条直线平行。

3、面面垂直的判定方法

(1)定义-----如果两个平面所成的二面角是直二面角,则这两个平面垂直。

(2)判定定理-----如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直α⊥β,α∩β=l⇒m⊥β.用符号表示为mα,m⊥l

4面面垂直的性质

如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面

二、课堂演练

1.在三棱锥V-ABC中,VA=VC,AB=BC,则下列结论一定成立的是()

A.VA⊥BCB.AB⊥VC

C.VB⊥ACD.VA⊥VB

2.设l、m、n均为直线,其中m、n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

3.关于直线m、n与平面α、β,有以下四个命题:

①若m∥α,n⊥β且α⊥β,则m∥n.②若m⊥α,n⊥β且α⊥β,则m⊥n;

③若m⊥α,n∥β且α∥β,则m⊥n;

④若m∥α,n∥β且α⊥β,则m∥n;

其中真命题的序号是()

A.①②

C.①④B.③④ D.②③第4题图

4.△ABC,∠ABC=90°,PA⊥平面 ABC,则图中直角三角形的个数是________.

三、典例精析

例1如图,AB是圆O的直径,C是异于A,B的圆周上的任意一点,PA垂直于圆O所在的平面。求证:(1)BC⊥面PAC(2)若AH⊥PC,则AH⊥面PBC

C B 例2如图,已知PA┴ 矩形ABCD所在平面,M、N分别是AB、PC的中点 求证:(1)MN┴CD(2)若PDA

P 45,求证:MN面PCD

四、小结:三种垂直关系的转化

M D C

五、作业:课时作业

六、教学反思:本节课重点是利用判定定理证明线面、面面垂直,及三种垂直关系的转化

2.线面垂直的判定定理说课 篇二

1、如图,在四棱锥P-ABCD中,2、如图,棱柱 PA⊥底面ABCD,AB⊥AD,AC⊥CD,ABCA1B1C1的侧面 BCC1B1是菱形,B1CA1B ∠ABC=60°,PA=AB=BC,E是PC的中点.证明:平面AB1C平面A1BC

1;

(1)求证:CD⊥AE;

(2)求证:PD⊥面ABE.3、如图,四棱锥PABCD中,底面ABCD为平行四

边形。DAB60,AB2AD,PD 底面ABCD,证明:PABD4、如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点 

(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;

(Ⅱ)证明:平面ABM⊥平面A1B1M

1面面垂直的性质

1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.S

A

C2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD

V

D C

B3、如图,平行四边形ABCD中,DAB60,AB2,AD4将

CBD沿BD折起到EBD的位置,使平面EDB平面ABD 求证:ABDE4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;

(2)平面BEF⊥平面PAD

(第16题图)

空间线面角的求法

1.正方体ABCD-A1B1C1D1中,BB1与平面ACD

1所成角的余弦值为

(A)

2(B(C)(D 3

32.已知三棱锥S

ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为

(A)

3(B)(C)(D)444

4A3.如图,在正方体AC1中,求面对角线A1B与对角面BB1D1D所成的14.如图,已知AP⊥BP,PA⊥PC,∠ABP=∠ACP=60º,PB=PC=2BC,D是BC中点,求AD与平面PBC所成角的余

弦值.A

C

5.已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA

=AC=AB,2N为AB上一点,AB=4AN,M,S分别为PB、BC的中点.

(1)证明:CM⊥SN;

(2)求SN与平面CMN所成角的大小.

6.如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.

(1)求证:平面PCD⊥平面PAC;(2)求直线PB与平面PCD所成角的大小;(3)求四棱锥P-ACDE的体积.

7..如图,四棱锥PABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点.

(1)求证:EF⊥平面PAB;

(2)设AB=2BC,求AC与平面AEF所成角的正弦值.

8.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系.并说明理由;

3.线面垂直的判定定理说课 篇三

(二)教学目标:

使学生掌握直线和平面垂直的性质,点到面的距离,线到面的距离;对学生进行转化思想渗透,培养学生空间想象能力;使学生从问题解决过程,认识事物的发展、变化、规律。

教学重点:

直线和平面垂直的性质。

教学难点:

性质定理的证明、等价转化思想的渗透。

教学过程:

1.复习回顾:

1.判定直线和平面垂直的方法有几种? [生]定义,例1的结论、判定定理.2.各判定方法在何种条件或情形下方可熟练运用?

[生]若能确定直线和平面内任意一线垂直,则运用定义说明.若能说明所证直线和平面的一条垂线平行,则可运用例题结论说明之.若能说明直线和平面内两相交线垂直,则运用判定定理去完成判定.2.讲授新课:

[师]直线和平面是否垂直的判定方法上节课已研究过,这节课我们来共同探讨:直线和平面如果垂直,则其应具备的性质是什么?

下面先思考一个问题:

例1:已知:a⊥α,b⊥α.求证:b∥a.[师]此问题是在a⊥α,b⊥α的条件下,研究a和b是否平行,若从正面去证明b∥a,则较困难,而利用反证法来完成此题,相对要容易,但难在辅助线b′的做出,这也是立体几何开始这部分较难的一个证明.在师的指导下,学生尝试证明,待后给出过程.证明:假定b不平行于a,设b∩α=O,b′是经过点O与

直线a平行的直线

∵a∥b′,a⊥α

∴b′⊥α

即经过同一点O的两条直线b、b′都垂直于平面α,而这是不可能的,因此,b∥a.有了上述证明,师生可共同得到结论:

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行,也可简记为线面垂直、线线平行.[师]下面给出点到面的距离.从平面外一点引这个平面的垂线,这个点和垂足间距离叫做这个点到这个平面的距离.应明白,点到面的距离是一线段.A.a∥β,b∥β

B.a⊥β,b⊥β C.a⊥c,b⊥c

D.a与c,b与c所成角相等 2)平面α外的点A到平面α内各点的线段中,以OA最短,那么OAα的关系是

()A.B.C.在α内

D.不确定 3关系是

()A.B.C.平行或相交

D.一定垂直 4)矩形ABEF和矩形EFCD不共面,已知EF=4,BD=5,求平行直线AB与CD之间的距离.解答:

1.排除法找满足题意的选择支B

[对于选择支A,平行于同一面的两线可能相交,也 可能异面,故不一定推出a∥b,排除A.对于选择支C,因垂直于同一线的两线可能异面、故排除C.对于选择支D,若a、b、c三线能围成三角形.且a与c、b与c成角相等,则a与b不平行,排除D,故选B.而B利用性质定理可验证其正确.] 2.此题也可用排除法找到正确选择支B [满足题目的线段,其一个端点在平面外,故A、C应排除,因该线不会和平面又平行,也不会在平面α内,而满足OA最短的线只有一条,故应选B,或依平面外一点和平面内各点的连线垂线段最短,从而选B.]

3.利用分类讨论找选择支C [平面外的直线上有两点到这个平面的距离相等,这条直线和这个平面的位置取决于点与平面的关系,与这两点在平面的同侧时,直线和平面平行,当这两点在平面的异侧时,直线和平面相交.]

4.[此题的解决主要是充分利用直线和平面垂直判定及平行线间的距离完成.] 解:因ABEF及EFCD都是矩形,故应有

EF⊥BE,EF⊥CE,而BE∩CE=E

故EF⊥面BEC 而AB∥EF,CD∥EF

则AB⊥面BEC,CD⊥面BEC BC面BEC

那么

AB⊥BC,CD⊥BC BC就是AB与CD间的距离

BC2=BD2-CD2=25-16=9

即BC=3.4.课时小结:

1.能正确利用性质定理解题.2..5.课后作业:

课本P38

4.直线与平面平行判定定理说课稿 篇四

一、教材分析

本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!

二、教学目标

考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:

知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。

能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念 情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣

三、教学难点与重点

由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理

难点是:应用反证法客观证明直观感知及确认定理。

四、教学过程

(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备

(二).定理的探求

本环节是教学的第一个重点,分四步

a创设情境,感知概念

用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?

b观察归纳,猜想定理

将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。

c客观证明,确认定理

教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理

强调定理中的条件以及应注意的问题。

判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面

(突出一条线在面内,一条线在面外)

强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b

(三)定理初步应用

课本例一

空间四边形相邻两边中点的连线,平行于经过另外两边的平面

考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。练习,第一题,找出长方体ABCD-A’B’C’D’与AB平行的面及与AA’平行的面,与AD平行的面。让学生对定理的条件进一步理解加深巩固。

(四)反思提高,小结课程

教师给出问题:

1.通过这节课的学习,你学会了哪些线面平行的方法?

2.证明线面平行时,注意哪些问题?

侧重三点:

(1)归纳线面平行的判断方法

一、定义

二、判定定理

(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路

(五)布置作业

在学习定理之后,让学生自己应用定理自主做题,通过运用更深刻的掌握定理,加深巩固。

五、板书设计(略)

六、教学媒体使用

在教学过程中,用多媒体展示复习的知识,以及教学过程中的图片,使学生在较短的时间内回顾所学知识,并直观感受生活中直线与平面平行的例子,将抽象的想象用多媒体展示图片具体化,并提高课堂时间的利用率。

七、教法学法

教法:通过对大量实例、图片的观察感知,模型的分析猜想,实验直观感知发现线面平行的判定定理。学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。并在课程结束时,对整堂课的内容进行归纳总结,使学生能够系统的掌握所学知识。

学法:课前安排学生列举生活中线面平行的实例,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前面又刚刚学过在空间中直线的位置关系,以及直线与平面的位置关系,对空间概念的建立有一定基础,因而以采用观察归纳猜想论证的方法学习本课。

八、教学反思

5.线面垂直的判定定理说课 篇五

1.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BC⊥AD;

2如图,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.(1)求证:AB⊥BC;

3.如图,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.

(第1题)

(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.

4.如图2-4-2所示,三棱锥S—ABC中,SB=AB,SC=AC,作AD⊥BC于D,SH⊥AD于H,求证:SH⊥平面ABC.5.如图所示,已知Rt△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;

(2)若AB=BC,求证:BD⊥平面SAC.6.证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

D1 C1 A1 B1 D C A B,7.如图所示,直三棱柱侧棱,侧面

中,∠ACB=90°,AC=1,的两条对角线交点为D,的中点为M.求证:CD⊥平面BDM.8.在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

9.如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

10.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.

(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.11:已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。求证:平面PAC平面PBC。

12..如图1-10-3所示,过点S引三条不共面的直线,使∠BSC=90°,∠ASB=∠ASC=60°,若截取SA=SB=SC.求证:平面ABC⊥平面BSC a, 13.如图1-10-5所示,在四面体ABCD中,BD= AB=AD=BC=CD=AC=a.求证:平面ABD⊥平面BCD.14.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.

15.如图所示,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.

16.如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD

平面MBD 于点O,求证:AO1

答案与提示:

1.证明:(1)取BC中点O,连结AO,DO.

∵△ABC,△BCD都是边长为4的正三角形,∴AO⊥BC,DO⊥BC,且AO∩DO=O,∴BC⊥平面AOD.又AD平面AOD,∴BC⊥AD.

2.【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.

3.【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD ∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则GF ∴GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,∴平面PEC⊥平面PCD. 12CD又AE

12CD,(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC ∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,FHPF而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CDPC,设

22AD=2,∴PF=2,PC=PDCD8423,26623∴A到平面PEC的距离为3. ∴FH=2

34.【证明

SA的中

E,连接EC,EB.∵SB=AB,SC=AC, ∴SA⊥BE,SA⊥CE.又∵CE∩BE=E, ∴SA⊥平面BCE.∵BC平面BCE 5.证明:(1)因为SA=SC,D为AC的中点,所以SD⊥AC.连接BD.在Rt△ABC中,有AD=DC=DB,所以△SDB≌△SDA,所以∠SDB=∠SDA,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D是AC的中点,所以BD⊥AC.又由(1)知SD⊥BD,所以BD垂直于平面SAC内的两条相交直线,所以BD⊥平面SAC.6.证明:连结AC

BDAC

AC为A1C在平面AC上的射影

A1C平面BC1D同理可证ACBC11

BDA1C

7.证明:如右图,连接

∵、,∴、,则

.为等腰三角形...为直角三角形,D为.,∴

.又知D为其底边

又,∴ 的中点,∴,∴.∵,的中点,∴

∵ ⊥平面BDM.、.即CD⊥DM.为平面BDM内两条相交直线,∴ CD 8.证明:取AB的中点F,连结CF,DF. ∵ACBC,∴CFAB.

∵ADBD,∴DFAB. 又CFDFF,∴AB平面CDF.

∵CD平面CDF,∴C. D

又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD.

9.证明:如图,已知PA=PB=PC=a,由∠APB=∠APC=60°,△PAC,△PAB为正三角形,则有:PA=PB=PC=AB=AC=a,取BC中点为E

直角△BPC中,,由AB=AC,AE⊥BC,直角△ABE中,在△PEA中,∴,,,平面ABC⊥平面BPC.10.证明:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴DEC90,即DE⊥EC.

在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE平面D1DCC1,∴BC⊥DE.又ECBCC,∴DE⊥平面EBC.∵平面DEB过DE,∴平面DEB⊥平面EBC.

(2)解:如图,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,∵面ABCD⊥面D1DCC1,∴EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连结EF,∴EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,(第10题)

5又OE=1,所以,tanEFO=.

11.(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径

∴BC⊥AC;

又PA⊥平面ABC,BC平面ABC,∴BC⊥PA,从而BC⊥平面PAC. ∵BC 平面PBC,∴平面PAC⊥平面PBC.

.12.证明:如图1-10-4所示,取BC的中点D,连接AD,SD.由题意知△ASB与△ASC是等边三角形,则AB=AC,∴AD⊥BC,SD⊥BC.令SA=a,在△SBC中,SD=

a, 又AD=

=

a, ∴AD2+SD2=SA2,即AD⊥SD.又∵AD⊥BC,∴AD⊥平面SBC.∵AD平面ABC,∴平面ABC⊥平面SBC.13.证明:取BD的中点E,连接AE,CE.则AE⊥BD,BD⊥CE.在△ABD中,AB=a,BE= BD=

, ∴AE= ,同理,CE=

.在△AEC

中,AE=EC=

∴AC2=AE2+EC2,即AE⊥EC.∵BD∩EC=E,∴AE⊥平面BCD.又∵AE平面ABD,∴平面ABD⊥平面BCD 14.证明:((1)取EC的中点F,连接DF.

∵ CE⊥平面ABC,∴ CE⊥BC.易知DF∥BC,CE⊥DF.

∵ BD∥CE,∴ BD⊥平面ABC.

在Rt△EFD和Rt△DBA中,∵,,AC=a,∴ Rt△EFD≌Rt△DBA.故DE=AD.

(2)取AC的中点N,连接MN、BN,MNCF.

∵ BDCF,∴ MNBD.N平面BDM.

∵ EC⊥平面ABC,∴ EC⊥BN.

又∵ AC⊥BN,∴ BN⊥平面ECA.

15.证明:

又∵ BN平面MNBD,∴平面BDM⊥平面ECA.(3)∵ DM∥BN,BN⊥平面ECA,∴ DM⊥平面ECA.

又∵ DM平面DEA,∴平面DEA⊥平面ECA.(1)取PD的中点E,连接AE、EN,则,故AMNE为平行四边形,∴ MN∥AE.

∵ AE平面PAD,MN平面PAD,∴ MN∥平面PAD.

(2)要证MN⊥CD,可证MN⊥AB.

由(1)知,需证AE⊥AB.

∵ PA⊥平面ABCD,∴ PA⊥AB.又AD⊥AB,∴ AB⊥平面PAD.

∴ AB⊥AE.即AB⊥MN.

又CD∥AB,∴ MN⊥CD.

(3)由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.

∵ PA⊥平面ABCD,∴ PA⊥AD.

又∠PDA=45°,E为PD的中点.

∴ AE⊥PD,即MN⊥PD.

又MN⊥CD,∴ MN⊥平面PCD.

16.证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A1ACC1,而AO1平面A1ACC1 ∴DB⊥AO1.

设正方体棱长为a,则AO23a2,MO2324a21.

在Rt△AC11M中,A29221M4a.∵AO1MO2A1M2,A1OOM. ∵OM∩DB=O,∴ AO1⊥平面MBD.

6.线面平行、面面平行的判定作业 篇六

“直线∥平面”的主要条件是“直线∥直线”,而“直线∥直线”一般是利用三角形的中位线平行于底边或平行四边形的对边平行来证明。

“平面∥平面”的主要条件是“直线∥平面”,可转化为“直线∥直线”来解决。

[注意]

书写的格式规范,3个条件(线面平行)或5个条件(面面平行)要写全。

例1.下列命题中正确的是()

① 若一个平面内有两条直线都与另一个平面平行,则这两个平面平行②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行 ③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行 ④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行

A.①③B.②④C.②③④D.③④

例2.已知m,n是两条直线, ,是两个平面,以下命题: ①m,n相交且都在平面,外,m∥,m∥, n∥,n∥,则∥;②若m∥, m∥,则∥;③m∥,n∥, m∥n, 则∥.其中正确命题的个数是()

A.0B.1C.2D.3练习2:设a,b是两条直线, ,是两个平面,则下面推理正确的个数为

(1)a,b,a∥, b∥,∥.(2)∥,a,b,a∥b

(3)a∥,l, a∥l

(4)a∥, a∥∥.例3:已知四棱锥P-ABCD中,地面ABCD为平行四边形,点M,N,Q分别为PA,BD,PD上的中点,求证:平面MNQ∥平面PBC

【练习

求证:

例4.分别为AB、PD的中点,求证:AF∥平面PEC

【练习4】:在正方体ABCD-A1B1C1D1中,E、F求证:EF∥平面BB1D1D

AC

ABC

D

练习5 正方体ABCD-A1B1C1D1,中,M,N,E,F分别为棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB

A1

C1

A

D

C

7.专题线面垂直 篇七

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

8.线面垂直教学设计 篇八

课题:直线与平面垂直的判定

(一)【教学目标】

知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;

过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;

情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.

【教学重点及难点】

教学重点:直线与平面垂直的定义、判定定理以及它们的初步应用.

教学难点:对直线与平面垂直的定义的理解和对判定定理的探究.

【教学方法】

教法:启发诱导式

学法:合作交流、动手试验

【教具准备】

计算机、多媒体课件、三角形卡纸

【教学过程】

一、直线与平面垂直定义的构建

1、联系生活——提出问题在复习了直线与平面的三种位置关系后,给出几幅现实生活中常见的图片,让学生思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?

设计意图:使学生意识到直线与平面垂直是直线与平面相交中的一种特殊情况并引出本节课的课题.另外这样设计也吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.

2、创设情境——分析感知播放动画,引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l与地面所在平面内经过点B的直线都是垂直的.进而提出问题:那么直线l与平面内不经过点B的直线垂直吗?

设计意图:在具体的情境中,让学生去体会和感知直线与平面垂直的定义.

3、总结定义——形成概念由学生总结出直线与平面垂直的定义,即如果直线l与平面

内的任意一条直线都垂直,我们就说直线l与平面互相垂直.引导学生用符号语言将

它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?

设计意图:让学生通过思考和操作(用三角板和笔在桌面上比试),加深对定义的认识.

二、直线与平面垂直判定定理的构建

1、类比猜想——提出问题根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?

设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析.

2、动手试验——分析探究演示试验过程:过△ABC的顶点A翻折纸片,得到折痕AD,再将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).

A

B

D

C

C

B

问题一:同学们看,此时的折痕AD与桌面垂直吗? 又问:为什么说此时的折痕AD与桌面不垂直?

设计意图:让学生从另一个角度来理解直线与平面垂直的定义——只要直线l与平面

内有一条直线不垂直,那么直线l就与平面不垂直.

问题二:如何翻折才能让折痕AD与桌面所在平面垂直呢?﹙学生分组试验﹚ 设计意图:通过分组讨论增强数学学习氛围,让学生在交流中互相学习,共同进步. 问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD还经过BD、CD的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?

A

B

D C

又问:如果直线l与平面内的两条相交直线m、n都垂直,但不经过它们的交点,那么直线l还与平面垂直吗?

设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风.

3、提炼定理——形成概念给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想.

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.

符号语言: lm,ln,m,n,mnA l.

三、初步应用——深化认识

1、例题剖析:

例1已知:a//b,a.求证:b. 分析过程:

a

b

ama//bbabnan

证明:在平面内作两条相交直线m,n. 因为直线a,根据直线与平面垂直的定义知am,an. 又因为b∥a 所以bm,bn.

又因为m,n,m,n是两条相交直线,所以b.

(①②③表示分析的顺序)

设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.

本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成. 另外,例1向我们透露了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.

2、随堂练习

练习1如图,在三棱锥V-ABC中,VA=VC,AB=BC. 求证:VB⊥AC.

证明:取AC中点为K,连接VK、BK,∵ 在△VAC中,VA=VC,且K是AC中点,∴ VK⊥AC.

同理 BK⊥AC.

V

A

K

C

又 VK平面VKB,BK平面VKB,VK∩BK=K,∴ AC⊥平面VKB.

∵ VB平面VKB,∴ VB ⊥ AC.

设计意图:用展台展示部分学生的答案,督促学生规范化做题. 变式引申如图,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.若E、F分别是AB、BC 的中点,试判断直线EF与平面VKB的位置关系.

解:直线EF与平面VKB互相垂直.

∵ 在△VAC中,VA=VC,且K是AC中点,∴ VK⊥AC. 同理 BK⊥AC.

又 VK平面VKB,BK平面VKB,VK∩BK=K,∴ AC ⊥平面VKB.

又 E、F分别是AB、BC的中点,∴ EF∥AC∴ EF⊥平面VKB.

B

E

F

A C

设计意图:在定义和判定定理之外,例1又给出了第三种证明直线与平面垂直的方法,构造这道变式引申题的目的就是让学生在用中将其内化.

练习2如图,PA垂直圆O所在平面,AC是圆O的直径,B是圆周上一点,问三棱锥P-ABC中有几个直角三角形?

解:在三棱锥P-ABC中有四个直角三角形,分别是: △ABC、△PAB、△PAC和△PBC.

设计意图:通过练习1和练习2培养学生熟练地进行线线垂直和线面垂直之间的转化,从而使他们能够对定义和判定定理进行灵活应用.

四、总结回顾——提升认识

B

C

五、布置作业——巩固认识  必做题:习题2.3 B组2,4.

 选做题:如图SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F. 求证:AF⊥SC.

 探究题:课本66页的探究题.

S

E

B

9.23线面垂直练习题 篇九

1、已知AB平面BCD,BCCD,求证 CD面ABC2、已知AB平面BCD,BCCD,BEAC

求证 BE面ACD3、如图,AB是圆O的直径,点C是圆O上的动点,VC平面ABC,D,E分别是VA,VC的中点 求证:DE平面VBC4、如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同

于A、B的任意一点,求证:平面PAC⊥平面PBC.5、如图,在正方体ABCDABCD中,求证:平面ACCA平面ABD6、如图,棱锥V-ABC中,VO平面ABC,VA=VBAD=BD,求证平面VAB平面VDC7、如图,PD平面ABC,AC=BC,D为AB的中点求证:ABPC8、如图,在三棱锥V-ABC中,VA=VC,AB=BC, 求证:VBAC

10.线面平行的判定与性质 篇十

[基础练习]

1.下列命题正确的是()

A 一直线与平面平行,则它与平面内任一直线平行

B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行

C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行

D 一直线与平面平行,则平面内任意直线都与已知直线异面

2.若直线l与平面α的一条平行线平行,则l和α的位置关系是()

AlB l//C l或l//D l和相交

3.若直线a在平面α内,直线a,b是异面直线,则直线b和α平面的位置关系是()

A.相交B。平行C。相交或平行D。相交且垂直

4.下列各命题:

(1)经过两条平行直线中一条直线的平面必平行于另一条直线;

(2)若一条直线平行于两相交平面,则这条直线和交线平行;

(3)空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。

其中假命题的个数为()

A0B 1C 2D

35.E、F、G分别是四面体ABCD的棱BC、CD、DA的中点,则此四面体中与过E、F、G的截面平

行的棱的条数是()

A.0B 1C 2D

36.直线与平面平行的充要条件是

A.直线与平面内的一条直线平行B。直线与平面内的两条直线不相交

C.直线与平面内的任一直线都不相交D。直线与平行内的无数条直线平行

7.若直线上有两点P、Q到平面α的距离相等,则直线l与平面α的位置关系是()

A平行B相交C平行或相交D 或平行、或相交、或在内

8.a,b为两异面直线,下列结论正确的是()

A 过不在a,b上的任何一点,可作一个平面与a,b都平行

B 过不在a,b上的任一点,可作一直线与a,b都相交

C 过不在a,b上任一点,可作一直线与a,b都平行

D 过a可以并且只可以作一个平面与b平行

9.判断下列命题是否正确:

(1)过平面外一点可作无数条直线与这个平面平行()

(2)若直线l,则l不可能与α内无数条直线相交()

(3)若直线l与平面α不平行,则l与α内任一直线都不平行()

(4)经过两条平行线中一条直线的平面平行于另一条直线()

(5)若平面α内有一条直线和直线l异面,则l()

10.过直线外一点和这条直线平行的平面有个。

11.直线a//b,a//平面α,则b与平面α的位置关系是。

12.A是两异面直线a,b外一点,过A最多可作个平面同时与a,b平行。

13.A、B两点到平面α的距离分别是3、5,M是的AB中点,则M到平面α的距离是。

14.P为平行四边形ABCD外一点,E是PA的中点,O是AC和BD的交点,求证:OE//平面PBC。

15.求证:如果一条直线和两相交平面平行,那么这条直线就和它们的交线平行。

[深化练习]

16.ABCD是空间四边形,E、F、G、H分别是四边上的点,它们共面,并且AC//平面EFGH,BD//平面EFGH,AC=m,BD=n当EFGH为菱形时,AE:EB=.17.用平行于四面体ABCD的一组对棱AB、CD的平面截此四面体

(1)求证:所得截面MNPQ是平行四边形;

(2)如果AB=CD=a,求证:四边形MNPQ的周长为定值。

C

18.已知P、Q是单位正方体ABCD-A1B1C1D1的面AA1D1D、面A1B1C1D1中心。

(1)求线段PQ的长;

(2)证明:PQ//平面AA1B1B。

DD

[参考答案]

上一篇:班级小组管理合作学习下一篇:中医病的护理查房

相关推荐