平行线性质和判定练习

2024-06-19

平行线性质和判定练习(9篇)

1.平行线性质和判定练习 篇一

七年级下册 第五章

平行线的判定和性质专题练习

1.下列命题:

①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角; ③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等; ⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有()A.1个

B.2个

C.3个

D.4个

2.直线a、b、c是三条平行直线.已知a与b的距离为5cm,b与c的距离为2cm,则a与c的距离为()A.2cm

B.3cm

C.7cm

D.3cm或7cm

3、两直线被第三条直线所截,则()A.内错角相等

B.同位角相等

C.同旁内角互补

D.以上结论都不对

4.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于(A.20° B.30° C.32° D.25° 5.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°

B.∠α+∠β﹣∠γ=360° C.∠α﹣∠β+∠γ=180°

D.∠α+∠β﹣∠γ=180° 6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°

B.35°

C.36°

D.40°

第4题图

第5题图

第6题图

7.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是(A.140° B.40°

C.100°

D.180°

8.如图所示,要得到DE∥BC,需要条件()

A.CD⊥AB,GF⊥AB

B.∠DCE+∠DEC=180°

C.∠EDC=∠DCB D.∠BGF=∠DCB

AC

D DEA140°FB

BGC

第7题图

第8题图))

9.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)):

PPPP(1)(2)(3)(4)

从图中可知,小敏画平行线的依据有:()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.()

A.①② B.②③

C.③④

D.①④

10.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是 A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130 11.如图,AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=38°,那么∠EOF=___________°。12.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3= °.13.如图,直线l1∥l2,∠α=∠β,∠1=35º,则∠2=

º.第11题图 第12 题图 第13题图

14.如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.15.如图,已知:∠B=∠D+∠E,试说明:AB∥CD. 16.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.17.如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD交于点E、C、B、F,且∠1=∠2,∠B=∠C,试说明AB∥CD.18.如图所示,已知CE∥DF,说明∠ACE=∠A+∠ABF.

GACDE FB19.如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,∠CDE=52°,∠F=26°.(1)求证:EG⊥BD;(2)求∠CDB的度数.20.,那么 AB∥CD.试解决下列问题:

如图①,已知∠1+∠2=180°(1)如图②,已知∠1+∠2+∠3=360°,为了证明 AB∥CD,根据三角形的内角和为 180°,可以

连接 AC 构造出三角形,加以解决.请写出推理过程.

(2)如图③,已知∠1+∠2+∠3+∠4=540°,那么 AB 与 CD平行吗?为什么?(3)通过以上两题,你得出了什么规律?试结合图④,谈谈你的发现.

21.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点

(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.

2.平行线性质和判定练习 篇二

(二)1.选择题

(1)直线与平面平行的充要条件是()

(A)直线与平面内的一条直线平行

(B)直线与平面内的两条直线平行

(C)直线与平面内的任意一条直线平行

(D)直线与平面内的无数条直线平行

(2)直线a∥平面,点A∈,则过点A且平行于直线a的直线()

(A)只有一条,但不一定在平面内

(B)只有一条,且在平面内

(C)有无数条,但都不在平面内

(D)有无数条,且都在平面内

(3)若a,b,a∥,条件甲是“a∥b”,条件乙是“b∥”,则条件甲是条件乙的()

(A)充分不必要条件(B)必要不充分条件

(C)充要条件(D)既不充分又不必要条件

(4)A、B是直线l外的两点,过A、B且和l平行的平面的个数是()

(A)0个(B)1个(C)无数个(D)以上都有可能

2.平面与⊿ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面

3.平行线的判定和性质测试题1 篇三

一、填空题:

1、如右图,直线a、b被直线l所截,a∥b,170,则2.l

a b2、两条直线被第三条直线所截,总有()

A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对

3、如图1,下列说法正确的是()A、若AB∥CD,则∠1=∠2B、若AD∥BC,则∠3=∠4 C、若∠1=∠2,则AB∥CDD、若∠1=∠2,则AD∥BC

(1)(2)(3)(4)

4、如图2,能使AB∥CD的条件是()A、∠1=∠BB、∠3=∠AC、∠1+∠2+∠B=180°D、∠1=∠A

5、如图3,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于()A、100°B、85°C、40°D、50°

6、如图4所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()A、40°B、50°C、60°D、不能确定

7、如图5所示,直线L1∥L2,L3⊥L4,有三个命题:①∠1+∠3=90°,②∠2+∠3=90°,③∠2=∠4.下列说法中,正确的是()

A、只有①正确B、只有②正确C、①和③正确D、①②③都正确

(5)

B D

F

(6)

C8、如图6,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF=()A、110°B、115°C、120°D、130°

二、解答题

1、如图,AD∥BC,AC,说明AB∥DC.A2、如图,已知DE∥BC,12,CDAB于点D,说明:FGAB3、如图所示,已知AB∥CD,A110,C140,求P的度数.4、已知如图,AB//CD,试解决下列问题:(1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;

(3)∠1+∠2+∠3+∠4=_____;

(4)试探究∠1+∠2+∠3+∠4+…+∠n=_____。

BB11E

21E2

F32

F

C

B

E

12N

C

B

DDC CD5、根据题意结合图形填空:

已知:如图,DE∥BC,∠ADE=∠EFC,将说明∠1=∠2成立的理由填写完整.D

解:∵ DE∥BC()

∴∠ADE=______()∵∠ADE=∠EFC()∴______=______

∴DB∥EF()B∴∠1=∠2()

D

E

F

C6、如图,AB、CD被EF所截,MG平分∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明理由。

7、已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线 吗?若是,请说明理由。

8、如图所示,潜望镜的两个镜子是平行放置的,光线经过镜子反

射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?

9.如图⑩

∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥_______()10.如图⑾ 填空:

(1)∵∠2=∠B(已知)

∴ AB__________()(2)∵∠1=∠A(已知)

∴__________()(3)∵∠1=∠D(已知)

∴__________()(4)∵_______=∠F(已知)

∴AC∥DF()

11、.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()

∴∠1+∠3=180°

∴_________()

12.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

13.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

14.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.

求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.

A

C F

图12

B 1

4.平行线性质和判定练习 篇四

1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;

(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状

2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形.

3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.

7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.

8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?

9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.

10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上. 求证:EF和GH互相平分. 12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.

13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;

(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)

14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.

(1)求证:AF=CE;

(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.

15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.

16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD. 17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;

(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;

(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.

20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;

5.平行线的判定与性质试题4 篇五

姓名_______________ 得分____ 知识点一 同位角相等 两直线平行

1.如图1所示,若∠1=60°,∠2=60°,则AB_______CD.

图1 图2 图3 2.如图2所示,若∠1=∠2,则a∥_____. 知识点二 内错角相等 两直线平行 3.如图2所示,若∠2=∠3,则b______c. 4.如图2所示,b∥c,若∠1=______,则a∥c. 知识点三 同旁内角互补 两直线平行

5.如图3所示,若∠BEF+______=180°,则AB∥CD.

6.(2008,齐齐哈尔市)如图4所示,请你写一个适当的条件_______,•使AD∥BC.

图4 图5 图6 ◆课后测控

1.如图5所示,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,若AB∥____. 2.如图6所示,若∠1=110°,∠2=70°,则a_______b. 3.如图7所示AE∥BD,下列说法不正确的是()

A.∠1=∠2 B.∠A=∠CBD C.∠BDE+∠DEA=180° D.∠3=∠4

图7 图8 图9 4.如图8所示,能说明AB∥DE的有()

①∠1=∠D; ②∠CFB+∠D=180°; ③∠B=∠D; ④∠BFD=∠D. A.1个 B.2个 C.3个 D.4个

5.(易错题)如图9所示,能说明AD∥BC,下列条件成立的是()A.∠2=∠3 B.∠1=∠4 C.∠1+∠2=∠3+∠4 D.∠A+∠C=180°

6.(过程探究题)如图所示,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗? [解答]因为∠1+∠2=180°()

所以AB∥_______()

又因为∠1=∠3()

所以∠2+∠________=180°()

所以EF∥GH(同旁内角互补,两直线平行)7.(经典题)如图所示,完成下列填空.

(1)∵∠1=∠5(已知)

∴a∥______(同位角相等,两直线平行)

(2)∵∠3=_______(已知)

∴a∥b(内错角相等,两直线平行)

(3)∵∠5+_______=180°(已知)

∴______∥_______(同旁内角互补,两直线平行)

8.(原创题)如图所示,写出所有角满足的条件使AB∥EF,并说明理由.

◆拓展创新 9.(应用题)(1)如图(1)所示,AB,CD,EF是三条公路,且AB⊥EF,CD⊥EF.

判断AB与CD的位置关系,并说明理由;(2)如图(2)所示在(1)的条件下,若小路OM平分∠EOB.通往加油站N•的岔道O′N平分∠CO′F,试判断OM与O′N位置关系.

答案: 回顾归纳

1.同位角相等 2.内错角相等 3.同旁内角 课堂测控

1.∥ 2.b 3.∥ 4.∠2或∠3 5.∠EFD

6.∠ABC+∠BAD=180°或∠ADB=∠DBC或∠FAD=∠ABC.(任选一个即可).

解题规律:依照三个判定定理,同位角,内错角,同旁内角关系判定两直线平行. 课后测控

1.CD 2.∥ 3.D 4.C(点拨:①②④正确)

5.A(点拨:∠1=∠4得AB∥CD,∠1+∠2≠∠3+∠4,∠A+∠C≠180°)6.已知,CD,同旁内角互补两直线平行,已知,∠3,等量代换

解题规律:EF∥GH成立→∠2+∠3=180°,又∠1=∠3,∴∠1+∠2=180°(已知)7.(1)b(2)∠5(3)∠4,a,b 思路点拨:由条件与结论关系及括号中定理判断填空内容. 8.①同位角∠A=∠CEF,∠B=∠EFC,②内错角∠ADE=∠DEF,③同旁内角.∠A+∠AEF=180°,∠B+∠BFE=180°,∠BDE+∠DEF=180°

思路点拨:AB,EF被AC所截,AB,EF被BC所截,AB,EF被DE所截,•三个方面的关系中存在同位角,内错角,同旁内角来判定AB∥EF的条件. 9.(1)∵AB⊥EF,CD⊥EF

∴AB∥CD(两条直线都垂直于同一条直线,这两条直线平行)

(2)延长NO′至P,可证∠EOM=∠EO′P=45°,得OM∥O′N.

6.平行线性质和判定练习 篇六

BOD=240°,求∠BOC的度数.11、如图:是赛车跑道的一段示意图,其中AB∥ED,测得∠B=140°,∠D=120°,则∠C为()A.120° B.100°C.140D.90°图5.1.1-112、如图已知∠1=60°,∠ 2=120°,∠3=70°,则∠4的度数为 ___.13、如图5.3.1-3,已知∠1=∠2=∠3=55°,则∠ 4的度数是()

2、如图5.1.1-2,直线AB、CD、A.110° B.115°

5.1.1-

2C.120° D.125°

EF相交于O点,∠AOF=3∠FOB,∠

14、如图5.3.1-4,已知CD⊥AB,EF

AOC=90°,求∠EOC的度数.⊥AB,垂足分别为D、F,∠1=∠2,试

3、如图5.1.2-2,过点A、B分

判断DG与BC的位置关系,并说明理由

别画出射线OB、线段OA的垂线.5.1.2-

24、如图5.1.3-1,下列判断正确相交线与平行线测试题 的是().一、选择题

A.图中有2对同位角,2对内错

1.下列说法中,正确的是()

角,2对同旁内角

A.一条射线把一个角分成两个角,这条射线叫做这

B.图中有2对同位角,2对内错

个角的平分线;

角,3对同旁内角5.1.3-

1B.P是直线L外一点,A、B、C分别是L上的三点,C.图中有2对同位角,2对内错角,4对同旁内角

已知PA=1,PB=2,PC=3,则点P•到L的距离

D.以上判断均不正确

一定是1;

5、下列各图中的AB、CD是否是平行线?为什么?

C.相等的角是对顶角;D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()

A.3对B.4对C.5对D.6对

6、如图直线a∥b,b∥c,c

第五章平行线的性质、判定题型

∥d,试判断直线a与d的位置关

系,并说明理由.7、如图已知∠1=∠2,AF平分∠EAQ,BC平分∠ABN,试说明PQ∥MN.8、如图∠2=3∠1,且∠1+∠3=90°,试说明AB∥CD.9、如图已知直线l1、l2、l3被直线l所截,∠1=80°,∠2=100°,∠3=80°,说明l1∥l2的理由.10、如图已知∠1=∠3,AC平分∠DAB,你能判断哪两条直线平行?请说明理由.(1)(2)(3)3.若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A.40°B.140°

C.40°或140°D.不确定

5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c;

B.a⊥b,b⊥c;C.a⊥c,b∥c;D.c截a,b所得的内错角的邻补角相等

6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2)B.(1)、(3)C.(1)、(4)D.(3)、(4)

7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠2与∠6,∠3与∠7;D.∠1与∠5,∠4与∠8 8.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()

A.36°B.54°C.45°D.68°

则∠AOC=_____度,•∠BOC=___度.

17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.

(4)(5)(6)

9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()

A.1B.2C.3D.

410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(•)

A.65°B.80°C.100°D.115° 11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()

A.1个B.2个C.3个D.4个 12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30°B.70°C.30°或70°D.100°

二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)

13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.

14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠

BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______

(2)∵∠3=∠5(已知),∴AB∥______,(___________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(__________)

16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,(8)(9)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度.

19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.

20.如图,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.

三、解答题 22.(7分)如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?

23.(6分)如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).

24.(6分)如图,AB

∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.

25.(7分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.

26.(8分)如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.

1、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,则∠AOF=3x, ∵∠AOF+∠BOF=180° ∴x+3x=180°

∴x=45°,即∠BOF=45° ∴∠AOE=∠BOF=45°

∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.本题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图5.1.2-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图5.1.2-

3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、[方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面内”;二是“不相交”.一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3„ln,若l1∥l2,l2∥l3,„,ln-1∥ln,那么这n条直线互相平行.7、[点拨]由∠1=∠2,及角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=

1∠EAQ,∠2=∠ABN 2

2∵∠1=∠2,∴∠EAQ=∠ABN

∴PQ∥MN

[方法规律]本题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,若∠1=∠3,则AB∥CD,由图可知,∠1+∠2=180°,已知∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1 ∴∠1+3∠1=180°,∴∠1=45° ∵∠1+∠3=90°,∴∠3=45° ∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l所截而成的内错角及l2与l3被l所截而成的同旁内角,若它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°

∴l1∥l

3∵∠2=100°

∴∠2+∠3=180° ∴l2∥l3

∴l1∥l

2[方法规律] 这里l3为l1与l2平行架起了桥梁,这就是转化,它为已知与求证结论铺平了道路[点拨] ∠1与∠3是AD、DC被AC所截的同旁内角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB与DC被AC所截得的内错角,由内错角相等可推出AB∥CD.10、[解答]由已知条件可判断AB∥CD,理由如下:

∵AC平分∠DAB(已知),∴∠1=∠2(角平分线定义).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、内错角相等或同旁内角互补.[点拨] 本题直接求∠C不容易,如果过点C作FC∥AB,就可以把问题转化为求已知的∠B及∠D的同旁内角,进而求得∠C.11、[解答] 过点C作FC∥AB, ∵AB∥ED,∴FC∥ED,∴∠1+∠B=180°,∠2+∠D=180°,∴∠1+∠2+∠B+∠D=360°.∵∠B=140°,∠D=120°,∴∠1+∠2=360°-140°-120°=120°

[方法规律]

此类题型,一般都是过拐点作已知直

线的平行线,从而把未知问题转化为已知问题.12、点拨]利用对顶角相等,转化为同旁内角互补,得l1∥l2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180° ∵∠1=∠6,∴∠6+∠2=180°,∴l1∥l2 ∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]本题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD,∠1=∠2,得∠1=∠EBD,从而得FG∥CD,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD,∠1=∠2,∴∠1=∠EBD ∴GF∥CD,∴∠4=∠ABD

∵∠3=55°,∴∠ABD=125°,∴∠4=125°,∴选D.13、[方法规律]本题综合运用了平行线的判定和性质,在解题过程中应由未知想已知,不断促使问题的转化.[点拨]由 CD⊥AB,EF⊥AB,得DC∥EF,从而得∠1=∠BCD,再由∠1=∠2,可得DG∥BC.[解答]DG∥BC.∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°

∴CD∥EF.(同位角相等,两直线平行)∴∠1=∠BCD.(两直线平行,同位角相等)又∵∠1=∠2,∴∠2=∠BCD.∴DG∥BC.(内错角相等,两直线平行)

[方法规律]本题抓住垂直证平行,促使已知条件向未知条件转换.相交线平行线答案 1.D

2.D点拨:图中的邻补角分别是:∠AOC与∠BOC,∠AOC与∠AOD,∠COE与∠DOE,∠BOE与∠AOE,∠BOD与∠BOC,∠AOD与∠BOD,共6对,故选D. 3.D4.C5.C6.A

7.C点拨:本题的题设是AB∥CD,解答过程中不能误用AD∥BC这个条件.

8.B点拨:∵AB∥CD,∠1=72°,∴∠BEF=180°-∠1=108°.∵ED平分∠BEF,∴∠BED=

12.C点拨:由题意,知

AB,或

A2B30

AB180,

A2B30

解之得∠B=30°或70°.故选C. 13.120° 14.(1)BC;同位角相等,两直线平行(2)CD;内错角相等,两直线平行

(3)AB;CD;同旁内角互补,两直线平行 15.(2),(3),(5)16.115;65

点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°. 17.145° 18.102 19.133

点拨:如答图,延长AB交L2于点F.

∵L1∥L2,AB⊥L1,∴∠BFE=90°.

∴∠FBE=90°-∠1=90°-43°=47°.

∴∠2=180°-∠FBE=133°. 20.∠1=∠2

21.解:如答图,由邻补角的定义知∠BOC=100°.

∵OD,OE分别是∠AOB,∠BOC的平分线,∠BEF=54°. 2

∵AB∥CD,∴∠2=∠BED=54°.故选B.

9.C点拨:如答图,L1,L2

两种情况容易考虑到,但受习惯性思维的影响,L3

这种情况容易被忽略. 10.B

11.D点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.

7.平行线的判定练习题(有答案) 篇七

篇一:(913)平行线的判定专项练习60题(有答案)ok 平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.

2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.

4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.

5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.

6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.

平行线的判定---

7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.

8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.

9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.

10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.

11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.

12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.

平行线的判定---

13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?

14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.

15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.

16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.

17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.

18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?

平行线的判定---

19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.

20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.

21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?

22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.

23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.

24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.

25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC. 平行线的判定---

26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.

27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.

28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.

29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.

30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.

31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.

平行线的判定---

篇二:七年级平行线的判定与性质练习题带答案

平行线测试题

姓名:

一、选择题

1.下列命题中,不正确的是____ [ ] A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

C.两条直线被第三条直线所截,那么这两条直线平行

D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行

2.如图,可以得到DE∥BC的条件是______ [ ]

(2题)(5题)(3题)(7题)(8题)

A.∠ACB=∠BAC B.∠ABC+∠BAE=180°

C.∠ACB+∠BAD=180°

D.∠ACB=∠BAD 3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°

5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ] A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C 6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()

A.互相垂直 B.互相平行 C.相交

D.无法确定

7.如图,在平行四边形ABCD中,下列各式不一定正确的是()

A.∠1+∠2=180°

B.∠2+∠3=180° C.∠3+∠4=180°

D.∠2+∠4=180°

8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()

A.30° B.60° C.90°

D.120°

二、填空题

9.如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,.(2)∠A=∠3,.

(3)∠ABC+∠C=180°.

10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.

11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

12.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.

13.如图,AB∥EF,BC∥DE,则∠E+∠B的________.

三、解答题

14.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.15.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?

(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.

16.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.

17.已知AB∥CD,∠B=100°EF平分∠BEC, EG⊥EF ,求 ∠DEG的度数。

18.如图,∠1与∠D互余,CF⊥DF,试探究AB与CD的位置关系,并说明理由。篇三:七年级平行线的判定与性质练习题带答案

平行线的判定与性质练习2013.3

一、选择题

1.下列命题中,不正确的是____ [ ] A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

C.两条直线被第三条直线所截,那么这两条直线平行

D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行

2.如图,可以得到DE∥BC的条件是 ______ [ ](2题)(3题)(5题)

A.∠ACB=∠BAC B.∠ABC+∠BAE=180°

C.∠ACB+∠BAD=180°

D.∠ACB=∠BAD 3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ] A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ] A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°

5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ] A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C 6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()

A.两直线平行,同位角相等 B.两直线平行,内错角相等

C.同位角相等,两直线平行 D.内错角相等,两直线平行

(6题)(8题)(9题)7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()

A.互相垂直 B.互相平行 C.相交

D.无法确定

8.如图,AB∥CD,那么()

A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠5 9.如图,在平行四边形ABCD中,下列各式不一定正确的是()

A.∠1+∠2=180°

B.∠2+∠3=180°

C.∠3+∠4=180°

D.∠2+∠4=180°

10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()

A.30° B.60° C.90°

D.120°(10题)(11题)

二、填空题

11.如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.

12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.

13.同垂直于一条直线的两条直线________.

14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.(14题)(15题)

15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.

三、解答题

16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.

19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.

求证:AF∥CD.

20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.

21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.

23.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?

(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.

24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=?∠5,?延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.

25.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.

答案:CBDAB ABDDB 7.(1)AD∥BC内错角相等,两直线平行

(2)AD∥BC同位角相等,两直线平行

(3)AB∥DC同旁内角互补,两直线平行

8.平行

9.平行

10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,∴BD∥CE.∴∠BDE+∠DEC=180°.

又∠BDE=∠BCN,∴∠BCN+∠CED=180°,∴BC∥DE,∴∠CAF=∠AFD.

点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.

理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等).

∴∠CBE=∠ABC-∠ABE=150°-120°=30°.

∵BE∥AD,CF∥AD,∴BE∥CF(平行于同一条直线的两直线平行).

∴∠C+∠CBE=180°(两直线平行,同旁内角互补).

8.平行线性质和判定练习 篇八

(一)一、素质教育目标

(一)知识教学点

1.直线和平面平行的定义.

2.直线和平面的三种位置关系及相应的图形画法与记法. 3.直线和平面平行的判定.

(二)能力训练点

1.理解并掌握直线和平面平行的定义.

2.掌握直线和平面的三种位置关系,体现了分类的思想.

3.通过对比的方法,使学生掌握直线和平面的各种位置关系的图形的画法,进一步培养学生的空间想象能力.

4.掌握直线和平面平行的判定定理的证明,证明用的是反证法和空间直线与平面的位置关系,进一步培养学生严格的逻辑思维。除此之外,还要会灵活运用直线和平面的判定定理,把线面平行转化为线线平行.

(三)德育渗透点

让学生认识到研究直线与平面的位置关系及直线与平面平行是实际生产的需要,充分体现了理论来源于实践,并应用于实践.

二、教学重点、难点、疑点及解决方法

1.教学重点:直线与平面的位置关系;直线与平面平行的判定定理. 2.教学难点:掌握直线与平面平行的判定定理的证明及应用.

3.教学疑点:除直线在平面内的情形外,空间的直线和平面,不平行就相交,课本中用记号a≮α统一表示a‖α,a∩α=A两种情形,统称直线a在平面α外.

三、课时安排

1.7直线和平面的位置关系与1.8直线和平面平行的判定与性质这两个课题安排为2课时.本节课为

注意,如图1-58画法就不明显我们不提倡这种画法.

下面请同学们完成P.19.练习1.

1.观察图中的吊桥,说出立柱和桥面、水面,铁轨和桥面、水面的位置关系:(图见课本)

答:立柱和桥面、水面都相交;铁轨在桥面内,铁轨与水面平行.

(二)直线和平面平行的判定

师:直线和平面平行的判定不仅可以根据定义,一般用反证法,还有以下的方法.我们先来观察:门框的对边是平行的,如图1-59,a∥b,当门扇绕着一边a转动时,另一边b始终与门扇不会有公共点,即b平行于门扇.由此我们得到:

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

求证:a∥α.

师提示:要证明直线与平面平行,只有根据定义,用反证法,并结合空间直线和平面的位置关系来证明.

∴ a∥α或 a∩α=A. 下面证明a∩α=A不可能. 假设a∩α=A ∵a∥b,在平面α内过点A作直线c∥b.根据公理4,a∥c.这和a∩c=A矛盾,所以a∩α=A不可能.

∴a∥α.

师:从上面的判定定理可以知道,今后要证明一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行,即可由线线平行推得线面平行.

下面请同学们完成例题和练习.

(三)练习

例1 空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF∥平面BCD.

师提示:根据直线与平面平行的判定定理,要证明EF∥平面BCD,只要在平面BCD内找一直线与EF平行即可,很明显原平面BCD内的直线BD∥EF.

证明:连结BD.

性,这三个条件是证明直线和平面平行的条件,缺一不可. 练习(P.22练习1、2.)

1.使一块矩形木板ABCD的一边AB紧靠桌面α,并绕AB转动,AB的对边CD在各个位置时,是不是都和桌面α平行?为什么?(模型演示)

答:不是.

2.长方体的各个面都是矩形,说明长方体每一个面的各边及对角线为什么都和相对的面平行?(模型演示)

答:因为长方体每一个面的对边及对角线都和相对的面内的对应部分平行,所以,它们都和相对的面平行.

(四)总结

这节课我们学习了直线和平面的三种位置关系及直线和平面平行的两种判定方法.学习直线和平面平行的判定定理,关键是要会把线面平行转化为线线平行来解题.

五、作业

P.22中习题三1、2、3、4.

六、板书设计

一、直线和平面的位置关系直线在平面内——有无数个公共点. 直线在平面外

二、直线和平面平行的判定 1.根据定义:一般用反证法.

2.根据判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

直线和平面的位置关系:

直线和平面平行的判定定理

求证:a∥α 例:

9.平行线性质和判定练习 篇九

第1题.如图,直线a、b都与直线c相交,下列条件中,能判断a∥b的条件是()①12②36③28④58180 A.①③ B.①②④ C.①③④ D.②③④ 答案:B.

第2题.如图,DE是过点A的直线,要使DE∥BC,应有()

A.23 B.C3

B

C

D

A 2

E

5784

a

b

C.C1 D.BC 答案:C.

第3题.看图填理由:

∵直线AB,CD相交于O,(已知)∴∠1与∠2是对顶角

∴∠1=∠2(___________________)∵∠3+∠4=180°(已知)

∠1+∠4=180°(__________________)∴∠1=∠3(__________________)∴CD//AB(__________________)

答案:对顶角相等;平角定义;同角的补角相等;同位角相等,两直线平行.

1100,2120,则____.第4题.如图:AB∥CD,AF

B

CB

A

D

E

答案:40.C

上一篇:灵丘第十六届人民代表大会第三次会议文件下一篇:酒会邀请函示例