张齐华三年级教学实录(共6篇)
1.张齐华三年级教学实录 篇一
张齐华 圆的认识教学实录
[一]●过程描述
师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?
生:钟面上有圆。
生:轮胎上有圆。
生:有些钮扣也是圆的。
„„
师:今天,张老师也给大家带来一些。见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?
生:(激动地)水纹、水纹、圆„„(声音此起彼伏)
师:其实这样的现象在大自然中随处可见,让我们一起来看看。(伴随着优美的音乐,阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗?
生:(惊异地,慨叹地)找到了。
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?
生:(激动地)好![二]
师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是――
生:――画不出圆的。
师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?
生:能。
(学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)
师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗?
生:不可能。
师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?
生:能。
(学生以小组为单位,利用手中的工具和材料画圆。)
师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。
生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。
师:那叫“拷贝不走样”。(生笑)
生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。
师:真可谓就地取材,挺好!(笑)
生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。
师:看得出,你们组的创作已经初步具备了圆规的雏形。
生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。
师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)
师:可是,既然不用圆规,我们依然创造出了这么多画圆的方法,那么俗语中为什么还会有“没有规矩,不成方圆”的说法呢?
生:我想,大概是古时候的人们没想到这些方法吧?(生笑)
生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)
师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。[三]
(通过自学,学生认识完半径、直径、圆心等概念后。)
师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究?
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。
(随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)
师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。
师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。
师:噢?能具体说说吗?
生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?
生:不需要了,因为道理是一样的。
师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。
师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。
师:大家觉得他的这一补充怎么样?
生:有道理。
师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的?
生:我们是动手量出来的。
生:我们是动手折出来的。
生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽„„
师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢?
生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。
生:我们组还发现,圆是世界上最美的图形。
师:能说说你们是怎样想的吗?
生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机
生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶„„
师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?
生:好。
[四]
师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个――
生:圆心。
师:那同长又指什么呢?大胆猜猜看。
生:半径一样长。
生:直径一样长。
师:这一发现,和刚才大家的发现怎么样?
生:完全一致。
师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何?
生:特别的自豪。
生:特别的骄傲。
生:我觉得我国古代的人民非常有智慧。
师:其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程,如图②)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?
生:圆的直径是6厘米。
生:圆的半径是3厘米。
师:说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图③),认识吗?
生:阴阳太极图。
师:想知道这幅图是怎么构成的吗?(想!)原来它是用一个大圆和两个同样大的小圆组合而成的(出示图④)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?
生:小圆的直径是6厘米。
生:大圆的半径是6厘米。
生:大圆的直径是12厘米。
生:小圆的直径相当于大圆的半径。
„„
师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?
生:我觉得石子投下去的地方就是圆的圆心。
生:石子的力量向四周平均用力,就形成了一个个圆。
生:这里似乎包含着半径处处相等的道理呢。
师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――
(伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)
师:感觉怎么样?
生:我觉得圆真是太美了!
生:我无法想象生活中如果没有了圆,将会是什么样子。
生:生活中因为有了圆而变得格外多姿多彩。
„„
师:而这,不正是圆的魅力所在吗?[五]
师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳„„而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”„„而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
华应龙《圆的认识》课堂实录
一,如何敲响课前五分钟前奏曲 师:孩子们,你们有橡皮吗? 生:有~~~ 师:把你们的橡皮做上记号,先给我,好吗 ?
(学生不知道老师要干什么,但都很兴奋地在自己的橡皮上做记号,在座的老师老师们也都很不解,安静地等待着华老师揭晓答案。学生将做好记号的橡皮纷纷交给了华老师)师:(笑着)孩子们,你们的橡皮都交上来了吗?(双手捧满了橡皮)生1:我还有一个。生2:我还有一个。„„
师:孩子,你真逗,为什么不一次性全部交给我啊?(乐呵呵地)师:这下,孩子们,你们的橡皮都交上来了吧?
我们可以开始上课了吗?
(这时,生开始议论起来:没有橡皮,我们怎么上课啊?万一写错了怎么办?„„)师:哦,孩子们,现在你们没有橡皮了,所以在下笔的时候就应该更慎重了,想清楚了再写,但如果万一写错了,也没关系,就好好欣赏一下自己错的地方吧!师:现在我们可以开始上课了吗?(微笑)生:(齐说,很响亮)可以了
二,传统文化在数学教学中的巧妙渗透: 1,创设情境,认识圆、圆心和半径
(课件出示)
师:小明参加奥林匹克寻宝活动,寻宝图上这样写着:宝物距你的左脚3米。孩子们,你们知道宝物在哪里吗?
生:知道 师:请拿出你们的直尺,在纸上画出宝物的位置。(生开始动笔画,师巡视)
师:除了你表示出的这一点,还有其他办法吗?
师:好了,孩子们,我刚才看了一下你们画的图纸,有这样几种情况,我们一起来看。(课件出示四种画法:以某固定点点为起点,分别用尺子向左面,右面,上面,下面量出3厘米的长度,点上点)
师:是这样吗,孩子们?
生1:不是,不止这四个位置,还有许多
师:好的,小伙子,你站起来说
生1:只要是距离左脚3米的地方都可以,这是一个圆。
板书:贴钥匙图:①是什么?
生:圆 板书:贴钥匙图:②为什么?
师:为什么是圆呢?(疑惑状)生:因为圆内所有的点距左脚的距离都是3米
师:说的很好!(微笑着,轻拍学生的头)
师:这些点在圆内还是圆上?生:(想了一小下)圆上。
师:这是一个怎样的圆呢?生:圆上的所有点距离圆心都是3米,就是半径是3米。
师:说的很好,孩子,你都知道圆心、半径了,学过了吗?生:(摇头)没有。
师:孩子们,自己提前预习,这样的习惯很好!板书:圆心
师:圆心在图上就是什么?生:左脚的位置。
师:要想寻到宝,左脚能不能变位置?生:不能。
师:那圆心有什么作用?生:确定位置。
师:在寻宝图上半径是?生:3米板书:半径
师:孩子们,你们知道,我们古代是怎样描述圆的吗?(出示课件,卷联式:圆,一中同长也。)
师:“中“就是指什么? 生:圆心。师:那“同长”呢?生:半径。2,进一步认识圆
(课件出示:正三角形,正方形,正五边形,正六边形,圆)
师:孩子们,你们认识这些图形吗?(生按顺序说图形的名称)
(课件出示一个圆的内接正六边形)师:这是什么图形?生:正六边形。师:它有几条边?生:六条。
(课件演示,不断增加图形的边数,此图形就越来越接近圆)
师:圆是什么?生1:圆可以是0边形,也可以是无数边形生2:圆是六边形师:六边形是圆吗?
圆是什么?生:无数边形。
贴一个圆,圆上写着:圆,大方无隅。
师:“隅”是什么意思?
师:“隅”就是角落的意思 让学生再读“圆,一中同长也。”体悟。3,用圆规画圆,学习直径
师:孩子们,想自己画一个圆吗?
师:会画吗?画一个半径为3厘米的圆(生自己画圆)
师:画好了吗?
(展示学生的作品,学生此时的作品都不是怎么标准)
师:看着这些圆,想象一下是怎样创造出来的?
师:你们是怎么画的?
生:用圆规
师:会用圆规吗?
师:用圆规画圆,手拿着哪,圆规就不动了?
生:拿着圆规的最上面
师:对,就是拿住圆规的头。
(课件出示:再画:一个直径是4厘米的圆)
生画,师巡视
师:哎呀,孩子们,我发现你们画的圆大小不同嘛!
生:这里要我们画的是直径4厘米的圆。
师:你知道什么是直径吗?顾名思义,它和半径是什么关系?
生:是半径的2倍。
师:现在能画出同样大小的圆了吗?
生再画
师:孩子们,谁愿意上来画一画
请学生在展示台上用圆规画
思考:为什么随手不能画圆,用圆规却能?
3、球场上解释圆
看篮球比赛开始时录象,中间为什么是圆?
师:这个大圆是怎么画上去的呢?有这么大的圆规吗?小组商量商量吧
生1:固定一点,拉绳转一圈。生2:用量角器,画两个半圆,合起来就可以了。
师:孩子,你有这么大的量角器吗?
生3:画一个正方形,然后在里面切掉一个角,一个角„„
师生合作,用拉绳的方法画圆。师:没有圆规,为什么也能画圆?
生:因为确定了圆心和半径,只要转一圈就可以了。师:我们回到开始的题目上,宝物在哪里?
生:宝物应该在以小明的左脚为圆心,半径为3米的圆上。师:孩子们,一定吗?想一想。
课件出示半个西瓜,生:小明脚底下3米的地方。师:只是这里吗?
课件出示球
生:以小明左脚为中心,半径为3米的球上。师:圆和球有什么不同?
生:圆是平面的,球是立体的。师:圆,一中同长也;球,一中同长也。课件播放一天活动,展示其中的圆。
2.张齐华三年级教学实录 篇二
T::现在我想叫出每个人的名字,请把你的名字写在纸条上,放在课桌右上角,最近老师总是忘记字,请大家写上拼音。
T:今天我们学习一种新的数类,叫做负数。有谁见过负数?在哪里?(预设)S:电梯;温度计、、、T:电梯按钮去1层以下的,温度计上0度以下都用负数来表示;…… T:好,谁能在图里面写上负数(叫5个学生)记住,尽量写跟别人不一样的;(学生写负数)
T:好的。谁能来说说负数有什么特点?(预设)S:数字前面有减号(负号)
T:有人认为这是减号;有人认为这是负号。其实,这个符号在运算过程中是减号,在单独的数字上则是负号。T:除了这个特点,还有吗?(预设)S:负数都要比0小。
T:好的这位同学不紧看到了负数的表面,还看透了负数的本质。透过现象看本质,火眼金睛。谁能来总结一下负数的特点。(预设)S:负数有负号而且比0小。T:说的不错。谁能再来说一下;(预设)S:负数有负号而且比0小。
T:恩,说的真不错。好,同桌之间说一说。说完以后再纸上写上负数。(学生说)
T:既然有负数,那么相对的,肯定有(S:正数)
T:谁能上来写一下正数,一人写一个,有没有跟他们不一样的(直到学生写+)
T:我也写个数,0,认为是正数的请举手;认为是负数的请举手;没有举手的请举手,好,你来说一下为什么不举手?
(预设)S:0既不是正数,也不是负数。T:为什么呢?也就是说正数要怎么样?(预设)S:正数都要比0大。
T:好的,那我这个0应该写在哪里?边上?还是中间?(预设)S:中间
T:写大点,还是写小点?(预设)S:大点
T:好我们来看这些同学写的数,有什么不一样?
(预设)S:有正号(T:+号在运算中是加号,在单独的数字上则是正号)T:那不写正号还是正数吗?(预设)S:是。
T:既然可以不写;为什么有时候要写上呢?(预设)S:为了看起来方便。
T:看来有没有正号不是正数的关键;那你认为,正数的的共同特点是什么?(预设)S:比0大。
T:好的。刚才说到0,0除了表示数,还能表示什么?(预设)S:表示起点。
T:好的,这是数轴(PPT出示数轴),负数应该写在0的哪边?(预设)S:左边。
T:(PPT数轴显示负数)没有负数的时候,数轴是一条什么线?(射线)有了负数呢?(直
线)而这个0就是他们的(分界点);
T:(出示PPT5个-2)这里有5个-2,四人小组讨论下,然后把这里-2的意思按你的跟同学说一说。
T:某盆地的海报高度是-2.我们先来看第一个-2,谁已经理解盆地海拔-2米的请举手,先给大家介绍一下海拔?听懂的请举手,掌声送给他。(PPT出现海拨)盆地在哪里?这个盆地是要比什么还要低?为了准确的表示某一个地方的高度,我们都把海平面所在的高度看成什么?(0米)好,现在谁能换句话说说某盆地的海报高度是-2米,是什么意思? 好,下面郑老师随便点一个地方,你觉得它的海拔高度是正数还是负数?有谁知道我们地球上最高的海拔高度在哪里吗?最低的呢?这2个数一正一负,分别表示什么含义,你能不能,结合海平面来具体的说一说,同桌一人说一个
T:北京最低气温-2,第二个-2,这是温度计,画的好不好?对不对?确定吗?很坚决,那好,我也带了了4个温度计,大家找找哪个才是真正的-2°。同意第一个举手……
千万不要看他是0下面一格就是-2摄氏度。来说说这些是几度? T:张老师把车停在-2楼。第三个-2,楼房中什么是0?(预设)S:地面
T:(第四个-2,我的银行卡还剩-2,PPT显示)这个专业术语叫透支。想知道张老师为什么卡里还剩2快钱吗?(PPT显示)我的银行卡还剩98元,买电影票用去100,还剩(),买爆米花又刷去10元,还剩()。回到银行,赶紧给卡里冲了100元,现在卡里还剩()。
T:张老师的儿子高-2cm,到底是什么意思?
T:(PPT出售我国10岁男孩的平均身高约是140cm)现在知道-2cm是什么意思了吗?谁来说一下?
(预设)S:比平均身高矮2cm T:在这里我们把哪一个身高看做了0,如果用140cm做标准,我每指一个人,看你能不能理解他真正的身高是多少?这里有一个人的身高很标准,谁?因为他是0,正好是平均身高(+3,143;-2,138;-4,136)看来身高能成为负数,那体重能不能成为负数? T:我们在做这些题目的时候都在找一个数,是什么?(预设)S:0 T:我们现在回顾一下,这里的5个负数都是用谁当做0的?看谁反应快,我就知道谁今天掌握的做好。T:这些0都一样吗?(预设)S:不一样。
3.圆的认识教学设计--张齐华 篇三
南京市北京东路小学 张齐华
一、教学目标
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
二、教学线索
(一)在活动中整体感知
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受 1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识
1.比较:正三角形、正方形、正五边形„„中类似等长的“径”各有多少条?圆的半径又有多少条?
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构
1.寻找:给定的圆中没有标出圆心,半径是多少厘米? 2.想像:半径不同,圆的大小会怎样?圆的大小与什么有关? 3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验
4.张齐华《因数和倍数》 篇四
张齐华老师的《因数和倍数》,教学理念崭新,教学设计独特,文化底蕴丰富,谈吐风趣幽默。课堂教学开放而又充满活力。
感触一:充满人性化的评价语
听张老师的课是一种享受,尤其是聆听他那自然、精炼的评价语。如评价作业纸时,张老师说“关于A这种方法你有什么话要说?”(学生纷纷举手想要指出错误)可张老师是这样引导的:“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……这些人性化的评价语在课堂中还有很多,这些朴实的语言,孩子们在潜移默化中感受到的是成功,是对数学学习的无限乐趣。
感触二:丰富多彩的文化信息。
关于本堂课的文化气息,是相当浓厚的,张老师一定查阅了不少的资料,进行了创造性的组合和优化,对激发学生的学习兴趣是大有好处的。“计数器’九颗珠子的奥秘;神奇的完美数,让学生在不知不觉中感受到了数学的奥秘。只有有了文化气息,数学才变得有了灵魂,而再不会让学生感到枯燥无味,只会乐在其中。感触三:善于引导,让学生学会思考
张老师善于捕捉学生发言过程中的信息,教师大胆地让学生自己找出36的因数和3的倍数,再通过对几份不同作业的比较,一步又一步,层次清晰地得出找因数和倍数的方法。在这一过程中,教师与学生进行互动,沟通联系,交流想法,形成意见,真正做到了“教育的引导者。”如:“看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?”、“他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?”……老师亲切的话语引导学生去发现、思考。
这一堂课上了55分钟,这在日常的教学中是不允许的,但在这节课中,没有这增加的十几分钟,简直是一种遗憾,那么如何解决现实与理想的矛盾呢?
教学过程:
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形?(12)第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排?
生:12个,摆了一排。
师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?
生:三四十二
师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗?
生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?
师:谁先来?
生说略
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。
师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊?
生:自然数
师:而且谁得除外。
生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。
二、探索找因数倍数的方法
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?
生1:
3、18 师:还有谁?
生2:36 师:3、18、36都是36的因数,只有这3个吗?
生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。
A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了 生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?
生:没有写全,少了3、6、9。
师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?
生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到
36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢?
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:
21、300 师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2 师:能理解吗?
生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。
生:略
师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数
学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个?
生:7、14、21、28 师:为什么不加省略号?
生:因为给了一个限制。
师:任何自然数的倍数是无限的。会寻找一个数的因数吗?
三、感受倍数和因数的神奇奥秘
师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗?
生1:27 生2:36 师:把你知道的两位数跟同桌说一说。
学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示:18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么?
生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)
师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?
生1:1 生2:99 师:还有谁要发表的?
生3:9 师问生2:为什么认为99的因数最多?
生:9是最大的。
师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60 秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律
师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?
生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。有幸去南京聆听了张齐华老师执教的《因数和倍数》,感触颇深。张老师那崭新的教学理念,独特的教学设计,丰富的文化底蕴,风趣幽默的谈吐,深深打动了我。他那开放而又充满活力的课堂教学,令我感触很深。感触一:充满人性化的评价语
听张老师的课是一种享受,尤其是聆听他那自然、精炼的评价语。如评价作业纸时,张老师说“关于A这种方法你有什么话要说?”(学生纷纷举手想要指出错误)可张老师是这样引导的:“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……这些人性化的评价语在课堂中还有很多,这些朴实的语言,孩子们在潜移默化中感受到的是成功,是对数学学习的无限乐趣。
感触二:丰富多彩的文化信息。
关于本堂课的文化气息,是相当浓厚的,张老师一定查阅了不少的资料,进行了创造性的组合和优化,对激发学生的学习兴趣是大有好处的。“计数器’九颗珠子的奥秘;神奇的完美数,让学生在不知不觉中感受到了数学的奥秘。只有有了文化气息,数学才变得有了灵魂,而再不会让学生感到枯燥无味,只会乐在其中。
感触三:善于引导,让学生学会思考
张老师善于捕捉学生发言过程中的信息,教师大胆地让学生自己找出36的因数和3的倍数,再通过对几份不同作业的比较,一步又一步,层次清晰地得出找因数和倍数的方法。在这一过程中,教师与学生进行互动,沟通联系,交流想法,形成意见,真正做到了“教育的引导者。”如:“看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?”、“他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?”……老师亲切的话语引导学生去发现、思考。
只是这一堂课上了55分钟,这在日常的教学中是不允许的,但在这节课中,没有这增加的十几分钟,简直是一种遗憾,那么如何解决现实与理想的矛盾呢?
课堂实录如下:
教学过程:
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形?(12)第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来?
生:1×12
师:猜猜看,他每排摆了几个,摆了几排?
生:12个,摆了一排。
师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?
生:三四十二
师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗?
生齐:2×6
师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?
师:谁先来?
生说略
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。
师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊?
生:自然数
师:而且谁得除外。
生:0
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36
生说略。
二、探索找因数倍数的方法
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?
生1:
3、18
师:还有谁?
生2:36
师:3、18、36都是36的因数,只有这3个吗?
生1:1
生2:4
生3:6
师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。
A:2、4、13、12、18、36
B:1、2、4、3、6、9、12、18、36
C:1、36、2、18、3、12、4、9、6
师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了
生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?
生:没有写全,少了3、6、9。
师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?
生:36÷4,只写了4,没写9
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到
36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢?
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20
生齐:1、2、4、5、10、20
再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:
21、300
师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2
师:能理解吗?
生1:3+3=6、6+3=9
师:有理吗?不要小看加3了,当到数大的时候也比较方便。
生:略
师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数
学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个?
生:7、14、21、28
师:为什么不加省略号?
生:因为给了一个限制。
师:任何自然数的倍数是无限的。会寻找一个数的因数吗?
生:略
三、感受倍数和因数的神奇奥秘
师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗?
生1:27
生2:36
师:把你知道的两位数跟同桌说一说。
学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81
仔细观察9颗珠子拨的两位数,你发现了什么?
生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)
师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?
生1:1
生2:99
师:还有谁要发表的?
生3:9
师问生2:为什么认为99的因数最多?
生:9是最大的。
师:张老师公布一下答案: 60
师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60 秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律
师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?
生:1、2、3、6
师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁?
学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?
生:好奇心
师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。
子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁?
学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?
生:好奇心
5.关于听张齐华课心得 篇五
昨天很幸运的听到了张齐华老师的认识负数,有对比有发现。平时的赛课因为各方面的原因,我们追求的东西太多想要形式上的完美,更想要内容上的突破,可有时真的是鱼与熊掌不可兼得,学生累,老师忙。张齐华老师的这节课,让我对他高超的课堂驾驭能力心生佩服。认识负数是张老师早就讲过多遍的一堂课,但是因为前面一节同课异构课的启发,让他主动放弃了自己原来的教学设计,开启全新的模式。这是张老师对自己的否定,更是对自己的肯定,把课堂更多的还给学生,这才是教师追求的目标。一节课中老师教什么,学生会的不用教,怎么教也不会的不用教,学生自己学能会的也不用教,教师在课堂上应该就是一个点拨者,当学生遇到问题时解决孩子的问题。
这节课张老师放手给学生让学生自己去发现。让学生从读法、写法、意义和用处四个方面去体会负数,完成负数的学习。老师没领着孩子学,让孩子在四人小组中完成学习,在合作中明晰知识,在探究中完善知识。
6.张齐华加法交换律试课稿 篇六
开始:上课,同学们好!请坐。
一、利用故事,提出猜想
师:喜欢听故事吗?那就给大家讲一个“朝三暮四”的故事吧。听„
出示故事内容:宋国有一个养猕猴的老人,他很喜欢猕猴,养了一大群猕猴,他能理解猕猴们的心意,猕猴们也能够了解那个人的心思。那位老人因此减少了他全家的口粮,来满足猕猴们的欲望。但是不久,家里缺乏食物了,他想要限制猕猴们吃橡粟的数量,但又怕猕猴们生气不听从自己,就先骗猕猴们:“我给你们的橡树果实,早上三颗,晚上四颗,这样够吗?”众多猕猴一听很生气,都跳了起来。过了一会儿,他又说:“我给你们的橡树果实,早上四颗,晚上三颗,这样足够吗?”猕猴们听后都很开心地趴下,都很高兴对那老人服服帖帖的了。
师:听完故事,想说些什么?是啊!不管怎么吃,对于老人来说,每天给的都是7颗橡树果实,也就是说„教师板书:3+4=4+3 师:观察这一等式,你有什么发现?你说,你说,噢„ 出示:交换两个加数的位置和不变。师:老师的发现和他很相似,但略有不同。教师出示:交换3和4的位置和不变。
师:比较我们俩给出的结论,你想说些什么?你来吧!哦,你还想说。
二、验证猜想,得出结论
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师将生1结论中的“。”改为“?”)。既然是猜想,那就得——板书:验证 师:你觉得该怎么验证?用怎样的例子?该举多少个呢?你说,你来,你还有想法,说。
师:根据大家的意见,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留意一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?好,开始吧,有结果了。
师:刚才我发现有些同学是这样举例的——(板书:4+5=5+4)有些同学是这样举例的——(板书:4+5=5+4)9 9 师:你觉得谁的例子更有说服力。你来,你说。
师:说的多好啊!举例可不能乱举,我们举例的目的就是为了验证交换加数的位置和不变这一猜想,因此我们必须要算出它们的和才行。
师:好,现在谁来说说,你都举了哪些例子。
出示贴:①7+8=8+7,2+9=9+2,4+7=7+4。②5+4=4+5,30+15=15+30,200+500=500+200 15 15 11 11 11 11 9 9 45 45 700 700(重要的例子要板书)师:比较而言,你更喜欢谁的例子?为什么?你来
师:是的,第二位。因为第二位同学举的例子中既有一位数,也有二位数和三位数,范围要大些。师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启发? 教师出示投影:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。8 8 27 27 5/9 5/9 师:你说,你来。你们很会思考,没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换任意两个加数的位置和不变。所以第三位同学举例更全面。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均认同)
师:都同意,那有没有谁举例时发现了不成立的例子?没有,这样看来,我们的举例能验证刚才的猜想吗?(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)师:大声的把这个结论读一次。
师:现在,你还能用更简单的方式把这个结论表示出来吗?试试看。你是怎么表示的?你呢?我把他们的表示方法写下来。
板书:a+b=b+a □+○=○+□„
师:回顾刚才的学习,除了得到这一结论外,你还有其它收获吗?你说,你还想说,师:刚才从“朝三暮四”的故事中,得出“3+4=4+3”,进而形成猜想。随后,又通过举例,验证了猜想,得到了这一结论。(板书:猜想——验证——结论)该给这一结论起什么名称呢? 师:嗯,这个名字不错。板书:加法交换律
师:仔细观察在这一规律中,什么变了,什么没变?(板书:变 不变)师:原来,“变”和“不变”有时也能这样巧妙地结合在一起。师:结论,是终点还是新的起点?
师:从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进面形成新的结论。
比如:“在加法中,交换两个数的位置和不变”那么
① 在减法中,交换两个数的位置差不变?是不是也成立呢? ② 在乘法中,交换两个数的位置积不变?
③ 在除法中,交换两个数的位置商不变?是不是也成立呢?
师:这几个猜想由同学们自己回家验证。
三、应用结论
师:刚才我们学习了加法的交换律,下面就来考考大家。
1、出示:书本第31页的第二题:想一想,我们在哪里见到过加法交换律
师:什么时候见过,还记得吗?是的,在验算加法的时候就碰见过,这就是加法交换律的一个很重要的用处。
2、计算下面各题,并用加法交换律验算:38+456 307+348 123+2847
四、总结
师:学到这,让我们来回顾一下,这节课我们是怎样学习的„我们先通过故事提出了猜想,接着用举例子的方法对猜想进行验证,得出这个猜想是正确的,像这样提出猜想,举例验证,在得出结论,是我们学习数学的一种好方法。
师:那么通过今天的学习,你有哪些收获?你说,你说。师:看来,大家都是很会学习的孩子。结束:这节课就上到这儿,下课,同学们再见!
新课的导入(故事导入,复习导入准备小黑板,)
新课的展开(问题的设置抓住重难点,教师的衔接语,教师的语气变化,请学生回答的用语,对学生的评价)
证明课模式:提出猜想,证明猜想(正反),得出结论,梳理回顾,运用结论
计算课模式:尝试计算,交流反馈(算理算法落实),小结回顾(注意的地方),实践运用 新课的结尾 师:那么通过今天的学习,你有哪些收获?你说,你说。
【张齐华三年级教学实录】推荐阅读:
张齐华《分数的初步认识》教学实录09-15
走近名师张齐华10-07
一年级上册左右教学实录09-30
九年级语文教学实录11-10
《周长与面积》三年级下数学教学实录与反思06-20
六年级上数学教学实录-比的意义-苏教版11-10