几何证明选讲试题

2024-08-03

几何证明选讲试题(精选9篇)

1.几何证明选讲试题 篇一

广东省13大市2013届高三上期末考数学文试题分类汇编

几何证明选讲

1、(东莞市2013届高三上学期期末)如图,四边形ABCD内接于O,AB为O的直径,直线MN切O于D,MDA60,则BCD. 答案:150

2、(佛山市2013届高三上学期期末)如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点

E,F.若AD3AE,则AF:FC.

答案:1:

43、(广州市2013届高三上学期期末)

如图2,已知AB是⊙O的一条弦,点P为AB上一点,PCOP,PC交⊙O于C,若AP4,PB2,则PC的长是.答案:D l

C

24、(惠州市2013届高三上学期期末)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点F,AF3,FB1,EF线段CD的长为.

【解析】由相交弦定理,AFFBEFFC故FC2,又

3,则

2AFCF8

,故BD,由切割线定理,ABBD

34BD2CDADCD4CD4CD2,故CD。

35、(江门市2013届高三上学期期末)如图5,EF是梯形ABCD的中位线,CF//BD,故

记梯形ABFE的面积为S1,梯形CDEF的面积为S2,若

A

B

F

SAB1AB

,则,1. CD2EFS

225答案:(2分),(3分).

E

16、(茂名市2013届高三上学期期末)如图,⊙O的直径AB=6cm,P是AB

延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=_____________ 答案:

7、(汕头市2013届高三上学期期末)如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD=3DB,设COD,则tan

2

=________.答案:填

1.3313

r,从而 r,BDr,由CD2ADBD得CD22

解析:设半径为r,则AD



,故tan2

.238、(增城市2013届高三上学期期末)已知圆O割线PAB交圆O于A,B(PAPB)两点,割线PCD经过圆心O(PCPD),已知PA6,AB7是. 答案:

2,PO10;则圆O的半径

3所对的弦长CD,弦AB9、(湛江市2013届高三上学期期末)如图圆上的劣弧CBD

是线段CD的垂直平分线,AB=2,则线段AC的长度为____

10、(肇庆市2013届高三上学期期末)如图3,△ABC的外角平分线AD交外接圆于D,BD4,则CD

.解析:4∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD4.=,∴∠DAC=∠DBC.11、(珠海市2013届高三上学期期末)(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,AC=2,则BD等于.答案:6

(第15题图)

2.几何证明选讲试题 篇二

一、选择题:

二、填空题:

1.(2007广东文)(坐标系与参数方程选做题)在极坐标系中,直线l的方程为ρsinθ=3,则点(2,π/6)到直线l的距离为.

【解析】法1:画出极坐标系易得答案2;法2:化成直角方程y

3及直角坐标可得答案2.2.(2007广东理)(坐标系与参数方程选做题)在平面直角坐标系xOy中,直线l的参数方程为xt3x2cos(参数tR),圆C的参数方程为(参数0,2),则y3ty2sin2

题C的圆心坐标为.(0,2),圆心到直线l的距离为22.3.(2007广东文)(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=.

【解析】由某定理可知DCAB60,又ADl,故DAC30.4.(2007广东理)(几何证明选讲选做题)如图5所法,圆O的直径

AB6,C为圆周上一点,BC3,过C作圆的切线l,过

A作l的垂线AD,AD分别与直线l、圆交于点D、E,则

∠DAC= 30°,线段AE的长为3.图

5三、解答题:

1.(2007海南、宁夏理)请考生在A,B,C三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.

1.A(本小题满分10分)选修4-1:几何证明选讲 如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点.,P,O,M四点共圆;(Ⅰ)证明A(Ⅱ)求OAMAPM的大小. 1.A

E-mail:第1页(共2页)

(Ⅰ)证明:连结OP,OM.

因为AP与O相切于点P,所以OPAP.

因为M是O的弦BC的中点,所以

A

OMBC. 于是OPAOMA180°.

由圆心O在PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆.,P,O,M四点共圆,所以OAMOPM.(Ⅱ)解:由(Ⅰ)得A

由(Ⅰ)得OPAP.

由圆心O在PAC的内部,可知OPMAPM90°.

所以OAMAPM90°.

1.B(2007海南、宁夏文、理)(本小题满分10分)选修4-4:坐标系与参数方程 O1和O2的极坐标方程分别为4cos,4sin.

O1和O2的极坐标方程化为直角坐标方程;

(Ⅱ)求经过O1,O2交点的直线的直角坐标方程.(Ⅰ)把

1.B

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(Ⅰ)xcos,ysin,由4cos得24cos.

所以x2y24x.

即x2y24x0为

22O1的直角坐标方程. O2的直角坐标方程. 同理xy4y0为

22xy4x0,x10,x22(Ⅱ)由2解得. 2y0,y212xy4y0

3.2012高考数学几何证明选讲 篇三

模块点晴

一、知识精要

值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑

6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似。

形与三角形相似。

对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应

条直线平行于三角形的第三边。

1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;

(2)相似三角形周长的比等于相似比;

(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

它们在斜边上射影与斜边的比例中项。

°的圆周角所对的弦是直径。

圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。的比例中项。

两条切线的夹角。

二、方法秘笈

⒈几何证明选讲内容的考点虽多,主要还是集中在对圆的相关内容的考查,而圆中又主要以与切线有关的性质、圆幂定理、四点共圆这几个内容的考查为主。

⒉虽然本书内容主要是由原初三内容改编过来,而在初中,相关内容也已经删去,似乎教师教与学生学都有一定难度,但是由于学生经过两年的高中学习,逻辑性、严密性都有了较大的提高,只要教学得法,学生对这部分的学习应该并不会感到困难。

⒊紧扣课本中的例习题进行学习,重视各个定理的来龙去脉,理解其中渗透的重要的数学思想方法,因为高考试题中所采取的一些方法多来自课本中定理的证明方法及例习题的证明方法;

试题解析

一、选择题

例1.(2012北京、理科)如图.∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于

点E.则()

A.CE·CB=AD·DBB.CE·CB=AD·AB C.AD·AB=CD ²D.CE·EB=CD ²

【解析】A。在ACB中,∠ACB=90º,CD⊥AB于点D,所以CD理的CD

二、填空题

例1.(2012全国、文科)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点

F,AF3,FB1,EF

ADDB,由切割线定

CECB,所以CE·CB=AD·DB。

32,则线段CD的长为

【解析】如图连结BC,BE,则∠1=∠2,∠2=∠A

A1,又∠B=∠B,CBF∽ABC,CBBFCBCF,,代入数值得BC=2,ABBCABAC

AC=4,又由平行线等分线段定理得解得CD=

ACCD

AFFB,.【答案】

例2.(2012湖南、理科)如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于

_______.PO交圆O于C,D,如图,设圆的半径为R,由割线定理知

PAPBPCPD,即1(12)(3-r)(3r),r

P

例3.(2012天津、理科)如图,已知AB和AC是圆的两条弦.过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=

32,则线段CD的长为

【解析】∵AF=3,FB=1,EF=

432

ABAF,由相交弦定理得AFFB=EFFC,所以FC=2,FC=83

又∵BD∥CE,∴

AFAB

=

FCBD,BD=

2=

83,设CD=x,则AD=4x,再由切

割线定理得BD=CDAD,即x4x=(练习题

1.(2012湖北、理科)),解得x=,故CD=

43.如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。

答案:

22.(2012陕西、文理科)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若AB6,AE1,则DFDB5。

三、解答题

例1(2012年全国新课标卷)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:

G

F

(Ⅰ)CD=BC;

(Ⅱ)△BCD∽△GBD

【解析】(1)CF//AB,DF//BCCF//BD//ADCDBFCF//ABAFBCBCCD

(2)BC//GFBGFCBD

BC//GFGDEBGDDBCBDCBCDGBD

O相交例2.(2012辽宁、文理科)如图,⊙O和⊙

/

于A,B两点,过A作两圆的切线分别交两圆于C,D

两点,连接DB并延长交⊙O于点E。

证明

(Ⅰ)ACBDADAB;(Ⅱ)ACAE。

例3.(2012江苏、理科)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结

BD并延长至点C,使BD = DC,连结AC,AE,DE.

求证:EC.

【解析】

4.几何证明选讲练习题 篇四

1.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC ,DE交AB于点F,且AB2BP4,(1)求PF的长度.(2)若圆F且与圆O内切,直线PT与圆F切于点T,求线段PT的长度。解:(1)连结OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系 结合题中条件弧长AE等于弧长AC可得CDEAOC, 又CDEPPFD,AOCPOCP, 从而PFDOCP,故PFD∽PCO,E A F B 证明:(Ⅰ)AB为切线,AE为割线, AB2ADAE又 ABAC(2)由(1)有

ADAEAC2--------------5分

ADC~ACE

ADAC

又EACDACACAE

ADCACE 又ADCEGF EGFACE GF//AC

PFPD,…………4 PCPO

PCPD1

23.…………6 由割线定理知PCPDPAPB12,故PF

E PO

4(2)若圆F与圆O内切,设圆F的半径为r,因为OF2r1即r

1A

所以OB是圆F的直径,且过P点圆F的切线为PT

2F B

5.如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P,(I)求证:AD∥EC;

(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长。22.解:(Ⅰ)连接AB,AC是⊙O1的切线,BACD,又BACE,DEAD//EC……………4分(Ⅱ)PA是⊙O1的切线,PD是⊙O1的割线,PA2PBPD,则PT

PBPO248,即PT…………10

2.三角形ABC内接于圆O,P在BC的延长线上,PA切圆O于A,D为AB的中点,PD交AC于E,AE3EC,求

PA

.PC

62PB(PB9)PB3又⊙O2中由相交弦定理,得PAPCBPPE PE4AD是⊙O2的切线,DE是⊙O2的割线,AD2DBDE916,AD12.………………10分

6.如图,已知⊙O和⊙M相交于A,B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O,BD于点E,F,连结CE,PA2PA2PBPCPB

解析:由PAPCPB,(),

PCPCPC2PC2

过C作CH//AB,交PD于H,因为BDAD,PBBDADAEPA

3,故3 所以有

PCCHCHECPC

GFEF2

(Ⅰ)求证:AGEFCEGD;(Ⅱ)求证:。AGCE2

证明:(I)连结AB,AC,∵AD为M的直径,∴ABD90,3.(本小题满分12分)选修4-1:几何证明选讲如图,已知点C在圆O直径BE的延长线上,CA切圆O于A点,DC是ACB的平分线并交AE于点F,交AB于D点,求ADF的大小。

解:如图,连接AO,因为AC是圆O的切线,则OAC900,因DC是ACB的平分线,又OAOB,设ACDECD1,ABOBAO2,在ABC中,∴AC为O的直径,∴CEFAGD90.…………2分 ∵DFGCFE,∴ECFGDF,∵G为弧BD中点,∴DAGGDF.…………4分 ∵ECBBAG,∴DAGECF,∴CEF∽AGD.…………5分

CEAG

,∴AGEFCEGD.…………6分 EFGD

(II)由(I)知DAGGDF,GG,2221900180012450,而在ADC中,ADF1290,故ADF45° …………10分

∴DFG∽AGD,∴DG2AGGF.………8分

EF2GD2GFEF2

由(I)知,∴.………10分 222

CEAGAGCE

4.如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE

都是⊙O的割线,已知ACAB,(Ⅰ)证明:ADAEAC;(Ⅱ)证明:FG//AC。

7.如图,在ABC中,ABC900,以BC为直径的圆O交AC于点D,设E为AB的中点。(1)求证:直线DE为圆O的切线;(2)设CE交圆

O于点F,求证:CDCACFCE。

O,过点A的直线交⊙O于点P,交BC的延长线于10.(本小题满分10分)如图,ABC内接于⊙

点D,且AB2APAD。(1)求证:ABAC;

O的半径为1,(2)如果ABC600,⊙

且P为弧AC的中点,求AD的长。

8.在ABC中,ABAC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

PCPD

(1)求证:;(2)若AC3,求APAD的值。

ACBD

解:(1)CPDABC,DD,DPC~DBA,11.如右上图,ABC是直角三角形,ABC900,以AB为直径的圆O交AC于点E,点D是BC

边的中点,连OD交圆O于点M,(Ⅰ)求证:O,B,D,E四点共圆;(Ⅱ)求证:2DE2DMACDMAB。

D

PCPDPCPD

又ABAC,(5分)

ABBDACBD

(2)ACDAPC,CAPCAP,APC~ACD APAC,AC2APAD9………(10分)

ACAD

9.(本小题满分12分)已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,CD是ACB的平分线且交AE于点F,交AB于点D。(1)求ADF的度数;(2)若ABAC,求

AC的值。

BC

12.如图,ABC的外角EAC的平分线AD交BC的延长线于点D,延长DA交ABC的外接圆于点F,连结FB,FC。

(1)求证:FB2FAFD;

(2)若AB是ABC外接圆的直径,且EAC120,BC6,求线段AD的长。

可以得知△BFC∽△DGC,△FEC∽△GAC.

BFEFBFCFEFCF

∴BFEF.∵G是AD的中点,∴DGAG.∴∴..

DGAGDGCGAGCG

(Ⅱ)连结AO,AB.∵BC是O的直径,∴BAC90°.

在Rt△BAE中,由(Ⅰ)得知F是斜边BE的中点,∴AFFBEF.

∴FBAFAB.又∵OAOB,∴ABOBAO.∵BE是O的切线,∴EBO90°.∵EBOFBAABOFABBAOFAO90°,∴PA是O的切线.

15.如图,⊙O是ABC的外接圆,D是弧AC的中点,BD交AC于E。(I)求证:CD2DEDB。(II)若CDO到AC的距离为1,求⊙O的半径。

AB1,圆O的2

割线MDC交圆O于点D,C,过点M作AM的垂线交直线AD,AC分别于点E,F,证明:(Ⅰ)MEDMCF;(Ⅱ)MEMF3。

13.如图:AB是圆O的直径(O为圆心),M是AB延长线上的一点,且MB证明:(Ⅰ)连接BC得ACB90,所以ACBBMF90,∴B,C,F,M四点共圆,∴CBACFM,又∵CBACDAEDM ∴EDMCFM,在EDM与CFM中可知MEDMCF。6分(Ⅱ)由MEDMCF,得E,F,C,D四点共圆,∴MEMFMDMC,又∵MDMCMBMA3,∴MEMF3。┈┈┈┈┈10分

A

F



C

D

E

16.如图所示,已知PA与O相切,A为切点,PBC为割线,D为O上的点,且AD=AC,AD,M

O

14.如图, 点A是以线段BC为直径的圆O上一点,ADBC于点D,BC相交于点E。(Ⅰ)求证:AP//CD;(Ⅱ)设F为CE上的一点,且EDFP,求证:CEEBFE

EP.过点B作圆O的切线,与CA的延长线相交于点E, 点G是AD的中点,连结CG并延长与BE相交于点F, 延长AF与CB的延长线相交于点P.(Ⅰ)求证:BFEF;

(Ⅱ)求证:PA是圆O的切线;

5.几何证明选讲试题 篇五

高二文科数学选修4-1《几何证明选讲》

班级_姓名座号

1.如图,在四边形ABCD中,EF//BC,FG//AD,则

EFFG.BCAD

2.如图,EF∥BC,FD∥AB,AE=1.8cm, BE=1.2cm, CD=1.4cm.则

.B的点,3.如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD

2,CB则CD.F 图

204.如图,点A、B、C是圆O上的点,且AB=4,ACB30o,则圆O的面积等于.《中学数学信息网》系列资料版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》zxsx127@163.com

5.如图,△ABC中,∠C=900,⊙O切AB于D,切BC于E,切AC于F,则 ∠.6.如图,已知圆上的弧ACBD,过C点的圆的切线与BA的 延长线交于 E点,若ACE350,则BCD.7.如图, 已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若ABC30, AC2,则AD的长为.8.如图,圆内的两条弦AB、CD相交于圆内一点P,已知

PAPB3,PCPD,则CD.o

BA

D

欢迎光临《中学数学信息网》zxsx127@163.com

9.如图,已知AB是⊙O的一条弦,点P为AB上一点,PCOP,PC交⊙O于C,若AP4,PB2,则PC的长是()

PO

A

B

A.3B

.C.2D

10.如图,圆O的弦ED,CB的延长线交于点A。若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.11.如图,割线PBC经过圆心O,PBOB1,PB绕点O逆时 针旋120°到OD,连PD交圆O于点E,则PE.12.如图,四边形ABCD是圆O的内接四边形,延长 AB和DC相交于点P。

BC

若PB=1,PD=3,则的值为.AD

欢迎光临《中学数学信息网》zxsx127@163.com

13.如图,过O外一点P作一条直线与O交于A,B两点,已知半径为4,PA=2,点P到O的切线长PT =4,则 点O到弦AB的距离为.14.如图,已知RtABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则

15.如图,PT是圆O的切线,PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.BD

__________.DA

16.如图, AC和AB分别是圆O的切线,B、C 为切点,且 OC = 3,AB = 4,延长OA到D点,则△ABD的面积 是.17.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则O的半径是.参考答案

B

欢迎光临《中学数学信息网》zxsx127@163.com

1.2.3.4.16p5.4506.350

7.8.9.10.11.16

15.112.13.14.16.48

6.几何证明选讲试题 篇六

一、极坐标与参数方程

题型一:极坐标与直角坐标互化

题型二:极坐标方程转化为直角坐标方程

题型三:参数方程转化为普通方程(消去参数)

练习:

x3t21.曲线的参数方程为(t是参数),则曲线是()yt1

A.直线B.双曲线的一支C.圆D.射线

2.已知极坐标系中点A(2,3),则点A的普通直角坐标是()

4A.(-1,-1)B.(1,1)C.(-1,1)D.(1,-1)

3.圆sin的半径是()

A.2B.2C.1D.

4.直线:3x-4y-9=0与圆:1 2x2cos,(θ为参数)的位置关系是()

y2sin

A.相切B.相离C.直线过圆心D.相交但直线不过圆心

5.已知直线l1:x13t(t为参数)与直线l2:2x4y5相交于点B的坐标是y24t

6.在极坐标系中,点A2,

到直线sin2的距离是4

x2cos(为参数,且R)的曲

y1cos2

7、若P是极坐标方程为

3R的直线与参数方程为

线的交点,则P点的直角坐标为.二、几何证明选讲

1、相似三角形性质

2、射影定理

3、切割线定理

4、相交弦定理

直角三角形的射影定理

射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

练习:

1.半径为5cm的圆内一条弦AB,其长为8cm,则圆心到弦的距离为()A.1cmB.2cmC.3cmD.4cm 2.如图,已知DE∥BC,△ADE的面积是2cm,梯形DBCE的面积为6cm,则

DE:BC的值是()

21C.1D.

323.如图所示,圆O上一点C在直径AB上的射影为D,A.2B.

CD4,BD8,则圆O的半径等于()

A.3B.4C.5D.6

4.如图,AB是半圆O直径,BAC30,C

A

O

第10题图

BC

为半圆的切线,且BCO到AC的距离 OD()

A.3B.4C.5D.6

5.在RtABC中,ACB90,CDAB于点D,CD2,BD4,则AC=()

A

32D. 23

6.如图,△ABC中,DE∥BC,DF∥AC,AE:AC=3:5,DE=6,则BF=_______

7.如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经 过圆心,若PA=6,,AB=7,,PO=12.则⊙O 的半径为_______________

真题演练: 2007年文科

第14题.(坐标系与参数方程选做题)在极坐标系中,直线l的方程为

sin3,则点(2,)到直线l的距离为.

6第15题.(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C

为圆周上一

点,BC3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=. 2008年文科

第14题.(坐标系与参数方程选做题)已知曲线C1,C2的极坐标方程分别为

cos3,4cos(0,0),则曲线C1 C2交点的极坐标为

第15题.(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R 2009年文科

第14题.(坐标系与参数方程选做题)若直线

x12t

(

y23tt为参数)与直线

4xky1垂直,则常数k=________.

第15题.(几何证明选讲选做题)如图3,点A,B,C是圆O上的点,且AB4,ACB30o,则圆O的面积等于.

2010年文科

第14题.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,点E,F分别为线段AB,AD的中点,则EF=. 第15题.(坐标系与参数方程选做题)在极坐标系(ρ,)(0<2)中,曲线

cossin1与sincos1的交点的极坐标为.

2011年文科

第14题.(坐标系与参数方程选做题)已知两曲线参数方程分别

为

x

(0≤<)和

ysin

52x4t(tR),它们的交点坐标为. yt

第15题.(几何证明选讲选做题)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2,E、F分别为AD、BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为.

2012年文科

第14题.(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C

2的参数方程分别为

x1x(t是参数)C2:(是参数,0)

和C2:,它们的交点坐标为.

2yy

第15题.(几何证明选讲选做题)如图3所示,直线PB与圆O想切于点B,D是弦AC上的点,PBADBA,若AD

则,mAC,n

AB

2013年文科

第14题.(坐标系与参数方程选做题)已知曲线C的极坐标方程为2cos.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.

第15题.(几何证明选讲选做题)如图3,在矩形ABCD

中,ABBC3,BEAC,垂足为E,则ED.

图3

小节训练卷(27)参考答案

1.A∴选A 2.C

x3t2

将2式乘以3后减去1式得3yx5,即x3y50,此方程表示的是直线,yt1

2,

3,xcos1,ysin1,∴选C 4

∴选B

3.B

CDADBD,AD1,AC

4.D将sin两边平方得sin,xyy,整理得x2(y)25.C过圆心O作OD⊥AB,则OD为所求。DB=4,OB=5, ∴OD=3∴选C 6.B点(2,121,∴选D 4

,cos1的普通直角)的普通直角坐标为(0,2)

坐标方程是x=1,则(0,2)关于x=1对称的点为(2,2),化为

极坐标是),∴选B

DE2SADE21DE1

8,,,∴选D

BC2SABC84BC2

7.D SADE2,SABC

8.D圆:

x2cos22

化成普通直角坐标方程是xy4,圆心是(0,0),半径r=2,圆心到直线3x-4y-9=0

y2sin的距离为d

95

r,所以直线和圆相交。∴选D 5

9.C CDADBD,AD2,直径AB10,r5∴选C

10.A

BAC30,BCAB,BCACABACCOS3012

OA6,又ODAC,ADOABC,

ODOA

,OD3,∴选A BCAC

x13t

(t为参数)化为普通直角坐标方程为4x3y10,联立方程2x4y5 11.l1:

y24t

5

5x

解得2,∴答案为(,0)

2y0

12.极坐标点A2,

,直线sin2的直角坐标方程是 的直角坐标是(1,1)

4

y2,所以点到直线的距离是3

13.由题知ADEABC,∴DE:BC=AE:AC=3:5,又DE=6, ∴BC=10 又CF=BE=6, ∴BF=4

7.几何证明选讲试题 篇七

一、选择题

1、不等式

2x

3的解集是(2)

3)(0,)

A.(,)B.(

323,0)(0,)C.(,D.(

23,0)

2、设P

Q

RP,Q,R的大小顺序是()A.PQRB.PRQC.QPRD.QRP

3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”

的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4、设x0,y0,A

xy1xy,B

x1x

y1y,则A、B的大小关系()

A.ABB.ABC.ABD.不能确定

5、已知不等式(xy)(

x

11y

则实数a的最大值为)a对任意正实数x,y恒成立,()

A.2B.4C.2D.16

6、不等式352x9的解集为()

A.[2,1)[4,7)B.(2,1](4,7] C.(2,1][4,7)D.(2,1][4,7)

7、已知0a,b1,用反证法证明a(1b),b(1a)不能都大于时,反设正确的41是()

A.a(1b),b(1a)都大于

14,B.a(1b),b(1a)都小于

C.a(1b),b(1a)都大于或等于D.a(1b),b(1a)都小于或等于

8、如果a0,且a1,Mloga(a31),Nloga(a21),那么()A.MNB.MNC.MND.M,N的大小无法确定

9、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=()

A.2k1B.2(2k1)C.

2k1k

1D.

2k2k111、定义f(M)(m,n,p),其中M是△ABC内一点,m、n、p分别是△MBC、

△MCA、△MAB的面积,已知△ABC中,ABAC1

2,x,y),则

BAC30,f(N)(1x

4y的最小值是()

A.8B.9C.16D.1812、设x0,y0,且x2y24,xy4(xy)10,则的最值情况是()

A.有最大值2,最小值2(22)B.有最大值2,最小值0

C.有最大值10,最小值2(22)D.最值不存在二、填空题

13、不等式|23x|7的解集为________________

14、函数y3x546x的最大值为

15、若不等式mx2mx10对一切xR都成立,则m的取值范围是

16、如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则

SOM1N1SOM2N

2=

OMOM

·

ONON

;如图2,若不在同一平面内的射线OP,OQ和OR

上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是

三、解答题

17、解不等式 |x3||x5|

418、已知adbc,求证:(a2b2)(c2d2)(acbd)

219、若x,y都是正实数且x+y>2,用反证法证明:一个成立.

20、设函数f(x)|2x3|2(1)解不等式f(x)3x(2)若关于x的不等式

取值范围

21、已知等式122232n(n1)2

n(n1)1

2(anbnc)

1xy

2与

1yx

2中至少有

f(x)1|xm

m

|的解集为R,求实数m 的求是否存在常数a,b,c使上述等式对一切正整数n都成立?证明你的结论

22、已知函数f(x)log2(ax22x3a)

(1)当a1时,求该函数的定义域和值域;

(2)如果f(x)1在区间[2,3]上恒成立,求实数a的取值范围。

实验班答案

13、{x|x3或x14、3VOP1Q1R115、VOP2Q2R

2

OP1OQ1OR1OP2OQ2OR217、|x3||x5|

4x53x5x

3或或等价于

x3x54x3x54x3x54

解不等式的

18、法一:

x

53x5x3或或

x624x

2即{x|x6或x2}

(ab)(cd)(acbd)

22222

=a2c2b2c2b2d2a2d2a2c2b2d22acbd

=b2c2a2d22acbd(bcad)2 因为adbc所以(bcad)20 所以(a2b2)(c2d2)(acbd)2 法二:

由柯西不等式知,构造两组数

ac

bd

acbd

所以(a2b2)(c2d2)(acbd)2当即adbc时等号成立

因为adbc所以取不到等号所以(a2b2)(c2d2)(acbd)219、假设

1xy1y

都不小于2 x

1yx

2即

1xy

2且

由于x,y为正实数

所以1x2y且1y2x把两式相加2xy2y2x 即2yx这与x+y>2矛盾所以假设不成立 所以

20、解:|2x3|23x

2

2x35x2x

3{x|8x 

32x35xx8

1xy

2与

1yx

2中至少有一个成立

等价于|2x3|5x

2关于x的不等式即

f(x)1|xm

m

|的解集为R

|2x3|11|xm

||xm

m|2

|恒成立

||xm52||m

即 |x而|x

m

恒成立即(|x

32xm

m

|)min2

||xmm||xm

m4|

所以|m2m4|2解得(-,-2][-1,2][3,)

abc24a3

21、把n=1,2,3代入得方程组4a2bc44,解得b11,9a3bc70c10

猜想:等式122232n(n1)2立

n(n1)1

2(3n11n10)

对一切nN都成下面用数学归纳法证明:(1)当n=1时,由上面的探求可知等式成立

(2)假设n=k时等式成立,即122232k(k1)2则

1223k(k1)(k1)(k2)

k(k1)1212

(3k5)(k2)(k1)(k2)

[3(k1)11(k1)10]

k(k1)12

(3k11k10)

k(k1)

(k1)(k2)

(3k11k10)(k1)(k2)[k(3k5)12(k2)]

(k1)(k2)

所以当n=k+1时,等式也成立 综合(1)(2),对nN等式都成立

22、(1)当a1时,f(x)log2(x22x3)由x22x30知定义域为{x|1x3}

设f(x)log而

t

tx2x3

tx2x3(x1)44

log2tlog242值域为(,2]

(2)f(x)1在区间[2,3]上恒成立

即log2(ax22x3a)1在区间[2,3]上恒成立即ax22x3a2在区间[2,3]上恒成立 所以a

22x

x3

22x

设g(x)2

x3

在区间[2,3]上恒成立在区间[2,3]上a(2(x1)(x1)

22xx3)max

2

g(x)

22xx3

2(x1)2



(x1)

2x1

8.高二文科数学几何证明试题 篇八

经典试题:

1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则

EFBC+FG

AD

=.

2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 cm2.

3.(2007广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(2007深圳二模文)如图所示,从圆O外一点P

作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__

5.(2008广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点

D、E,则∠DAC=,线段AE的长为

三、基础训练:

1.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB

经过圆心O,弦CD⊥AB于 点

E,PC=4,PB=8,则CD=________.2.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知

AD= AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(2008东莞调研文、理)如图所示,圆O上一

点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

D C

B

4.(2008韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(2007韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(2008广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N

7.(2007湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(2007湛江一模理)如图,在△ABC中,D D

是AC的中点,E是BD的中点,AE交BC

BF=于F,则

FC

9.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(2008汕头一模理)如图,AB是圆O

直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(2008佛山一模理)如图,AB、CD是圆O的两条弦,C

且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C

B

AD=2,AC= 2,则AB=____

14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=

1PABC,则的值是________.2PB

15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3(2011)

(2011年佛山一模)16.如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________. 17.(湛江市)如图,圆O上一点C在直径AB上的射影为D.AD2,AC2,则AB.

18(广州)如图3,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切, 切点为A,MAB35

则D.19(广州一模)CD是圆O的切线, 切点为C,点A、B在圆O上,BC1,BCD30,则圆O的面积为

A

O

C

B

D

320(韶关)如图,⊙O的半径R5,P是弦BC过P点作⊙O的切线,切点为A,若PC1,PA3,则圆心O到弦BC的距离是。

P

B的点,21(深圳)如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD2,CBCD

22(肇庆一模)如图2,PC、DA为⊙O的 切线,A、C为切点,AB为⊙O的直径,若 DA=2,CDDP=12,则AB=

B

图2C

D

23(东莞)如图,⊙O的割线

PBA过

圆心O,弦CD交PA于点F,且COF∽PDF, PBOA2,则PF

24(惠州)如图,已知⊙O的割线PAB交⊙O于A,B 两点,割线PCD经过圆心,若PA=3,AB=4,PO=5 则⊙O的半径为_____________.25(江门)如图3,PT是圆O的切线,O

D A P

PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.

26((2007湛江一模理)如图1,在△ABC中,D是ACF 图

1BF

E是BD的中点,AE交BC于F,则FC

27(2010天津理科)如图2,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若则

PB1PC1

,,PA2PD

3图

2BC的值为。AD

28如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且 与BC相切于点B,与AC交于点D,连结BD,若BC=51, 则AC=

29如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,O 

D

B

C

已知∠BPA=30,PA=PC=1,则圆O的半径等于.

B

第 28 题图

A30如图1所示,圆O的直径AB6,C为圆周上一点,BC3.

过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D,E,则∠DAC,线段AE的长为.

A

9.几何证明选讲试题 篇九

例12013年上海市黄浦区中考模拟第24题

已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).

(1)求此二次函数的解析式;

(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.

①求正方形的ABCD的面积; ②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.

动感体验 请打开几何画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

请打开超级画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

思路点拨

1.数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD=AB.

2.通过计算∠PAE与∠DPO的正切值,得到∠PAE=∠DPO=∠PDA,从而证明△PAD∽△PEA.

满分解答

(1)将点P(0, 1)、Q(2, -3)分别代入y=-x2+bx+c,得

c1,b0,解得 c1.42b13.

所以该二次函数的解析式为y=-x2+1.

(2)①如图1,设点A的坐标为(x, -x2+1),当四边形ABCD恰为正方形时,AD=AB.

此时yA=2xA. 解方程-x2+1=2x,得x1所以点A

1.因此正方形ABCD的面积等于1)]212

②设OP与AB交于点F,那么PFOPOF11)31)2.

PF所以tanPAE1.

AF又因为tanPDAtanDPO

OD

1,OP

所以∠PAE=∠PDA.

又因为∠P公用,所以△PAD∽△PEA.

图1图

2考点伸展

事实上,对于矩形ABCD,总有结论△PAD∽△PEA.证明如下:

如图2,设点A的坐标为(x, -x2+1),那么PF=OP-OF=1-(-x2+1)=x2.

PFx2

所以tanPAEx.

AFx

又因为tanPDAtanDPO

OD

x,OP

所以∠PAE=∠PDA.因此△PAD∽△PEA.

例22013年江西省中考第24题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:

在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).

①AF=AG=

AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.

2(2)数学思考:

在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;

(3)类比探究:

在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.

1动感体验

请打开几何画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

请打开超级画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

思路点拨

1.本题图形中的线条错综复杂,怎样寻找数量关系和位置关系?最好的建议是按照题意把图形规范、准确地重新画一遍.

2.三个中点M、F、G的作用重大,既能产生中位线,又是直角三角形斜边上的中线. 3.两组中位线构成了平行四边形,由此相等的角都标注出来,还能组合出那些相等的角?

满分解答

(1)填写序号①②③④.

(2)如图4,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形ACE斜边上的高,所以F、G分别是AB、AC的中点.

又已知M是BC的中点,所以MF、MG是△ABC的中位线.

所以MF

1AC,MGAB,MF//AC,MG//AB. 2

2所以∠BFM=∠BAC,∠MGC=∠BAC.

所以∠BFM=∠MGC.所以∠DFM=∠MGE.

因为DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,所以EG

AC,DFAB. 22

所以MF=EG,DF=NG.

所以△DFM≌△MGE.所以DM=ME.

(3)△MDE是等腰直角三角形.

图4图5

考点伸展

第(2)题和第(3)题证明△DFM≌△MGE的思路是相同的,不同的是证明∠DFM=∠MGE的过程有一些不同.

如图4,如图5,∠BFM=∠BAC=∠MGC.

上一篇:劝学朗诵下一篇:落实“两个责任”论述讲稿综述