八年级数学:平行线的判定

2024-08-01

八年级数学:平行线的判定(精选9篇)

1.八年级数学:平行线的判定 篇一

本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习习近平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。

本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。

由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题

2.八年级数学:平行线的判定 篇二

5.2.2 直线平行的判定一

这节课教学的难度在于如何引入第一个判定条件。所以在设计时,利用的是小学用三角板和直尺画平行线的例子,在这个例子中学生很容易发现关键问题:角不变,这样很自然地导入了直线平行的第一个条件。这样又避免了硬性地给出,学生难于理解的现象。通过这个例子可以充分调动学生的学习积极性。将难于解释的问题简单化,收到了很好的效果。这节课的难点在于如何利用判定条件证明,所以在教学中,我以填空题的形式练习学生的证明,学生感觉接收起来比较容易,又巩固了这节课的知识点.

反思成功的原因:第一、教学方法有了创新,采取了互动式教学,对学生来说很新奇。第二、采用填空式方式,将难点分散降低。第三、鼓励每个学生,给每个学生展示自己的机会,调动中下等学生,给他们机会发言。

3.八年级数学:平行线的判定 篇三

班级________姓名________

一.学习目标:

1.能证明平行四边形的性质定理和判定定理;;

2.经历探索、猜想、证明的过程,从中体会探索结论的思考方法,理解对猜想进行证明的必要

性,不断感受合情推理和演绎推理是认识事物的重要途径;.

二.学习重点:平行四边形性质与判定定理的证明及应用;

学习难点:分析与综合的思考方法,发展演绎推理的能力.

三.教学过程

知识回顾:1.的四边形是平行四边形

2.平行四边形的性质①对边; .

③对角线;④ 对称性...

3.(10 荆州)如图,在□ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是.4.(10 西宁)如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么

x的取值范围是5.如图,在□ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为.第3题图第4题图第5题图 ②对角;邻角;.

探索研究1:

你能证明知识回顾第2题的三个性质吗?请尝试证明.已知:.求证:.性质应用:

例1.已知:如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.11若将例1中的“E、F分别是AD、BC的中点”改为“AE=,CF”,BE与DF相等吗?3

3用心爱心专心

例2.已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线与AD、BC分别相交于点E、F.求证:OE=OF.拓展1:S四边形ABEF与S四边形DCEF有何数量关系?并思考:将□ABCD面积等分的直线有什么特征?

拓展2:将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸

方法有种?

拓展4:若将例2中的“过点O的直线与AD、BC分别相交于点E、F.”改为“过点O的直线与

BA,DC的延长线分别相交于点E,F.”请画出图形并判断OE,OF是否还具有上题的结论?

拓展3:(10 本溪)过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是.探索研究2:

问题一 :你能证明“一组对边平行且相等的四边形是平行四边形.”吗?

问题二: 证明:对角线互相平分的四边形是平行四边形.(口答)

问题三:下面三个命题正确吗?如果正确,你能证明吗?如果错误,请你举出反例.①一组对边平行,另一组对边相等的四边形是平行四边形.②一组对边平行,另一组邻角相等的四边形是平行四边形.③一组对边平行,另一组对角相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.问题四:你认为“在四边形ABCD中,如果OA=OC,OB<OD,那么四边形ABCD不是平行四边形”这个结论正确吗?为什么?

分析:假设,那么,这与条件矛盾,所以四边形ABCD平行四边形(“是”or“不是”).重温反证法:先提出与相反的假设,然后由这个“假设”出发推导出的结果,从而证明命题的一定成立.这种证明的方法称为反证法.用心爱心专心

对边 ..对角 ..对角线 ...判定应用: 的四边形是平行四边形

例3.(10晋江)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD....

是平行四边形,并予以证明.(写出一种即可)

关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.

已知:在四边形ABCD中,;

求证:四边形ABCD是平行四边形.

例4.(11 凉山)已知:如图,E、F是□ABCD的对角线AC上的两点,CE=AF.请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.思考:若将“AF=CE”改为下列条件:

1.若BE∥DF,四边形BFDE是平行四边形吗?

2.若BE⊥AC于E,DF⊥AC于F,四边形BFDE是平行四边形吗?

3.若BE=DF,四边形BFDE是平行四边形吗?

例5.(11 宜宾)如图,□ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG.

求证:GF∥HE.

用心爱心专心

课后延伸:

1.在四边形ABCD中,已知AB∥CD,请补充一个条件,使得四边形ABCD是平行

四边形.

2.若A、B、C是不在同一直线的三点,则以这三点为顶点画平行四边形,可画个.

3.(11 泰州)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:

①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.

其中一定能判定这个四边形是平行四边形的条件有()

A.1组B.2组C.3组D.4组

4.(10 恩施)如图,已知,在□ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形

5.(10 东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知

∠BAC=30°,EF⊥AB,垂足为F,边结DF.

⑴试说明AC=EF;

⑵求证:四边形ADFE是平行四边形.

6.(11重庆)如图,在平行四边形 ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:

①AO=BO;②OE=OF; ③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()

A.①②B.②③C.②④D.③④

7.(11威海)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()

A.1:2B.1:3C.2:3D.2:

4.八年级数学:平行线的判定 篇四

学案

【学习目标】

1、A会证明平行四边形的性质定理及其相关结论

2、B.能运用平行四边形的性质定理进行计算与证明

3、C.在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 【学习重、难点】

重点:平行四边形的性质证明表达格式的逻辑性 完整性 精炼性 难点:分析 综合 思考的方法 【情境创设】

从上面的几种特殊四边形的性质中,你能说说它们之间有什么联系与区别吗? 如图AB//AB,BC//BC,CA//CA,图中有______个平行四边形。

【合作交流】

活动

1、上表中平行四边形的性质中,你能证明哪些性质?

'

'

'

活动

2、你认为平行四边形性质中,可以先证明哪一个?为什么?

活动

3、证明定理“平行四边形对角线互相平分”。

【典题选讲】

例1.A.已知,如图,在平行四边形ABCD中,对角线AC、BD相交于点O,求证:AO=CO,BO=DO

A D41 O

BC

由此证明过程,同时也证明了定理“平行四边形对边相等”、“平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:

平行四边形对边相等。

平行四边形对角相等。

平行四边形对角线互相平分。

2、B.证明“夹在两条平行线之间的平行线段相等”

分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已知条件写出证明过程。

3、C.已知:如图,□ ABCD中,E、F分别是CD、AB的中点。求证:

AE=CF

【课堂练习】

1、A.已知:如图,在平行四边形ABCD中,AB=8cm,0BC=10cm,∠C=120,求BC边上的高AH的长;

求平行四边形ABCD的面积D

2.B.若平行四边形ABCD的两条对角线AC与BD相交于O,已知AB=8,BC=6,△AOB的周长为18,求△AOD的周长。

3.C.已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.ADBE

体会】 引导学生自我归纳总结:

1、平行四边形对边相等,对角相等,邻角互补,对角线互相平分。

2、是中心对称图形,两条对角线的交点是对称中心。

5.初一数学平行线的判定练习题 篇五

1、如图,能判定DE∥BC的条件是()A、∠E=∠DCA B、∠DCE=∠E C、∠E=∠CDE D、∠BCE=∠E

2、如图,下列说法正确的是()A、如果∠1=∠2,那么AD∥BC B、如果∠3=∠4,那么AB∥DC C、如果∠3=∠5,那么AD∥BC D、如果∠3=∠5,那么AB∥DC

3、如图,下列条件中,不能判断AD∥BC的是()A、∠1=∠3 B、∠2=∠4 C、∠EAD=∠B D、∠D=∠DCF

6.八年级数学:平行线的判定 篇六

本节课以学生习以为常的“平行光线在室内的投影”为情境引出课题,激起学生强烈的好奇心和求知欲。使学生不知不觉中走入数学王国,经历了将实际问题抽象为数学问题的建模过程实践探究,把学生置于结论的发现过程。

首先,将枯燥的概念教学赋予有趣的实际背景,使教学内容更生动、更鲜活.通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律。再通过对拼出的四边形分类,进一步加深学生对概念本质的理解。

其次,遵循学生学习数学的认知规律,对教材内容进行了重组加工,将教材中平行四边形性质的探究活动完全开放。为学生提供了自主合作探究的舞台,营造了思维驰骋的空间,激发了学生思维创新的火花。变式训练,把学生置于创新思维的深入培养过程。把书中一道命题证明的练习题改编成有趣的实验操作型问题,做到源于教材,活于教材。使学生学会用运动、变化的观点分析问题,从而培养学生思维的严谨性、发散性、灵活性,达到举一反三的作用。最大限度地发挥学生的潜能,活跃思维,培养学生的合作意识、创新精神。反思小结,把学生置于知识系统建立的过程中。这节课的结尾,既有对课堂知识的系统小结,又有对思想方法的高度凝炼,提升学生思维品质,让学生获得可持续发展的动力。板书设计充分体现了本节课的学习要点,给学生留下清晰的记忆。

7.八年级数学:平行线的判定 篇七

(时间:60分钟,满分:100分)

一、选择题(本题共10小题,每小题3分,共30分)

1.下列语句中,是命题的为().

A.延长线段AB到CB.垂线段最短

C.过点O作直线a∥bD.锐角都相等吗

2.下列命题中是真命题的为().

A.两锐角之和为钝角B.两锐角之和为锐角

C.钝角大于它的补角D.锐角大于它的余角

3.“两条直线相交,有且只有一个交点”的题设是().

A.两条直线B.交点

C.两条直线相交D.只有一个交点

4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().

A.相等B.互余或互补

C.互补D.相等或互补

5.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为().

A.45°,45°,90°B.30°,60°,90°

C.25°,25°,130°D.36°,72°,72°

6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,则与∠FCD相等的角有().

A.1个B.2个D.4个

7.下列四个命题中,真命题有().

(1)两条直线被第三条直线所截,内错角相等.

(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个角的余角一定小于这个角的补角.

(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.

A.1个B.2个C.3个D.4个

8.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是().

C.3个

A.∠ADC>∠AEBB.∠ADC=∠AEB

C.∠ADC<∠AEBD.大小关系不能确定

9.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=().

A.50°B.65°C.80°D.95°

10.如图所示,已知AB∥CD,AD和BC相交于点O,若∠A=42°,∠C=58°,则∠AOB的度数为().

A.45°B.60°C.80°D.90°

二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=

__________.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于点F,则∠D=

__________.13.如图所示,AB∥CD,∠1=115°,∠3=140°,则∠2=

__________.14.如果一个三角形三个内角的比是1∶2∶3,那么这个三角形是__________三角形. 15.一个三角形的三个外角的度数比为2∶3∶4,则与此对应的三个内角的比为__________.

16.如图所示,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=65°,则∠BFC=

__________.17.“同角的余角相等”的题设是__________,结论是__________. 18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为__________.

19.如果一个等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于__________.

20.过△ABC的顶点C作AB的垂线,如果该垂线将∠ACB分为40°和20°的两个角,那么∠A,∠B中较大的角的度数是__________.

三、解答题(本大题共5小题,共30分)

21.(5分)如图所示,已知∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.

22.(5分)如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC

.23.(6分)如图所示,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.

24.(6分)如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM

.25.(8分)在△ABC中,BE平分∠ABC,AD为BC边上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.

参考答案

1答案:B 点拨:表判断的语句为命题. 2答案:C 3答案:C

4答案:D 点拨:角的两边分别平行,这两角相等或互补. 5答案:B 点拨:设与它相邻的内角为x°,则这个外角为2x°,于是x+2x=180°,从而得x=60.因为2×60°=120°,120°÷4=30°,180°-60°-30°=90°,所以该三角形的三内角分别为30°,60°,90°.6答案:B

7答案:C 点拨:(1)错误,没有指出两直线平行.

8答案:B 点拨:利用外角等于与它不相邻两内角之和易得. 9答案:C 点拨:∵AD平分∠CAE,∴∠EAD=∠CAD=65° ∴∠EAC=130°.∴∠BAC=50°.∴∠ACD=∠BAC+∠B=80°.10答案:C 点拨:∵AB∥CD,∴∠B=∠C=58°.∴∠AOB=180°-42°-58°=80°.11答案:80° 点拨:∵∠1=∠2,∴直线l1∥l2.∴∠4=∠3=80°.12答案:53°20′ 点拨:∠D=90°-∠DAF=90°-∠B=90°-36°40′=53°20′.13答案:75° 点拨:因为∠AEC=360°-∠1-∠3=360°-115°-140°=105°,所以∠2=75°.14答案:直角 点拨:最大内角为180°×

=90°.6

23=80°,360°×=120°,99

15答案:5∶3∶1 点拨:三个外角的度数分别为360°×360°×

=160°,故三个内角分别为100°,60°,20°,其比为5∶3∶1.9

16答案:122.5°

17答案:两个角是同一个角的余角 这两个角相等 18答案:90° 点拨:由题意知∠1+∠2=

180A180C1

+=180°-(∠A+∠222

C),又∠A+∠C=180°,∴∠1+∠2=90°.∴∠BED=180°-90°=90°

19答案:90° 20答案:70°

21证明:∵AE∥BC,(已知)

∴∠2=∠C,(两直线平行,内错角相等)∠1=∠B.(两直线平行,同位角相等)∵∠1=∠2,(已知)∴∠B=∠C.(等量代换)

∴AB=AC,△ABC是等腰三角形.(等角对等边)22证明:∵BF∥DE,(已知)

∴∠2=∠FBC.(两直线平行,同位角相等)∵∠2=∠1,(已知)

∴∠FBC=∠1.(等量代换)

∴GF∥BC.(内错角相等,两直线平行)

23解:∵AB∥CD,∴∠AEF=∠EFD=62°,∠CFE=180°-∠AEF=118°.又FH平分∠EFD,∴∠EFH=31°.又GF⊥FH,∴∠EFG=90°-31°=59°.∴∠GFC=∠CFE-∠EFG=59°.24证明:∵AB∥CD,(已知)

∴∠AEF=∠CFM.(两直线平行,同位角相等)又∵∠PEA=∠QFC,(已知)

∴∠AEF+∠PEA=∠CFM+∠QFC,(等式性质)即∠PEF=∠QFM.∴PE∥QF.(同位角相等,两直线平行)

8.八年级数学:平行线的判定 篇八

1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()

2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。()

3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()

二.填空题:

1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。

2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。

3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。

4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)

∴ AB∥CD()

又∵∠1+∠2 =180(已知)

∴ AB∥EF()

∴ CD∥EF()

三.选择题:

1.如图⑦,∠D=∠EFC,那么()

A.AD∥BCB.AB∥CD

C.EF∥BCD.AD∥EF

2.如图⑧,判定AB∥CE的理由是()

A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE

3.如图⑨,下列推理错误的是()

A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥b

C.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d

4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()

A.①③B.②④C.①③④D.①②③④

四.完成推理,填写推理依据:

1.如图⑩ ∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()

∵AB∥CD,CD∥EF,∴ AB∥_______()

2.如图⑾ 填空:

(1)∵∠2=∠3(已知)

∴ AB__________()

(2)∵∠1=∠A(已知)

∴__________()

(3)∵∠1=∠D(已知)

∴__________()

(4)∵_______=∠F(已知)

∴AC∥DF()

3.填空。如图,∵AC⊥AB,BD⊥AB(已知)

∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______

∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()

∴∠1+∠3=180°

∴_________()

五.证明题

1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

.已知:如图,求证:EC∥DF.,且

.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

D 图10 F

E B P

Q

D

C

B

A C

7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

9.八年级数学:平行线的判定 篇九

(一)突出重点,实现教学目标

《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

(二)导课自然,成功引入新课

首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

(三)设置有梯度,学生易于接受

在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果,这节课,也有不足的地方:

1、在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。

上一篇:合肥人力资源行业报告下一篇:五年级语文教学设计综合学习六范文