图形的位似课件

2024-07-29

图形的位似课件(共2篇)

1.图形的位似课件 篇一

22.4 图形的位似变换

第2课时 图形在平面直角坐标系中的位似变换

教学目标

1.巩固位似图形及其有关概念.

2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.

3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换. 重点、难点

1.重点:用图形的坐标的变化来表示图形的位似变换.

2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律. 一.创设情境

活动1 教师活动:提出问题:

(1)如图27.3-4(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为1,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现? 3 图27.3-4(2)如图27.3-4(2),△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?

学生活动: 学生小组讨论,共同交流,回答结果. 教师活动:分析:略

解:略

【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.

二、在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示. 活动2 1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;

(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;

1(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.

27.3-6 2.图27.3-6所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?

分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….

小结

1、谈谈你这节课学习的收获.2、课后作业

2.九年级数学《位似图形》教学反思 篇二

塞波中学

陈静宜

初三数学《位似图形》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此教学时我使用几何画板制作了多媒体课件。首先课堂上通过大量丰富的图形,让学生从生活出发认识了位似图形。同时又注重培养学生的数学猜测,推理,验证的能力和习惯,让学生通过大量的图片观察,这样直观的演示学生容易接受,容易理解,效果不错。

在教学过程中,以下问题引起了我的思考:(1)在进行 “位似图形性质”的提出与验证的中,问题设置得太浅则学生没有兴趣,太难又脱离学生实际,如何掌握这个尺度?(2)这节课的教学效果应如何评价?学生通过动手、动脑来得到新知识,但是对于传统的基本知识与基本技能,学生掌握得是否纯熟?我相信,这些问题随着新课程标准的实施与信息技术与数学教学的整合的不断深入,会得到很好的解决。

上一篇:致全市离退休老同志慰问信参考下一篇:农村音乐教学存在的问题调查报告