六年级奥数小组工作总结(共8篇)
1.六年级奥数小组工作总结 篇一
二年级奥数兴趣小组活动计划
靳利平
新学期奥数兴趣班开班了,为了有计划、有目标、更系统地进行教学,特制定本计划。
一、教学宗旨
以培养学生对数学的兴趣、开拓学生的数学思维为宗旨。让学生在轻松、快乐、趣味的氛围中学习数学,系统地训练学生的分析、推理、解决问题的能力。
二、奥班学生基本情况。
奥数共有11人,这些学生在平时的学习中学有余力、基础扎实、热爱思考,对数学具有钻研的精神。
三、教学目标
1、使学生奠定扎实的数学基础,在动手实践、自主探索、合作交流的学习过程中促进数学思维更好地发展,让每一位学生都能走进数学的乐园,享受学习数学所带来的无限乐趣;
2、培养学生分析、推理和应用知识解决实际问题的能力,教给学生多种解决问题的策略;
3、培养学生刻苦钻研、不怕困难的精神。
四、评价机制。
实行课堂评比竞赛,根据课堂表现进行加或扣分,每次课结束后总结并发放奖励卡,奖励卡可在期末兑换奖品。
五、教学内容与时间安排。
2.六年级小升初奥数 篇二
六年级小升初奥数
1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?
解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。所以满足要求的两位数有4个,分别是15、20、30、60。
2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。
A、31 B、39 C、55 D、41
解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。
3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?
解答:方阵最外层每边人数:604+1=16(人)
整个方阵共有学生人数:1616=256(人)
4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?
解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。
5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?
解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)
6、有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?
解答:271+432+153=158(枚)
7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?
解答:(336,252)=(84,252)=84
(84,210)=(84,42)=42所以可以分成42份礼物
苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)
8、正方形操场四周栽了一圈树,每两棵树相隔5米。甲乙二人同时从一个角出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。操场四周一共栽了多少棵树?
解答:由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走。
乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)4=60个间隔,根据植树问题,一共栽了60棵树。
9、有甲乙丙三种货物,若购甲3件,乙7件,丙1件共需315元。若购甲4件,乙10件,丙1件共需420元。现购甲乙丙各一件共需多少元?
解答:设甲、乙、丙每件分别为x、y、z元
3x+7y+z=315
4x+10y+z=420
可知x+3y=105,2x+6y=210,x+y+z=105,即三种货物各一件需要105元。
10、某年一月份有4个星期四、5个星期五,这一年1月4日是星期几?
解答:画一个日历表,从表中马上看出:1月4日星期一。
说明:根据“有五个星期五”,可知从第一个星期五到第五个星期五之间共有29天。31-29=2(天),这多余的2天是在第一个星期五前,还是在第五个星期五之后呢?如果在第一个星期五之前,那就多一个星期四,这与题中条件不符。
小学六年级奥数小升初测试题
1、一个三位数除以43,商是a,余数是b(a、b都是整数)则a+b的值是。
2、上底是10厘米,下底是25厘米的梯形,如果下底减少8厘米,而上底不变,面积就减少84平方厘米,那么原梯形的面积是平方厘米。
3、有甲、乙、丙三个数,甲、乙两数的和是147,丙、乙两数的和是123,甲、丙两数的和是132,则甲数是,乙数是,丙数是。
4、用一个小数减去一个末尾数字不为零的整数,如果给整数添上一个小数点,使它变成小数,差就增加154.44,那么这个整数是。
5、一个表面积为54平方分米的正方体,切成两个完全相等的长方体后,表面积总和是。
6、把一根长3米的长方体木料,平均锯成3段,表面积增加了2.4平方米,这根木料的体积是立方米。
7、有一筐苹果,第一次取出全部的一半多2个,第二次取出余下的一半少2个,筐中还剩20个,筐中原有苹果个。
8、小军期末考试,语文、英语(论坛)、科学三门的平均成绩是78分,数学成绩公布后,四门的平均成绩提高了5分,小军数学考了分。
二、应用题(每题6分,共60分)
1、甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行驶38千米,乙车每小时行驶40千米。乙车先出发两小时后,甲车才出发,甲车行驶多少小时后与乙车相遇?
2、某小队学生参加工厂劳动,平均每人生产76个零件,已知每个人至少做70个,其中一人做了88个,如果不把这个同学计算在内,那么平均每人做74个,这个小队做得最多的同学可以做多少个零件?
3、已知两个自然数的积是5766,它们的公因数是31,求这两个数。
4、把一根长2.4米,宽0.8米,高0.4米的木料锯成体积相等的两份,它的表面积最少增加多少平方米?
5、甲、乙、丙、丁四个数,每次去掉一个数,将其余三个数求平均数,这样算了四次,得到以下四个数:45,60,65,70,求甲、乙、丙、丁四个数的平均数。
6、小明前几次数学测验的平均成绩是84分,这次要考100分才能把平均成绩提高到86分,问这次是第几次测试?
7、小红每分钟行80米,小英每分钟行60米,两人在同一地点同时相背而行,走了三分钟后,小红调头去追小英,追上小英时,两人各行了多少米?
8、张老师找甲、乙、丙三名学生来办公室谈话,甲要10分钟谈完,乙要12分钟谈完,丙要8分钟谈完,怎么样安排三人的谈话顺序,使三人花的总时间最少?最少是几分钟?
小升初面试经典奥数思维题
1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
小升初的奥数题精选
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
考点:列方程解含有两个未知数的应用题;差倍问题。
专题:和倍问题;列方程解应用题。
分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10x﹣x=288,9x=288,x=32;
则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元.点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答
解答:解:45+5×3,=45+15,=60(千克);
答:3箱梨重60千克.点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?
考点:简单的行程问题。
专题:行程问题。
分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.解答:解:4×2÷4
=8÷4,=2(千米);
答:甲每小时比乙快2千米.点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱.据此解答.解答:解:0.6÷[13﹣(13+7)÷2],=0.6÷[13﹣20÷2],=0.6÷3,=0.2(元);
答:每支铅笔0.2元.点评:本题的关键是求出李军给张强0.6元钱,是几支铅笔的价钱.5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
考点:简单的行程问题。
专题:行程问题。
分析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程.解答:解:下午2点是14时.往返用的时间:14﹣8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2,=255(千米);
答:两地相距255千米.点评:解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离.6.学校组织两个课外兴趣小组去郊外活动.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?
考点:追及问题。
专题:行程问题。
分析:第一小组停下来参观果园时间,第二小组多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快(4.5﹣3.5)千米,由此便可求出追赶的时间.解答:解:第一组追赶第二组的路程:
3.5﹣(4.5﹣3.5),=3.5﹣1,=2.5(千米);
第一组追赶第二组所用时间:
2.5÷(4.5﹣3.5),=2.5÷1,=2.5(小时);
答:第一组2.5小时能追上第二小组.点评:此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
考点:列方程解含有两个未知数的应用题;和倍问题。
专题:简单应用题和一般复合应用题;和倍问题。
分析:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题.解答:解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,根据题意可得方程:
x+4x﹣5=32.5×2,5x=70,x=14,则甲仓库存粮:14×4﹣5=51(吨),答:甲仓库有51吨,乙仓库有14吨.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?
考点:简单的工程问题。
专题:工程问题。
分析:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.解答:解:乙每天修的米数:
(400﹣10×4)÷(4+5),=(400﹣40)÷9,=360÷9,=40(米);
甲乙两队每天共修的米数:
40×2+10=80+10=90(米);
答:两队每天修90米.点评:本题不能直接求出甲乙的工作效率和,要采取假设法,假设甲乙的工作效率相同,找出由此引起的工作量的变化,再根据工作效率=工作量÷工作时间求解.9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
考点:简单的等量代换问题。
专题:简单应用题和一般复合应用题。
分析:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价.解答:解:每把椅子的价钱:
(455﹣30×6)÷(6+5),=(455﹣180)÷11,=275÷11,=25(元);
每张桌子的价钱:
25+30=55(元);
答:每张桌子55元,每把椅子25元.点评:解答此题的关键是根据“每张桌子比每把椅子贵30元,”得出总价里面减去每张桌子多的30元,剩下的就相当于是(6+5)=11把椅子的价格,从而求出椅子的价格即可解答问题.10.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
考点:简单的行程问题。
专题:行程问题。
分析:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.解答:解:(75+65)×[40÷(75﹣65)],=140×[40÷10],=140×4,=560(千米);
答:甲乙两地相距560千米.点评:解题的关键是理解用快车比慢车多行的路程÷两车的速度差=两车行驶的时间,再根据速度和×两车行驶的时间求出两地的距离.11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?
考点:盈亏问题。
专题:简单应用题和一般复合应用题。
分析:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,则损坏一个就少收运费100+20元,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.解答:解:(20×250﹣4400)÷(100+20),=600÷120,=5(箱)
答:损坏了5箱.点评:明确损坏一个就少收运费100+20元是完成本题的关键.12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
考点:追及问题。
专题:行程问题。
分析:因第一中队早出发2小时比第二中队先行4×2千米,即此时两个中队之间的距离是8千米,而每小时第二中队比第一中队多行(12﹣4)千米,由此即可求第二中队追上第一中队的时间.解答:解:4×2÷(12﹣4);
=4×2÷8;
=1(时);
答:第二中队1小时能追上第一中队.点评:本题体现了追及问题的基本关系式:路程差÷速度差=追及时间.13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天.这堆煤有多少千克?
考点:有关计划与实际比较的三步应用题。
专题:简单应用题和一般复合应用题。
分析:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量.解答:解:原计划烧煤天数:
(1500+1000)÷(1500﹣1000),=2500÷500,=5(天);
这堆煤的重量:
1500×(5﹣1),=1500×4,=6000(千克);
答:这堆煤有6000千克.点评:解答此题的关键是求原计划烧的天数,用前后烧煤总数相差除以每天烧煤量之差即原计划烧的天数,进而求出这堆煤的数
3.挑战奥数六年级作文 篇三
又是一个枯燥的星期六,我面对“茫茫题海”而且是目瞪口呆,但为了能上个好的初中,只得硬起头皮去“顽强面对”。
解出了一道道的`基本思维题便登上了顶峰——奥数训练营!我几乎把长了少许乌毛的头给抓秃了,绞尽了脑汁才解出了几道较为容易的题。
写了一会,头快要爆炸了,但有任务在身我哪敢松懈。写着写着,就又来了一道难题。——将10ML的酒倒入一个圆锥形的容器中,酒深是容器高的二分之一。请问再添入多少ML的酒,可装满此容器?
“子啊,带我走吧!”我呻吟道。但并没有奇迹。唉,靠人不如靠自己,靠天靠地不算好汉。我提提精神,一把抓起笔在布满字的草纸上算了起来。
4.六年级奥数教学计划 篇四
六年级奥数教学计划1
一、指导思想:
当学生接受一定的课本数学知识后已不满足课内的学习,希望通过丰富的课外活动来扩大自己的视野、拓宽知识、发展特长。作为一名数学教师应积极组织各种数学课外活动为学生创造一个自由、宽松、生动活泼的学习环境,它比课堂教学更具开放性,更有利于因材施教。开展丰富的数学笔记活动,激发学生的兴趣为着眼点,使学生喜欢活动,乐意参与。无论是活动的目标设计、题目拟定、内容安排、形式选择、效果评价都应体现趣味性。趣味性是针对活动课的内容和方法而言,以吸引学生参与,使学生在活动过程中寓学于乐、寓智于趣,生动活泼主动地获取知识。让学生一个良好的学习环境中培养了学生健康的学习情感,创设了一个敢于竞争、善于竞争的学习氛围,培养了学生忠诚、坚定、自信的意志品格。
二、活动目标:
通过开设数学奥数社团活动的形式,激发学生稳定而有效的数学学习兴趣,产生积极的内部动机,培养思维创新能力。更重要的是有利于培养学生数学学习的良好习惯,全面提升学生的数学素养。
三、活动要点:
认真组建数学奥数社团,带领学生走进丰富的数学世界。
1、开学初组织成立数学奥数社团。制定兴趣小组活动计划,落实详尽的兴趣小组活动方案,体现小组的特色。
2、奥数社团活动定课程,为开展广泛的数学活动提供切实素材。把学生的数学活动落到实处,为学生安排一定的时间,每周的活动时间,教师专门指导。力求做到周周有内容,有目标。
3、开展读报和阅读数学书籍活动。指导学生广泛阅读,让学生享受读报的快乐。要求有条件的学生自行购买数学书籍,课外阅读的书籍还可以向学校图书馆借阅。教师在学生开展阅读前都搜集了一些书籍中的背景资料介绍给学生。教材中的思考题、你知道吗等内容教师都在数学兴趣活动课上组织学生阅读并指导,并适当介绍拓展些的知识,鼓励学生自行阅读、独立思考等。利用生活中的数学资源,让学生体验数学的实用价值。生活中处处有数学,各种媒体中数学内容也非常丰富。一方面教师要广泛收集适合于学生的数学资料、信息,一方面要求学生针对学习内容收集生活中的各种数学问题,旅游中购买门票的数学问题等等,然后组织学生在课堂中讨论研究收集到的数学问题和信息,这样既拓展了教材内容,又让学生充分体验了数学的应用价值,同时又增强了学生学好数学的信心!
4、开展丰富多彩的活动,为“数学兴趣活动”提供动力支撑。在正常进行数学兴趣活动的同时,开展一定的主题活动把数学课外活动推向高潮。
四、活动安排
1-----2周3—— 4周5—— 6周7—— 8周9----10周11——12周13——14周15——16周17——18周
代数的初步认识
有理数及其运算一元一次方程与一元一次方程组
应用题三角形
一元一次不等式和一元一次不等式组整式的运算
平行线和相交线生活中的数据
六年级奥数教学计划2
一、指导思想
奥数活动是一项全面培养学生能力、尤其是数学兴趣的活动。现在越来越多的人已经意识到学习奥数的重要性,奥数曾经一度被人误认为是孩子的负担,而今却变成了提高孩子思考能力,改善孩子思维方式的好武器。应当说,这样的认识对小学奥数教学的健康发展和小学数学教学的健康发展都是有利的。基于这样的认识,在奥数不至于冲击正常的数学教学秩序的情况下,奥数教学可以提升小学生的品质和提高教师的教学水平的积极作用。
二、活动目标
1、以培养学生的数学思想为目标所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。在小学阶段,数学思想主要有符号思想、集合思想、类比思想、分类思想、替换思想、方程与函数思想、数形结合思想、转化思想、统筹及最优化思想、建模思想等。《小学数学新课程标准》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,小学奥数培训应该着重数学思想的培养,应该以这些思想为目标进行奥数内容的选择和培训。
2、以发展学生的.数学思维能力为基础
思维活动的强弱,决定一个人的思维品质。而数学思维能力则是指人们从事数学活动时所必需的各种能力的综合,其中数学思维能力是核心。数学教学的核心是促进学生思维的发展。奥数培训必须以发展学生的数学思维为基础,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。教师要依据学生的思维特征、认知规律,让学生多动脑、动手、动口,给学生主动研究、探索、分析、归纳、推理和判断等数学活动的时空,学会数学的逻辑性、有序性、最优化、假设与验证等思维方法,从而发展学生的数学思维能力,为以后更高阶段的学习奠定坚实的基础。
3、以提高学生的学习兴趣为出发点
兴趣是人对客观事物的一种积极的认识,在数学教学中,兴趣是学生学习的强大动力。必须通过许多途径去提高学生的学习兴趣,以激发他们的学习动机。因而奥数培训就要创造机会让孩子体验成功感,感受数学学习的乐趣。其次可以通过一些生活或数学小故事,让孩子感受到奥数与生活密切相关,奥数能解决生活中的实际问题,增长人们的智慧。另外,奥数培训还要讲究适时地引导点拨。由于奥数学习的内容有一定难度,学生在找不到解题方法时会感到沮丧,容易产生厌学的情绪。这个时候老师就要及时地帮助他们,通过一些巧妙的方法演算或点拨,让孩子领悟到数学的奥妙,体验到成功的莫大喜悦,从而坚定学习信念。
4、加强学生非智力因素的培养奥数的学习除了对智力、思维发展有很多促进作用以外,对孩子们的非智力因素也有很大帮助。由于小学奥数的培训对象年龄小,意志品质等较差,对非智力因素的培养效果更明显。同时,非智力因素也很大程度上影响奥数学习的成效。所以奥数教学要重视学生的学习习惯(包括审题、验算等)、学习态度(细心、专心等)和意志力的培养,使学生在奥数学习中获得良好心理品质的发展。
三、实施措施
(一)坚持系统科学的分阶段训练
小学阶段是少年儿童智力,特别是逻辑思维发展非常重要的启蒙阶段。根据小学不同阶段学生的特点和思维规律,系统科学设计教法,能最大限度开发少年儿童智力。
1、低年级培训应以兴趣培养为前提。低年级的孩子以直观形象思维为主,兴趣容易转移,情绪波动大,对教师认同度高,喜欢口头表扬。针对低年级学生的思维特点,奥数培训的题型选择应以动手操作的为主,设计的问题能联系实际的具体事例,培训中要学生明白通过探索可以尝试到成功,并能觉得奥数学习真有用。例如:认识图形与物体,比较物体的大小、多少、长短,数物体,拼图形等让学生认识一些事物的特性或联系,培养一定的空间能力。这些动手操作的学习内容,学生学习起来兴趣盎然,同时又发展了学生的思维能力、观察能力。建议有条件的学校能够从—年级开始每周有一节奥数培训课进行思维训练。如果没条件的学校可以让任课教师,每天数学课后安排一道思维训练题,也能很好地激发学生兴趣。低年级孩子情感上易引导,喜好红花之类的奖励,教师可注意及时表扬和奖励,就能够吸引孩子,培养兴趣。低年级的学生往往对思维训练有一种莫名的冲动与喜爱,教师一定要考虑题目的难易适度,让学生易接受。教学方法上考虑使用现代多媒体技术进行对比讲解,能够让学生明白易懂,且兴趣大增。另外值得注意的是低年级学生的概念认识不足,老师要适当地进行知识的反复呈现。
2、中年级培训应以习惯培养为基础。小学中年级的学生开始出现抽象逻辑思维,情绪开始稳定,有一定的自控能力。建议教师按年级不同进行分级训练,即同一内容可以选择不同难度循环安排教学。教师可以选择速算和巧算、数字谜及趣味算式、和差倍数应用题、还原问题、逻辑推理等内容对学生进行系统训练。如在和差倍数应用题训练中,关键在于掌握题目中的数量关系,从已知条件寻求它们之间的内在联系,注意各种量之间的转换,然后统一到所求量上来。在教学中,要培养学生认真分析,细心观察,多方求证,小心验算的学习习惯,教会学生一些画图,抽取条件,列表等的数学方法,为今后高年级的学习打下基础。同时适当加强意志力培养,逐步在学习中树立不轻言放弃的信念,大胆假设。培训时间安排上要保证每周有一节课的时间,可以是学校的校本课程时间或是地方课程。如在学校课程中安排不上的,建议在学生课外活动课中开设思维训练课程,保证教学的时间和课程内容。
3、高年级培训应以思维能力发展为重点。由于高年级学生的抽象思维能力进一步发展,求知欲发展快。因此内容的选择上更多地考虑综合题型的训练或是变式训练,让他们更好地了解知识间的联系,形成较为完整的知识网络或系统,着重帮助他们建立数学模型,加大空间思维的训练。在高年级的奥数教学中,由于出现一些抽象的概念,往往使学生在学习数学时或产生困难,或不以为然,丧失兴趣。教师一定要及时鼓励并帮助其建立一些数学抽象知识和运算的具体形象或模型,做到数学与生活的沟通,数学与生活实际的结合,为孩子创设学习数学的生活情境,孩子们就会感受到数学就在我的身边,自然而然的产生一种想了解数学、研究数学的愿望,继而喜欢数学。
(二)培养学生良好的思维习惯。
奥数学习中良好的思维习惯是一个主要内容,要真正发展起数学的思想,具有“条条大路通罗马”的开阔思路,会运用不同的方法解题,能运用字母、图形、数字等建立数学模型,尝试验证结论的合理性和准确性,使学生学会了概括总结,培养了转化的数学思想。
(三)注意让奥数学习与实际生活的联系
5.六年级奥数测试题 篇五
1. 三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。
2. 已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,问A最小是几?
3. 把自然数依次排成以下数阵:
1,2,4,7,…
3,5,8,…
6,9,…
10,…
…
现规定横为行,纵为列。求
(1) 第10行第5列排的是哪一个数?
(2) 第5行第10列排的是哪一个数?
(3) 排在第几行第几列?
4. 三个质数的乘积恰好等于它们的.和的11倍,求这三个质数。
5. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。
6. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4根彩旗没动,问现在的彩旗间隔多少米?
7. 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?
6.小学六年级奥数教案几何类 篇六
简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把
这些图形画在方格纸上,不但容易识别,而且容易计算.上面左图是边长为 4的正方形,它的面积是 4×4= 16(格);右图是 3×5的长方形,它的面积是 3×5= 15(格).上面左图是一个锐角三角形,它的底是5,高是4,面积是 5×4÷2= 10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角
形的高线一样长,钝角三角形的高线有可能在三角形的外面.上面左图是一个平行四边形,底是5,高是3,它的面积是 5× 3= 15(格);右图是一个梯形,上底是 4,下底是7,高是4,它的面积是
(4+7)×4÷2=22(格).上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.一、三角形的面积
用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:
三角形面积= 底×高÷2.这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用.例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?
解:三角形ABD与三角形ADC的高相同.三角形ABD面积=4×高÷2.三角形 ADC面积=2×高÷2.因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2 右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.解: BC= 2+ 4+ 2= 8.三角形 ABC面积= 8× 4÷2=16.我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高相同,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.三角形 DFE面积= 16÷4=4.例3 右图中长方形的长是20,宽是12,求它的内部阴影部分面积.解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与BE一样长.而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是
FE×BE÷2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的一半.因此所有阴影的面积是长方形ABCD面积的一半,也就是
20×12÷2=120.通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成.因此所有这些直角三角形(阴影部分)的面积之和是长方形ABCD面积的的一半.例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?
解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此
面积=4×10÷2= 20.对三角形 ADC来说,DC是底边,高是 8,因此
面积=7×8÷2=28.四边形 ABCD面积= 20+ 28= 48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.例5 在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF的面积.解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积
三角形 ABE面积=3×6×2= 9.三角形 BCF面积= 6×(6-2)÷2= 12.三角形 DEF面积=2×(6-3)÷2= 3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:
三角形 BEF面积=6×6-9-12-3=12.例6 在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABMD(阴影部分)的面积.解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形DCE与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形 DCE的面积是 7×2÷2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE面积是 7÷2=3.5.因为 BE= 8是 CE= 2的 4倍,三角形 MBE与三角形MCE高一样,因此三角形MBE面积是
3.5×4=14.长方形 ABCD面积=7×(8+2)=70.四边形 ABMD面积=70-7-14= 49.二、有关正方形的问题
先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长,这样的直角三角形,就叫做等腰直角三角形.它有一个直角(90度),还有两个角都是45度,通常在一副三角尺中.有一个就是等腰直角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图(a).四个一样的等腰直角三角形,也可以拼成一个正方形,如图(b).一个等腰直角三角形,当知道它的直角边长,从图(a)知,它的面积是
直角边长的平方÷2.当知道它的斜边长,从图(b)知,它的面积是
斜边的平方÷4
例7 右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半,第一个等腰直角三角形的面积是8×8÷2=32.这一个图形的面积是
32+16+ 8+ 4 + 2+1= 63.例8 如右图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?
解:为了说明的方便,在图上标上英文字母 D,E,F,G.三角形ABC的面积=2×2÷2=2.三角形ABC,ADE,EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形 ADE面积=ABC面积×2=4.三角形EFG的斜边与三角形ABC的直角边一样长.因此三角形EFG面积=ABC面积÷2=1.阴影部分的总面积是 4+1=5.例9 如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角 B和D是直角,角A是45°.求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE,切掉一个等腰直角三角形BCE.因为
A是45°,角D是90°,角E是
180°-45°-90°= 45°,所以ADE是等腰直角三角形,BCE也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即
7×7÷2-3×3÷2=20.这是1994小学数学奥林匹克决赛试题.原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多.但是有一些同学,用直线AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了.这样做,角 A是 45°,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何,千万不要随便对图形下结论.我们应该从题目中已有的条件作为思考的线索.有45°和直角,你应首先考虑等腰直角三角形.现在我们转向正方形的问题.例10 在右图 11×15的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?
解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和.长-宽 =15-11=4
是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此
中间小正方形边长=11-4×2=3.中间小正方形面积=3×3= 9.如果把这一图形,画在方格纸上,就一目了然了.例11 从一块正方形土地中,划出一块宽为1米的长方形土地(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.解:剩下的长方形土地,我们已知道
长-宽=1(米).还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?
如果能求出,那么与上面“差”的算式就形成和差问题了.我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下图就拼成一个
大正方形,这个正方形的边长,恰好是长方形的长与宽之和.可是这个大正方形的中间还有一个空洞.它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米.现在,我们就可以算出大正方形面积:
15.75×4+1×1= 64(平方米).64是8×8,大正方形边长是 8米,也就是说长方形的 长+宽=8(米).因此 长=(8+1)÷2= 4.5(米).宽=8-4.5=3.5(米).那么划出的长方形面积是
4.5×1=4.5(平方米).例12 如右图.正方形ABCD与正方形EFGC并放在一起.已知小正方形EFGC的边长是6,求三角形AEG(阴影部分)的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此
四边形AECD面积=(小正方形边长+大正方形边长)×大正方形边长÷2
三角形ADG是直角三角形,它的一条直角边长DG=(小正方形边长+大正方形边长),因此
三角形ADG面积=(小正方形边长+大正方形边长)×大正方形边长÷2.四边形 AECD与三角形 ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH与三角形HCG面积相等,都加上三角形EHG面积后,就有
阴影部分面积=三角形ECG面积
=小正方形面积的一半
= 6×6÷2=18.十分有趣的是,影阴部分面积,只与小正方形边长有关,而与大正方形边长却没有关系.三、其他的面积
这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会.例13 画在方格纸上的一个用粗线围成的图形(如右图),求它的面积.解:直接计算粗线围成的面积是困难的,我们通过扣除周围正方形和直角三角形来计算.周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围成面积是
4×4-3-5-1.5=6.5.例6与本题在解题思路上是完全类同的.例14 下图中 ABCD是 6×8的长方形,AF长是4,求阴影部分三角形AEF的面积.解:三角形AEF中,我们知道一边AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形AEB,底边AB,就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出.三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积.因此
三角形AEF面积=(三角形 AEB面积)-(三角形 AFB面积)
=8×6÷2-4×8÷2
= 8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的部分也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15 下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?
解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底×高.从图上可以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与 10×2的长方形面积相等.可以设想,把这个平行四边形换成 10×2的长方形,再把横竖两条都移至边上(如前页右图),草地部分面积(阴影部分)还是与原来一样大小,因此
草地面积=(16-2)×(10-2)= 112.例16 右图是两个相同的直角三角形叠在一起,求阴影部分的面积.解:实际上,阴影部分是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影部分与三角形BCE合在一起,就是原直角三角形.你是否看出,ABCD也是梯形,它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影部分面积一样大.梯形ABCD的上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影部分面积等于
梯形 ABCD面积=(8+8-3)×5÷2= 32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等积变形.要想有这种“换”的本领,首先要提高对图形的观察能力.例17 下图是两个直角三角形叠放在一起形成的图形.已知 AF,FE,EC都等于3,CB,BD都等于 4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的.三角形ABC面积=(3+3+3)×4÷2=18.三角形CDE面积=(4+4)× 3÷2=12.这两个直角三角形有一个重叠部分--四边形BCEG,只要减去这个重叠部分,所求图形的面积立即可以得出.因为 AF= FE= EC=3,所以 AGF,FGE,EGC是三个面积相等的三角形.因为CB=BD=4,所以CGB,BGD是两个面积相等的三角形.2×三角形DEC面积
= 2×2×(三角形 GBC面积)+2×(三角形 GCE面积).三角形ABC面积
=(三角形 GBC面积)+3×(三角形GCE面积).四边形BCEG面积
=(三角形GBC面积)+(三角形GCE面积)
=(2×12+18)÷5
=8.4.所求图形面积=12+ 18-8.4=21.6.例18 如下页左图,ABCG是4×7长方形,DEFG是 2×10长方形.求三角形 BCM与三角形 DEM面积之差.解:三角形BCM与非阴影部分合起来是梯形ABEF.三角形DEM与非阴影部分合起来是两个长方形的和.(三角形BCM面积)-(三角形DEM面积)
=(梯形ABEF面积)-(两个长方形面积之和
=(7+10)×(4+2)÷2-(4×7 + 2×10)
=3.例19 上右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?
解:所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为13,49,35这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分,因此
(三角形 ABC面积)+(三角形CDE面积)+(13+49+35)
=(长方形面积)+(阴影部分面积).三角形ABC,底是长方形的长,高是长方形的宽;三角形CDE,底是长方形的宽,高是长方形的长.因此,三角形ABC面积,与三角形CDE面积,都是长方形面积的一半,就有
阴影部分面积=13 + 49+ 35= 97.1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。每小时60千米的速度行驶了几小时?
答案:1.解:设每小时60千米的速度行驶了x小时。
60x+(60+15)(7-x)=465
60x+525-75x=465
525-15x=465
15x=60
x=4
答:每小时60千米的速度行驶了4小时。
某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
解:设男生x人,女生(42-x)人。
3x-2(42-x)=56
3x+2x-84=56
5x=140
7.六年级奥数题及答案 篇七
据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约 5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。
六年级
1.有名学生参加竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错1题扣1分。那么,所有参赛学生的得分总和是奇数还是偶数?
2.有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的`底面。如果这么长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原来的表面积减少144平方厘米,那么n等于多少?
六年级答案
1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。
2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:
36×(4n+2)=3096
144n+72=3096
n=21
8.六年级奥数题及答案(全面) 篇八
1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?
2.3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
4.5.6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天? 小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个? 由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗? 电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
7.8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?
9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少
10.一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?
11.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?
13.甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?
14.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比
15.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?
16.李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
17.17.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?
18.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
19.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?
20.建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
21.自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几
22.甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?
23.一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?
24.学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?
25.学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?
26.小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?
27.小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?
28.甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?
29.在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
30.某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?
31.甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
32.某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?
33.某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
34.两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?
35.学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路 36.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
37.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
38.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
39.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
40.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
42.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
43.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
44.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
45.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
46.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
47.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...48.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?
49.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 50.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.51.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
52.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.53.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.54.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.55.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
56.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中
57.若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种
58.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 59.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 60.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
61.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
62.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
63.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
64.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
65.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
66.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
67.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
68.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
69.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
70.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
71.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
72.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
73.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
74.从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
75.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
76.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
77..小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
【六年级奥数小组工作总结】推荐阅读:
六年级奥数计算综合06-30
六年级小升初奥数10-26
六年级二进制奥数训练11-07
三年级奥数教学总结07-22
四年级奥数09-15
五年级奥数教案上册06-17
二年级奥数时分秒07-12
四年级奥数经典100题06-19
小学一年级奥数天天练08-06
五年级奥数学习方法08-16