解题课教案初中数学

2024-11-14

解题课教案初中数学(通用9篇)

1.解题课教案初中数学 篇一

2.4 有理数的加法(优质课教案)

1.经历探索有理数加法法则的过程,理解有理数的加法法则。 2.能熟练进行整数加法运算。 二、教学重点、难点

1.有理数的加法法则 2.异号两数相加 三、教学思路

通过教师的引导,使学生能够对有理数的加法进行一定的分类,从而进一步归纳出有理数的加法法则。 四、教学过程

教 师 活 动学 生 活 动

创设情景问题,引入课题

(1)随着我们认知能力的提升,可以知道,数学是来源于生活,又最终运用到生活中去的一门学科,数学概念的发展就是一个例子。我们引入具有相反意义的量,将数的概念延展到有理数,通过前面的学习易知:要确定一个数,一是符号,二是绝对性

(2)出示幻灯片:我班足球队,第一场比赛赢了1个球,第二场比赛输了1个球,问我班在这两场比赛的净胜球数是多少?答:我班足球队两场比赛的净胜球数是0

(3)我们已经学了用正、负数表示具有相反意义的量,所以一般情况下,遇到具有相反意义的量时,用正、负数比较恰当,当然,方法并不惟一。第一场赢一个记为“+1”,第二场输一个记为“-1”,这时该队的净胜球数为:(+1)+(-1)=0,若该队第一场比赛输1球,第二场比赛赢1球,那么该队这两场比赛的净胜球数是多少?用式子怎样表示?还是零,用式子表示为(-1)+(+1)=0

(4)同学们能否再举出一些生活中具有相反意义的量的加法应用题呢?大家可以开动脑筋想一想学生举例

(5)将学生的例题列出式子写在黑板的一侧略

(6)引出课题:有理数的加法(1)

讲授新课

(1)我们用1个 表示+1,用1个 表示-1,表示0,同样 也表示0,下面我们用摆图的办法来计算 2+3 (-2)+(-3)

下面让一位同学上黑板通过摆图计算(-3)+2, 3+(-2)

学生摆出

(2)很好,谁还能通过摆图计算(-4)+4,(-3)+0学生讲,教师摆

(3)通过摆图,移动可以计算有理数的加法,除此之外,还可以用什么来表示加法运算过程学生回答:数轴

(4)大家开始画数轴,规定以原点为起点,向东为正方向,则向东走一个单位记为“+1”,向西走一个单位记为“-1”。用数轴分别表示出上述六个式子的运算过程。学生一边画,教师一边演示

(5)前面谈到:一个有理数是由符号和绝对值确定的,那么两个有理数相加,和的符号怎么确定?和的绝对值如何确定呢?逐步在教师的引导下提出有理数的加法法则

(6)归纳出有理数的加法法则 1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。有理数加法运算的步骤:(1)确定结果的符号;(2)再进行绝对值的加减。

(7)讲评例题 1、(-15)+5 2、17+6 3、(-8)+18 4、(-4)+(-8) 5、(-9)+2

课堂练习计算 1、(-25)+(-7) 2、(-13)+5 3、(-23)+0 4、45+(-45)学生练

回顾小结有理数的加法法则

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。 有理数加法运算的步骤:(1)确定结果的符号;(2)再进行绝对值的加减。

作业课本第48页,习题2、4

五、教学设计说明

考虑到本节内容概念性较强,采取通过学生熟悉的情景问题来导入有理数加法法则,学生易于接受。

在教学设计时,注重了学生的尝试和探究,如对有理数加法法则的归纳,学生列举若干实例进行分析、探究,画数轴时的动手尝试,小结时的自我概括和归纳等。

在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,画图象时的示范,对关键之处的启发、点拨和讲解,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。

2.解题课教案初中数学 篇二

在习题练习的环节,存在着几点问题:

(1)就题练题,缺少拓展性训练。个别教师在上习题课时,仅仅布置课本上原有的习题,而在讲评过程中也仅仅是照本宣科的读答案或纠错。这种习题课内容重点不明、层次不清,因为缺少拓展性训练,学生只会做死题,思维僵硬,对知识点的理解停留在表面。

(2)认识不足,缺乏对错误资源的有效利用。学生在做题过程中不可避免的出现各种错误,然而这些错误资源没有得到应有的重视和利用。对于学生所犯的错误,教师的讲解仅在“纠错”初级层面,缺乏对出错原因、发生频率、表现形式进行研究和总结。部分教师虽然有对错误资源进行收集、分类、整理和利用,但却不能做到持之以恒。

因为这些问题的存在,学生对知识的理解不够深入和全面,大脑不能得到充分的锻炼,思维发展受到了限制。笔者总结多年的教学经验,提出了以下几点对策。

一、针对练习有所拓展,渗透数学思想方法

重复的模仿性练习只能让学生单纯的记住数学知识和问题答案,却不能渗透数学思想方法,帮助完善学生的思维方式。只有对练习内容作适当且科学的拓展练习,学生的思维才能得到训练。练习应当分为几个层次:

(1)模仿练习:即让学生巩固基本的知识和技能。以人教版小学二年级数学的“长度单位”为例,为了让学生对厘米、分米等长度单位产生深刻的印象。则可以让学生用尺子测量身边物体长度,如橡皮、铅笔盒、课桌等。这样,通过大量的练习,学生能准确区分厘米、分米等不同的长度单位以及之间的换算关系,并对身边物体的长度产生基本概念。

(2)变式练习:即让学生在学习知识的同时训练思维方式。变式练习主要能帮助学生培养举一反三、逆向思考的思维能力。除此之外,变式练习可以给学生渗透数学思想方法,为学生以后的数学学习打下基础。例如给出算式“8-△>5”,让学生给出符合要求的答案。教师可适当引导学生更深入的思考,如“:△里面最多可以填几个数?最大的数是多少?”这种练习不仅能拓展学生的思维,还可以给学生初步渗透符号化思想,为以后方程的学习打下基础。

(3)实践练习:即学生从基本数学知识出发自主解决问题。数学来自于生活,也应服务于生活。因此,除了让学生进行单纯的数字练习,在习题课上应当适当给出实际问题,让学生用所学的知识去解决实际问题,体会数学与生活的紧密联系。如在“100以内的加法和减法”单元,给出问题:“某一学校组织学生春游,一共有两辆车,每辆车可以坐60人,一年级的两个班分别有34人、28人,二年级的两个班分别有32人、26人,问怎么安排坐车?”这个问题同时涉及到加法运算和减法运算,难度比普通的加减法大,学生在解决问题的过程中通过积极思考、相互交流,探讨出了问题的答案。

二、合理利用错误资源,在错误中学习知识

在练习过程中,学生犯错误在所难免。错题体现出学生掌握知识的难点,如果这些错误不能彻底解决,学生则可能会再犯。对于习题课上出现的错误,教师应当重视起来,充分认识到产生错误的根本原因,在讲解过程中注意引导学生对相关知识点的再探究,并从不同的角度再认识,将错误变成宝贵的学习资源。

如何合理利用错误,首先应当充分认识错误,如在“混合运算”单元,给出算式(22+29×2)÷4,正确答案为20,但是部分学生将算式当成22+29×2÷4,以致算不出结果。其实出错的原因并不在于没有掌握加减法和乘除法的混合运算法则,而是没有充分意识到括号的存在对运算顺序的影响。对于相似的错误,教师应当高度重视,挖掘原因并将其作为全班学习的重点资料。其次,作为教师应当善于利用错误,错误不仅能激发学生自主探究,加深对知识的理解,还能为教师的教学质量提供反馈结果,为教学方向的调整提供思路。此外,对于教学上的易错点,教师则可以利用习题课的机会精心设计错误,挖“陷阱”让学生跳。这样,学生学习的薄弱环节被充分暴露,学生能深刻认识到错误所在,提高对相应知识点的理解。

三、互动式讲评习题,让学生参与解析过程

在传统教学中,学生做完练习题后,教师针对出现的问题给出解析,基本是“我主讲,你主听”的形式,讲评过程基本是教师的独奏。事实上,学生犯错的原因多种多样,有可能是计算错误,也有可能是解题思路错误。因此,在讲解过程中,教师应当尊重学生的思维过程,肯定其中的可取之处,指出不足之处,让讲评环节变成师生、生生交流的平台。在这个平台上,学生有机会参与解析过程,思维处于活跃的状态,更容易对相关知识产生深刻的印象。

如针对“周长”一节,给出习题:“一个长方形花坛的长是5米,宽是3米。这个花坛的周长是多少米?”同时,教师指定三位学生上台写出解题过程。结果三位学生给了不同的解题过程:第一位学生:5×2+3×2=10+6=16;第二位学生:5+3×2=11;第三位学生:(5+3)×2=16。针对三种不同的解题过程和结果,让每位学生分别介绍了自己的想法和计算过程,结果发现第一位学生和第三位学生解题思路不同但结果相同,而第二位学生和第三位学生解题思路相同但由于计算出错导致结果不同。通过多位学生的互动,大家对该题目的理解更为深刻,对周长的计算方法也更加了解。

总之,我们应当充分认识到开展习题课的重要意义,掌握开展习题课的科学策略。同时,要通过习题课的开展,充分开发学生的大脑,发展学生的思维,提高学生的解题才能,让他们得到全面的发展。

摘要:在教学环节中,学与练是缺一不可的两个重点。在学习之外,开展习题课,让学生大脑转动起来,能让他们对知识点的理解和记忆得到强化和巩固,思维方式得到完善。

3.新课标下中考数学解题技巧研究 篇三

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2015)08A-

0118-01

新课标下的初中数学不仅要求学生牢固地掌握基础知识,更要求学生能够灵活地学习和解题。因此,培养学生的数学解题能力是初中数学教学中的重要目标,也是学生顺利通过中考测评的必要手段。

一、不能大意失荆州——细心对待普通题目

中考数学命题时会根据学生的整体素质进行试题难易程度的设置和比例分布,其中大部分的题目还是基于基础知识的分析和解答,如填空、选择以及一些简单的证明。对于这些难度不高的基础题目,要求学生必须掌握。2014年福建宁德中考数学第21题就是一道基础性较强的证明题,题目如下:

如图,在梯形ABCD中,AD∥BC,E点是边BC的中点,AC、DE为四边形AECD的两条对角线,其中DE∥AB,AC=AB。求证:四边形AECD为矩形。

第一步,理解题意,从题目中提取有用的信息。这里有几个已知条件以及可以据此推导出的信息:(1)已知ABCD为梯形,AD∥BC;(2)点E是BC的中点,则BE=EC;(3)DE∥AB;加上条件(1)可知ABED为平行四边形,AB=DE,AD=BE=EC;(4)AC=AB说明△ABC为等腰三角形,且结合(3)可知AC=AB=DE;(5)由已知条件(2)和(3)结合起来可推导出AE⊥BC;(6)综合以上条件可知,四边形AECD为矩形。

第二步作答,作答过程需要正确地使用书写符号并表现出逻辑性,并且使用的性质、定理都要正确,具体书写内容如下:

证明:∵AD∥BC,DE∥AB

∴四边形ABED是平行四边形

∴AD=BE

∵点E是BC中点

∴BE=EC=AD

∴四边形AECD为平行四边形

∵AB=AC,E为BC中点

∴AE⊥BC,即∠AEC=90°

∴平行四边形AECD为矩形

第三步的检验过程需要注意检查所使用的定理是否正确,以及是否确实达到题目要求的证明目的。若是计算题,还应该对计算和数据进行检验。

二、庖丁解牛掌握窍门——特殊题目借助辅助手段

在代数解题过程中使用图形如函数图象、直角坐标系等,概率也可以运用图形如树状图、曲线图等,运用数形结合思想正确解题,可有效提高解题效率。

4.解题课教案初中数学 篇四

说课教师:海南华侨中学 刘 贞

教材:华东师大版义务教育课程标准实验教科书《数学》

(八年级上册)P75§15.2第二课时

一、教学目标

知识与技能:让学生认识旋转变换与前期所学的两种全等变换的共性与特性,从而掌握旋转变换的特征,并初步学会利用其特征解决简单的图形问题。

过程与方法:通过让学生欣赏和感受旋转实例,并亲身经历作图,继而观察、猜想、归纳出旋转的特征。

情感与态度:让学生在知识的探索过程中,通过动手、思考、讨论,增强学生的合作、交流意识,并体验用运动的观点去感受客观世界的变化,激发学生对图形问题的求知欲,培养学生主动获取知识的能力以及严谨治学、勇于探索的精神。

二、教学重、难点

教学重点:探索旋转的特征

教学难点:理解对应点到旋转中心的距离相等;图形中每一点都绕旋转中心旋转了同样大小的角度。

三、教学过程:

1、情景引入

展示一副美丽的旋转对称图片

5.解题课教案初中数学 篇五

http://>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.b证明:(1)设a、b、c为等比数列,a=,c=bq(q>0且q≠1)

qbnnnn1∴a+c=n+bq=b(n+qn)>2bn

qqnn

ancnacn(2)设a、b、c为等差数列,则2b=a+c猜想>()(n≥2且n∈N*)

22下面用数学归纳法证明:

a2c2ac2()①当n=2时,由2(a+c)>(a+c),∴

22akckack(), ②设n=k时成立,即

22ak1ck11(ak+1+ck+1+ak+1+ck+1)则当n=k+1时,2411>(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c)44ackacack+1>()·()=()

2221[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列.2(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.1错解分析:(2)中,Sk=-应舍去,这一点往往容易被忽视.2k

3222

京翰教育http:///

高中数学辅导网

http:// 技巧与方法:求通项可证明{通项公式.111}是以{}为首项,为公差的等差数列,进而求得SnS1211成等比数列,∴Sn2=an·(Sn-)(n≥2)

(*)222(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-

3212由a1=1,a2=-,S3=+a3代入(*)式得:a3=-

3315解:∵an,Sn,Sn-

(n1)1 2同理可得:a4=-,由此可推出:an= 2(n1)35(2n3)(2n1)(2)①当n=1,2,3,4时,由(*)知猜想成立.2②假设n=k(k≥2)时,ak=-成立

(2k3)(2k1)故Sk2=-21·(Sk-)(2k3)(2k1)2∴(2k-3)(2k-1)Sk2+2Sk-1=0 11(舍),Sk2k12k311由Sk+12=ak+1·(Sk+1-),得(Sk+ak+1)2=ak+1(ak+1+Sk-)

22∴Sk=

2ak1ak11122aaak1k1k122k12k12(2k1)

2ak1,即nk1命题也成立.[2(k1)3][2(k1)1]1(n1)由①②知,an=对一切n∈N成立.2(n2)(2n3)(2n1)(3)由(2)得数列前n项和Sn=

1,∴S=limSn=0.n2n1●锦囊妙记

(1)数学归纳法的基本形式

设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.京翰教育http:///

高中数学辅导网

http:// ●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30

B.26

C.36

D.6 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()A.n=1

B.n=2

C.n=3

D.n=4

二、填空题

1311511173.(★★★★★)观察下列式子:1,122,1222…则可归

223423234纳出_________.4.(★★★★)已知a1=an=_________.三、解答题

5.(★★★★)用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:

3an1,an+1=,则a2,a3,a4,a5的值分别为_________,由此猜想

an3211113.n1n22n247.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+

1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试bn比较Sn与1logabn+1的大小,并证明你的结论.38.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,又如果limS2n<3,求q的取值范围.n

参考答案

难点磁场

14(abc)6a31b11 解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有22(4a2bc)2c10709a3bc于是,对n=1,2,3下面等式成立 1·22+2·32+…+n(n+1)2=

n(n1)(3n211n10)12记Sn=1·22+2·32+…+n(n+1)2

京翰教育http:///

高中数学辅导网

http://

k(k1)(3k2+11k+10)12k(k1)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2

2(k1)(k2)=(3k2+5k+12k+24)12(k1)(k2)=[3(k+1)2+11(k+1)+10]

12设n=k时上式成立,即Sk=也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k

-=(4k+20)·3k=36(k+5)·3k2(k≥2)f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C 2.解析:由题意知n≥3,∴应验证n=3.答案:C

二、3.解析:1131211即1

11222(11)2111511221,即1

2122323(11)2(21)21112n1(n∈N*)222n123(n1)归纳为1答案:11112n1*(n∈N)222n123(n1)13a1233同理,4.解析:a2a1317253 23a23333333a3,a4,a5,猜想ana238359451055n5333333 答案:、、、78910n

5三、5.证明:(1)当n=1时,42

×1+1

+31+2=91能被13整除

京翰教育http:///

高中数学辅导网

http://(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.11713 2122122411113(2)假设当n=k时成立,即 k1k22k241111111则当nk1时,k2k32k2k12k2k1k1131111311 242k12k2k1242k12k213113242(2k1)(k1)246.证明:(1)当n=2时,b11b117.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2 10(101)d310bd14512(2)证明:由bn=3n-2知

11)+…+loga(1+)43n211=loga[(1+1)(1+)…(1+)]

43n2111而logabn+1=loga33n1,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…3341(1+)与33n1的大小.3n2Sn=loga(1+1)+loga(1+取n=1,有(1+1)=38343311 取n=2,有(1+1)(1+)38373321 推测:(1+1)(1+

1411)…(1+)>33n1(*)43n2①当n=1时,已验证(*)式成立.11)…(1+)>33k1 43k21111)(1)33k1(1)则当n=k+1时,(11)(1)(143k23(k1)23k1②假设n=k(k≥1)时(*)式成立,即(1+1)(1+3k233k1

3k1京翰教育http:///

高中数学辅导网

http:// (3k233k1)3(33k4)33k1(3k2)3(3k4)(3k1)29k40

(3k1)2(3k1)233k1(3k2)33k433(k1)13k1111从而(11)(1)(1)(1)33(k1)1,即当n=k+1时,(*)式成立

43k23k1由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>

11logabn+1,当 0<a<1时,Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2an1,即an+2=q·an an2q∵an·an+1=-qn,an+1·an+2=-qn+1 两式相除,得于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-

1n

q(n=1,2,3,…)22qk1 n2k1时(kN)综合①②,猜想通项公式为an=1k

q n2k时(kN)2下证:(1)当n=1,2时猜想成立

-(2)设n=2k-1时,a2k-1=2·qk1则n=2k+1时,由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立.可推知n=2k+1也成立.设n=2k时,a2k=-所以a2k+2=-1k

q,则n=2k+2时,由于a2k+2=q·a2k, 21kq+1,这说明n=2k成立,可推知n=2k+2也成立.2综上所述,对一切自然数n,猜想都成立.2qk1 当n2k1时(kN)这样所求通项公式为an=1k

当n2k时(kN)q 2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-(q+q2+…+qn)22(1qn)1q(1qn)1qn4q()()

1q2(1q)1q2京翰教育http:///

高中数学辅导网

http://

1qn4q)()由于|q|<1,∴limq0,故limS2n=(nn1q2n依题意知

4q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<

6.解题课教案初中数学 篇六

一、初中数学学习的一般方法:

1.突出一个“勤”字(克服一个“惰”字)

数学家华罗庚曾经说过:

“聪明在于学习,天才在于勤奋”“

勤能补拙是良训,一分辛劳一分才:

我们在学习的时候要突出一个勤字,克服一个“懒”字,

怎么突出“勤”字“聪”:怎么个勤法,?

要做到五勤:

“耳勤” “眼勤”(耳朵听,眼睛看,接受信息)

“口勤”(讨论,回答问题,而不是讲话,消化信息)

“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)

“手勤”(动手多实践,不仅光做题,做课件,做模型)

最大的提高学习效率,

首先要做到—— 上课认真听讲(这是根本)

回家先复习再做题

如果课听不好,就别想消化知识

2.学好初中数学还有两个要点,要狠抓两个要点:

学好数学,一要(动手),二要(动脑)。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么动手就是多实践,

多做题,要“拳不离手”“曲不离口”

同学就是“题不离手”,

这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率”

3.做到“三个一遍”大家听过“失败是成功之母”听过“重复是学习之母”吗?

培根——“知识就是力量”“重复是学习之母”

如何重复?

上课要认真听一遍,

动手推一遍,想一遍

下课 和 考试前都看一遍

4.重视“四个依据

”读好一本教科书——它是教学、中考的主要依据;

记好一本笔记 ——它是教师多年经验的结晶;

做好做净一本习题集——它是使知识拓宽;

记好一本心得笔记,最好每人自己准备一本错题集二、分课前、课上、课后三个方面来谈一谈数学的学习。

1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。

首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。

其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。

那该如何预习,预习些什么内容呢?

第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。

第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路

2.课上做什么,认真听讲。

听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么?

第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。

第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。

第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。

第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。

第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。

3.课后该怎么做,完成练习和作业。

要学好数学,必须多做练习,但并不是题海战术。只顾看书,而不做或少做练习,是不可能学好数学的。而一味的做题,而不顾解题方法,也是很难在学习上收到成效的。

做练习要在有充分的准备之后,认真独立地完成。所谓有充分准备,就是要先复习今天所学的知识和老师补充的例题,把课本上的知识弄懂之后才能做练习。如果课本知识还有不懂之处,应先复习课文,询问同学或老师,直至懂了之后再做练习。

所谓认真,是指对每个习题都要认真思考,对问题的每个细节都应思考清楚。注意养成一个全面细致地思考问题的习惯。

这种良好习惯一旦养成,它会在你的一生中大有益处。另一方面,要认真演算,注意解答表述的条理性和解题格式的规范性。许多同学常常在考试中马虎出错,究其根源,必然形成马马虎虎的坏习惯。而“马虎”会长久地带来危害,这种坏习惯一旦养成,十分顽固,很难克服。所谓独立完成作业,就是要靠自己的能力完成作业。因为做练习的目的,一是巩固所学知识,

二 是检查对知识的理解是否正确,培养和提高分析解决问题的能力。

要敢于啃难题。遇到难题一定要反复仔细推敲条件,深入思考,在山穷水尽、自己能力确实承受不了的情况下,问问别人是可以的,不要一觉得难,就不想做了。当然,做难题要耗费较长的时间。有些同学以为这样做不合算,不如问问省事,这种想法是不全面的。其实,帐得算两笔,比如你由于解难题耗费的时间较长联想过很多知识,设想了很多解法,都失败了,似乎收获是“零”,但事实上,你获得了大量的“副产品”,而这“副产品“的价值会远远大于本题目的价值。因为,由于解题的迫切需要联想了很多知识,恰好是对这许许多多知识积极的复习;你想出了很多方法,虽然没有能解决这个题目,但它是很好的思维训练,对提高思维能力起到了不可低估的作用,况且这一个个方法很可能在解决其他题目上奏效。大数学家希尔伯特把“费尔马大定理”这道难题叫做“能下金蛋的母鸡”。正是因为有很多数学家在攻克“费尔马大定理”的失败中,发现和开创了许多新的数学领域,大大地推进了数学的发展。

对于数学《评价手册》:学习较吃力的同学只要完成基本题就可以了,中等的同学完成辨析与反思;好的同学加上探索与思考;还有额外学习能力的同学可以选择好一本课外书,自己挑选部分习题、能够巩固所学知识并拓展知识面的,在做题时尽量讲究一题多解,发展自己分析问题和解决问题的能力。做过的题目希望大家一段时间(一周之类)要消化,对于这类题目的解题方法要掌握,争取做到举一反

三,触类旁通

在练习当中,我认为“做”是次要的,而“思”是主要的。出错的地方也正是我们学习中最薄弱的地方,把这些地方弄懂弄通,避免在同一地方摔倒二次,这比把十道习题演算正确收效也许更大一些。

4.复习与总结。

复习是为了巩固,和遗忘做斗争;

总结是为了条理知识,发现、掌握规律,积累经验,有所提高。

学完每一章,要及时做好阶段复习。

阶段复习要围绕每一节知识的重点、难点,阅读教材、听课笔记、练习本,从中提炼出本章的知识重点和难点,特别对于曾不大懂和理解错误或不够深度的地方,要着重复习巩固。凡是在作业或测验中不会做或做错了的题目,在阶段复习中要独立做一遍,检查一下对这些题目自己是否已经掌握。有些同学多次在某一类问题上出现错误,或曾不会做的题目,再考时仍不会做,正是没有完成复习任务的结果。较难的知识与题日,不仅难做、难理解,而且很容易忘。

反复复习的本身,则是与遗忘作斗争的有效方法。阶段总结是十分必要的,通过阶段复习,应该有较大的提高。

华罗庚有句名言:“读书要由薄到厚,再由厚到薄”。阶段总结,正是要完成由厚到薄的过程。总结要提炼出每一章知识的重点、难点,每一小节知识的重点与本章知识重点的联系,做出条理性的归纳和概括,从而积累解题经验,提高分析解题的能力。

5.课外自学与研究。课外自学与研究的目的是扩大知识面,开阔眼界,掌握与积累思维方法和解题方法,进一步提高分析解题能力。围绕所学的教材进度看一些课外参考书及数学杂志,作一些较新鲜或难度较大的习题。课外自学应该是有计划地有节制地进行,不要影响以上环节的学习,更不要影响其它学科的学习。在课外自学的过程中,发现一些新颖而有价值的习题、一些好地思维方法与解题方法,应该记下来,以便进一步学习掌握。

爱因斯坦说过:

“成功==艰苦的劳动+正确的方法+少说空话”。

对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。

初中数学解题方法大全

一.选择题

1、排除法(筛选法)

从已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。

比如二次函数和一次函数图像的选择题,逐一排除错误选项,从而确定正确的一项。

2、验证法

把各个选择项代入原题加以验证,看是否符合题意,然后得出结论。比如图像是否经过这点,就可以用验证的方法带入题中,得出正确的选项。

3、特殊值法

根据题设条件,选取恰当的特殊数值,替代题中的字母和数式,通过计算,得出答案,再类推一般性答案,从而得出正确答案。

比如规律题,推理结果时,可以用一些数值来进行验证。

二、填空题

填空题是初中数学测试中常见的一种基本题型,突出考查同学们准确、严谨、全面、灵活的运用知识进行正确运算的能力。

填空题只要求写答案,缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,要想又快又准的做好填空题,要在「准、巧、快」三字上下功夫。

1、直接法

直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。

2、数形结合法

数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。

通过对图像的观察、分析和研究、启发解题思路,找出问题的隐含条件,从而简化解题过程,检验解题结果。

三、解答题

解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。

解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。

解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。运用各种数学思想,构建各种数学模型解决问题。

1、构造图形

复杂的几何图形问题,一般需要添加恰当的辅助线才能顺利解决,如连接、延长、做平行、做垂直等,将不规则、不常见的图形转化为规则或特殊的图像求解。

如:构造等长线段、三线八角、全等三角形、相似三角形、直角三角形等,从而利用特殊图形的性质和判定解决问题。

2、动静结合

在图形的运动变化过程中,需要认真研究图形的变化规律,抓住主动变量与从动变量,动静结合,从中探索出它们之间的关系,利用函数关系解决。

数学重在练习,在实战中要注重总结解题技巧和方法。

有时我们做了几张卷子都在练习一种解题思路和方法,这时需要举一反

3、一题多解

多解归一是学习数学最有效的方法,在探索中和体验中找到解题的突破点,不至于陷入题海无法自拔,还给自己增添了压力和负担。

4、答题思路

在数学考试中,很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高。

掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。

建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在考试中游刃有余。

提高数学计算能力的方法

1、养成良好的计算习惯

(1)仔细审题的习惯。拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。

(2)细心检查的习惯。先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。

(3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免错误的发生。

2、强化口算能力

任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。

3、速算巧算

平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。

4、强化估算能力

很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。

5、合理利用一些数的性质

比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。

说了这么多,总结起来其实也很简单,只要坚持一个好的学习习惯,做好复习练习,那么数学学习就能够事半功倍,学好数学自然也就不在话下。

6、建立错题本

7.浅谈初中数学解题技巧 篇七

一、观察特点、提高速度

此题看起来很繁琐, 不好做, 但是细心观察之后可以发现, 分子的各项之中都能提出一个6, 而分母的各项之中都能提出一个18, 这样做了之后, 余下的分子与分母各项都相同, 此题就非常的好做了.

二、代换后, 看特点, 再进行解题

例2已知:y=ax7+bx3+cx-5, 当x=-7时, y=7.

求:当x=7时, y的值.

此题的基本方法是把当x=-7时y=7代入已知中去做, 但是代入之后, 已知条件中的未知数仍然很多, 好像没有办法, 而细心观察之后变形得出结论:a×77+b×73+c×7=-12, 这样就很好做了.

解由x=-7时, y=7, 得

7=a× (-7) 7+b× (-7) 3+c× (-7) -5,

也就是a×77+b×73+c×7=-12.

∴当x=7时y=a×77+b×73+c×7-5=-12-5=-17.

三、1/2与2互为倒数的巧用及安全平方公式

例3已知:

求a2+b2+c2-ab-bc-ac的值.

此题用常用方法是解不出来的, 认真思考后运用2与1/2互为倒数的特点及安全平方公式就能顺利求出结果.

解由可以求得a-c=4.

四、变换已知条件之后, 看它的特点去求出结果

例4已知:a2-4a+2=0, 且a≠b.

此题看起来很好做, 由已知条件求出a, b, 化简代数式之后代入ab就可以了, 但是做一做就发现做不出来.其实有一个很好的方法, 细心分析思考后可以看出, 两个已知条件中的a, b是一元二次方程y2-4y+2=0的两个根, 由根与系数的关系求出a+b=4, ab=2, 这样此题就很好做了.

解由得b2-4b+2=0及a2-4a+2=0, 比较之后可知a, b是方程y2-4y+2=0的两个根, 由根与系数的关系得ab=2, a+b=4.

五、由已知条件变化, 去求值

例5已知:abc=1.

此题学生一看就没有办法去做, 但是细心观察、分析、思考之后可以发现, 已知中的abc=1变形为代入第一项和第二项之后, 经过化简分子与分母可以相同, 这样就好做了, 此题还有更多的方法由学生们去思考.

六、观察所求特点, 然后由已知条件去求

例6已知:αβ是方程2x2-8x2+5=0的两个根.

此题由已知中, 求出αβ关系, 也就是α+β=4, 所求的式子中没有它们看不出来, 而细心观察之后可知这样就好做了.

解∵αβ是方程2x2-8x+5=0的两个根,

8.初中学生数学解题误区 篇八

首先,我们对错误要有充分的认识与分析:教师可以通过错误来发现学生的不足,也从某个角度揭示了学生分析问题的过程,这也是对于学生来说不可或缺的,是学生在学习过程中对所学知识不断尝试的结果。其次,在了解学生错误的原因后 ,就可对征下药,帮学生避免错误,提高解题正确性。

一、 老师应有教学态度 :对错误的承受与宽容

事实上,错误是正确的先导,成功的开始。学生所犯错误及其对错误的认识,是学生知识宝库的重要组成部分. 利用学生典型错误并进行正确诱导会收到良好的教学效果。 如老师讲过a2-b2=(a+b)(a-b)后,让学生去分解m4-n4。很快大家就做完了。老师一边巡视一边督促检查。但在最后教师宣布只有几个人人做对时,其他同学都感到非常吃惊 。大家把m4-n4分解为(m2+n2)(m2-n2)错在哪里呢?做对同学的答案是(m2+n2)(m+n)(m-n),两相对照,大家发现原来m2-n2还可以继续分解。于是,分解因式要进行到每个因式都不能再分解为止给每个同学都留下了深刻的印象。由此可见,教师对待错误的惧怕心理和严厉态度转变为承受心理和宽容态度是十分有意义的。

二、 解题错误的原因

学生顺利正确地完成解题,表明其在分析问题,提取、运用相应知识的环节上没有受到干扰或者说克服了干扰。在上述环节上不 能排除干扰,就会出现解题错误。就初中学生解题错误而言,造成错误的干扰来自以下两方面:

1. 小学阶段知识的干扰 如小 学数学中形成的一些结论都只是在没有学负数的情况下成立的。在小学,学生对数之和不小于其中任何一个加数,但是,学了负数后,这就不是唯一结果了。也就是说,习惯于在非负数范围内讨论问题,容易忽视字母取负数的情况,导致解题 错誤。另外,“+”、“-”号长期作为加、减号使用,学生对于1-7+4-3,习惯上看作1减7加4减3,而初中更需要把上式看成正1负7正4负3之和。对习惯看法的印象越牢固,新的看法就越难牢固树立。

2.初中阶段知识的干扰 例如,在学有理数的减法时,教师反复强调减去一个数等于加上它的相反数,因而4-8中8前面的符号“-”是减号给学生留下了深刻的印象。紧接着学习代数和,又要强调把4-8看成正 4与负8之和,“-”又成了负号。学生不禁产生到底要把“-”看成减号还是负号的困惑。这个困惑不能很好地消除,学生就会产生运算错误。

三、 数学解题错误降低的有效方法

备课时,要仔细研究教科书正文中的防错文字、例题后的注意、小结与复习 中的应该注意的几个问题等,同时还要揣摸学生学习本课内容的心理过程,授业解惑,使学生预先明了容易出错之处,防患于未然。如果学生出现问题而未察觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。例如,讲解方程m/0.1-(0.21-0.2m)/0.01=1之前,要预见到本题要用分式的基本性质与等式的性质,两者有可能混淆,因而要在复习提 问时准备一些分数的基本性质与等式的性质的练习,帮助学生弄清两者的不同,避免产生混乱与错误。

9.初中数学解答题解题策略 篇九

1浅谈中考数学解答题的解题策略

重庆垫江九中蒋正琼

解答题在每年的中考中是拉距离的题型,现在已经进入第二轮复习了,为了学生在做解答题时减少失误,方法上有所突破,应试能力有较大的提高,这个时候很有必要进行针对性的点拨。变第一轮复习的“补弱为主”为“扬长补弱”。一般,成绩居中上游的学生,应以“扬长”为主,居下游的学生,应以“补弱”为主,处理好“扬长”与“补弱”的分层推进关系,是大面积丰收的重要举措。为了处理好这个关系,个人认为完成解答题应让学生把握好以下各个环节:

(1)审题:

这是解答题的开始,也是解答题的基础,一定要全面审视题目的所有条件和解题要求,以求正确全面的理解题意,在整体上把握试题的特点,结构,以利于解题方法的选择和解题步骤的设计。审题时要注意各种数学语言的识别,要注意捕捉所有的信息,特别是重要的,关键的信息。因此我们在教学中应注重学生阅读分析能力训练。当试题的叙述较长时,不少学生往往摸不着头脑,抓不住关键,从而束手无策,究其原因就是阅读分析能力低。解决的途径是:让学生自己读题、审题、作图、识图、强化用数学思想和方法在解题中的指导性,强化变式,有意识有目的地选择一些阅读材料,利用所给信息解题等。在当今信息时代,收集和处理信息的能力,对每一个人都是至关重要的,也是中考命题的热点。

(2)寻求合题的解题思路和方法,破除模式化,力求创新是近几年中考数学试题的显著特点。解答题体现得尤为突出,因此切记套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系,图形的几何特征与数式的数量特征的关系,谨慎地确定解题的思路和方法,当思维受阻是,应及时调整思路和方法,并重新审视题意,注意挖掘题目隐含的已知条件和内在联系,要防止钻牛角尖,又要防止轻易放弃。

(3)设计有效的解题过程和步骤

初步确定解题的思路和方法后,就要设计好解题的过程和步骤,切忌盲目下笔,顾此失彼,解题过程中的每个步骤都要做到推理严谨,言必有据,演算准确,表达得当,及时核对数据,进行必要的检查,注意不要跳步,防止无根据的判断,防止只凭直观,以不存在的图形特征做为条件进行推理,有些单纯的数式计算步骤可以适当省略,但要注意不要因此而出现计算错误。

(4)力求表达得当:

所答与所问要对应,且不要用不规范的语言,不要以某些习题中的结论为依据(定理除外),只写结论,不写过程。2013-5-30

(5)画好图形:

做到定形(状),定性(质),定(数)量,定位(置),注意图形中的可变因素,注意图形的运动和变换,画好图形,对理解题意、寻求思路、检查答案都可以发挥重要的作用,切忌只求示意,不求准确。

【典例精析】----解答题的常见题型

1、代数计算题(教学中应该要求学生会实数的计算、三角函数、方程、因式分解、不等式/ 组、代数式的求值,数轴题等,)

例1:计算

例:

2、先化简,再求值,(1a212),其中a31.a1a1a

12、图形题(作图题/平移,中心对称、轴对称、相似变换、位似变换等一般只有1题,6~8分左右)。这类题目估计一般在格点中作图,平时在教学中,我们应多演示,让学生有个感观的认识,并在考试时,注意要求学生想好后再作答,以免失分)

例3.在正方形网格中建立如图9所示的平面直角坐标系xoy.△ABC的三个顶点部在格点上,点A的坐标是(4,4),请解答下列问题;

(1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A1 的坐标;

(2)画出△A1B1C1关于y轴对称的△A2B2C

2(3)将△ABC绕点C逆时针旋转90°,画出旋转后的的△

A3B3C。

3、函数/方程/不等式应用题(与生活实际联系的一道应用题,应加强一次函数,反比例函数,二次函数的强调)

4、近期,海峡两岸关系的气氛大为改善。大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:

设当单价从40元/千克下调了,销售量为y千克; ...x元时..

⑴、写出y与x间的函数关系式;

⑵、如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元..2013-5-30

时,当天的销售利润W最大?利润最大是多少?

⑶、目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?

⑷、若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?

4、统计与概率题(画统计图、填统计表、计算极差、平均数、方差、众数,方案设计,概率统计,经常与方程联系起来考利润问题,盈亏问题,)这类题目一般会出来两个图的信息,条形图,折线图,直方图,扇形图,注意:解答本题的关键是读懂统计图(表),从中获取正确的信息。)

例5:“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成图7-2-8的两幅统计图(尚不完整).

图7-2-8

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8 000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

5.几何证明题(一般是线段的和差证明,应加强辅助线的总结)

6、如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.

(1)求证:∠BFC=∠BEA;

(2)求证:AM=BG+GM.

证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,AB=BC ∠ABC=∠ABC BE=BF,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;

(2)连接DG,在△ABG和△ADG中,AB=AD ∠DAC=∠BAC=45° AG=AG,2013-5-30

∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.

6、函数图象题(一般都会与三角形、四边形联系起来,通常求交点个数及坐标、平移后的解析式、长度问题,面积问题,与坐标轴夹角及夹角的三角函数值,)

例7.如图, 已知抛物线y12xbxc与y轴相交于C,与x轴相交于A、B,点A的2坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;

(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面

积最大时,求点D的坐标;

(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.25题图备用图

7、压轴题,几何动态问题。(动点问题与四边形、三角形,涉及到面积、相似、点的存在问题等等,当然还常有函数的综合应用题)。此题通常是全卷最难的题目,而且放在最后,时间紧张,心理压力大,不容易集中精力,往往不能很好的发挥自己的水平平,但每个小题的难度却不相同,往往(1)小题可能比前面的题目要简单很多,而(2)小题、(3)小题的难度会逐步以较大幅度增加。因此我们在教学中,应改对每个层次的学生要求不一样,对于中等水平的考生,可以放弃这些题目的解答,将时间用在前110分的题目上,完成这些题2013-5-30

目的解答后将剩余的时间用来检查前面题目的解答是否正确,保证将会做得题目做对,将分拿到手。对于平时程度较好的同学,在保证前面分能够拿到手之后还有时间,不妨完成在最后这道题目的前面的小题,争取做对,多拿一些分。

对于数学成绩特别优秀的学生,完成前面的题目用不了很多时间,会留下很多时间,但不应急于解答压轴题,也应该先检查前面解答题目的过程和结果是否正确,确保前面分拿到手,然后集中精力完成最后一题的解答

例题8:如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB

=A90,AOB60,OBOB在x轴的正半轴上,点A在第一象限,

AOB的平分线OC交AB于C.动点P从点B出发沿折线BCCO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线COOy以相同的速度运动,当点P到达点O时P、Q同时停止运动.

(1)OC、BC的长;

(2)设CPQ的面积为S,求S与t的函数关系式;

(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,OPM为等腰三角形?求出所有满足条件的t值.

上一篇:上海装配式建筑的发展下一篇:近反义词词典