高考立体几何证明垂直

2024-09-14

高考立体几何证明垂直(共12篇)

1.高考立体几何证明垂直 篇一

高一垂直证明基础练习专项

1、点线面位置关系判定问题

解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都是点集,所以在考虑线面关系时从集合与集合的包含关系或者集合与集合的交、并、补关系来判定;(2)几何:把集合与几何关系结合来判定线线,线面,面面关系

例1、设是三个不重合的平面,l是直线,给出下列命题

①若,则;

②若l上两点到的距离相等,则;

③若

④若

其中正确的命题是

()

A.①②

B.②③

C.②④

D.③④

解析:

①由面面垂直关系已知不成立,可能垂直也可能相交平行。错误;②由点到面距离易知直线还可能和平面相交;③因为所以在平面β内一定有一直线垂直α所以正确④根据平行关系易知正确

答案选D

练习1、设,是两条不同的直线,是一个平面,则下列命题正确的是()

(A)若,则

(B)若,则

(C)若,则

(D)若,则

练习2、给定下列四个命题:

()

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是

A.①和②

B.②和③

C.③和④

D.②和④

练习3.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是()

A.若,则

B.若,则

C.若,则

D.若,则

练习4.顺次连接空间四边形各边中点所成的四边形必定是()

A、平行四边形

B、菱形

C、正方形

D、梯形

练习题答案:练习1:B;练习2:

D;练习3:

C;练习4:

A;

2、空间中线面的平行垂直证明

例1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

解析:

证明PC平行于面EBD,只需在面EBD内找一条直线和已知直线平行即可

E为中点,首先考虑构造等腰三角形中位线,取AC中点O连接EO即可

证明:取AC的中点O,连接EO,例2:三棱柱—中,为的中点,为的中点,为的中点,证明:平面∥平面

解析:面面平行的证明定理,证明两平面内两组相交直线平行,即把面面

平行问题转化为线线平行问题,按解决线线平行的思路即可解决问题

证明:连接BC1,EF

分别为BC、B1C1、BB1、CC1的中点,例3:如图:四棱锥—中,⊥平面,底面是矩形,为的中点,⊥,证明:⊥

解析:线线垂直的证明分同平面直线垂直证明和异平面垂直证明,在处理异平面垂直证

明问题时,优先考虑证明一直线垂直于另一直线所在平面,转化为线面垂直证明问题

即证明PD垂直于面BEF即可

证明:点

例4:如图:四棱锥—中,⊥平面,底面是矩形,证明:平面⊥平面

练习1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

练习2:如图:三棱柱—中,为的中点,证明:∥平面

练习3:如图:三棱柱—中,为的中点,证明:∥平面

练习4:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习5:如图:三棱柱—中,、分别为、的中点,证明:∥平面

练习6:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习7:如图:三棱柱—中,为的中点,为的中点,证明:∥平面

练习8:如图:四棱锥—中,⊥平面,底面是梯形,∥,,为的中点,证明:⊥

练习9:如图:直三棱柱—中,,、分别为、的中点,为的中点,证明:⊥

练习10:如图:四棱锥—中,⊥平面,⊥,,⊥,⊥,为的中点,证明:⊥

练习11:如图:四棱锥—中,底面是矩形,平面⊥平面,证明:平面⊥平面

练习12:如图:五面体中,是正方形,⊥平面,∥,证明:平面⊥平面

练习13:如图:四棱锥—中,⊥平面,是菱形,为的中点,证明:平面⊥平面

练习14:如图:四棱锥—中,平面⊥平面,,证明:平面⊥平面

2.高考立体几何证明垂直 篇二

1. 平行问题

平行问题主要是线线平行, 线面平行, 和面面平行。

一般来说, 线线平行可以通过平行公理, 线面平行的性质定理, 线面垂直的性质定理以及面面平行的性质定理得到。下面主要来谈谈线面平行的证明。

我们知道, 在证明线面平行的位置关系时, 可以利用面面平行的性质证明, 也可以利用空间向量来证明。但利用线面平行的判定定理去证明线面平行还是最重要最常用的方法。在实际教学中, 学生通常不知如何在平面里寻找一条线与已知直线平行, 从而来证明线面平行。有不少教师的教学往往也不到位。实际上寻找线线平行大有技巧, 常常可以利用线面平行的性质定理去寻找, 即利用性质定理去分析、发现证明思路, 把线面平行的判定定理及性质定理有机结合起来, 就会发现寻找线线平行是比较容易的。

下面以苏教版必修二第42页第13题为例予以说明。题目如下:

在四棱锥P - ABCD中, M, N分别是AB, PC的中点, 若四边形ABCD是平行四边形, 求证: MN/ /平面PAD。

方法一: 如左上图, 取PD中点, 连接AQ, QN。不难证明, 四边形AMNQ是平行四边形。所以MN与平面PAD内的一条线AQ平行, 故MN/ /平面PAD。此方法的实质是将MN按照水平向左的方向平行投影到左侧面PAD上, 产生投影AQ。

方法二: 如右上图, PC与MN确定的平面交平面PAD于PQ。操作方式: 连接MC并延长交DA的延长线于Q, 则PQ即为交线, 不难证明, MN与平面PAD内的一条 线PQ平行, 故MN/ /平面PAD。此方法的实质是, 以点C为光源, 将MN投影到左侧面PAD上, 产生投影PQ。

当然也可以通过面面平行来证明线面平行, 这就有了方法三。

方法三: 取CD中点Q, 连接MQ, NQ, 不难证明平面MNQ/ /平面PAD, 从而MN/ /平面PAD。

一般来讲, 方法三是比较容易想到的, 方法一和方法二的如何跟学生讲清楚, 让学生如何来操作呢? 其本质是通过线面平行的性质定理指导我们寻找交线, 而证明直线与交线平行一般不是很困难。在具体教学中, 我们不需要向学生讲原理: 中心投影和平行投影。我们可以告知学生操作的方法: 先观察平面外的直线与哪条线是相交的, 而两条相交直线可以确定一个平面 ( 公理三的推论2) , 然后看这个平面能否与要证的平面产生交线 ( 公理2作依据) 。方法一中, MN与AB相交, 产生的平面与左侧面PAD是可以产生交线的; 方法二中, MN与PC相交, 产生平面PCM与左侧面PAD也是可以产生交线的。交线找到了, 基本上就成功了。由此可以看到: 线面平行的判定定理及性质定理体现了平行关系之间相互转化, 把它们与分析法、综合法结合起来应用, 更有利于探求证明思路, 深化知识本质。

面面平行可以由线面平行得到, 这里就不再阐述了。

2. 垂直问题

线线垂直, 面面垂直一般可以通过线面垂直得到。所以下面主要谈谈线面垂直的问题。

线面垂直的位置关系, 通常需要我们给学生一定的宏观图感。比如: 竖直平面的垂线在水平面内, 水平平面的垂线在竖直面内。下面也以一个例子来说明这一点。

已知正四棱锥S - ABCD的底面边长为2, 高为2, E是边BC的中点, 动点Q在表面上运动, 并且总保持QE⊥AC, 则动点Q的轨迹的周长为__。

很多学生对这道题束手无策。实际上, 我们首先从宏观上感受一下这道题, 在此题中, 水平线AC与竖直面SBD垂直。另外, 我们可以假设Q点动了两次, 位置分别为Q1, Q2, 都满足Q1E⊥Q2C。那么, 由题意知, AC与Q1E, Q2E这两条相交直线确定的平面Q1Q2E垂直。而AC又与平面SBD平面垂直, 从而得知Q点运动轨迹所在的平面就与平面SBD平行。所以, 只需取SC, CD的中点P, F, 则Q在三角形EFP的周边上运动, 周长从而也就不难求得。

综上所述, 立体几何中如果讲清楚线面平行和线面垂直的问题, 其他位置关系的证明也就水到渠成了。如何讲透这两个问题, 需要大家给学生培养宏观图感和微观细节上多做文章。

参考文献

[1]崔君强.好记好用的“光照法”证明线面平行.中学生数学.2011年6月上.第419期 (高中) :15-16.

3.立体几何证明(高考篇)文科 篇三

1.(11山东19)(本小题满分12分)

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD是平行四边形,AB=2AD,AD=A1B1, ∠ BAD=60,(Ⅰ)证明:AA1⊥ BD;

(Ⅱ)证明:CC1∥ABD

2.(10山东20)(本小题满分12分)

在如图所示的几何体中,四边形ABCD是正方形,MA平面ABCD,PD//MA,E、G、F分别为MB、PB、PC的中点,且ADPD2M.A

(I)求证:平面EFG平面PDC;

(II)求三棱锥PMAB与四棱锥PABCD的体积

之比.3(09山东18)(本小题满分12分)

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.D1 C

1A1 B1

ED1

E

4(08山东文 19)(本小题满分12分)

如图,在四棱锥PABCD中,平面PAD平面ABCD,AB∥DC,△PAD是等边三角形,已知BD2AD

8,AB2DC P(Ⅰ)设M是PC上的一点,证明:平面MBD平面PAD;(Ⅱ)求四棱锥PABCD的体积.

D

A5、如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,点F是棱PD的中点,P点E在棱CD上移动.⑴ 当点E为CD的中点时,试判断直线EF 与平面PAC的关系,并说明理由; F⑵ 求证:PE⊥AF.A

B6、如图,四棱锥P—ABCD中,PA平面ABCD,底面ABCD 是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点.(I)求证:平面PDC平面PAD;

(II)求证:BE//平面PADM C B EE

C

4.2012高考数学几何证明选讲 篇四

模块点晴

一、知识精要

值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑

6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似。

形与三角形相似。

对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应

条直线平行于三角形的第三边。

1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;

(2)相似三角形周长的比等于相似比;

(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

它们在斜边上射影与斜边的比例中项。

°的圆周角所对的弦是直径。

圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。的比例中项。

两条切线的夹角。

二、方法秘笈

⒈几何证明选讲内容的考点虽多,主要还是集中在对圆的相关内容的考查,而圆中又主要以与切线有关的性质、圆幂定理、四点共圆这几个内容的考查为主。

⒉虽然本书内容主要是由原初三内容改编过来,而在初中,相关内容也已经删去,似乎教师教与学生学都有一定难度,但是由于学生经过两年的高中学习,逻辑性、严密性都有了较大的提高,只要教学得法,学生对这部分的学习应该并不会感到困难。

⒊紧扣课本中的例习题进行学习,重视各个定理的来龙去脉,理解其中渗透的重要的数学思想方法,因为高考试题中所采取的一些方法多来自课本中定理的证明方法及例习题的证明方法;

试题解析

一、选择题

例1.(2012北京、理科)如图.∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于

点E.则()

A.CE·CB=AD·DBB.CE·CB=AD·AB C.AD·AB=CD ²D.CE·EB=CD ²

【解析】A。在ACB中,∠ACB=90º,CD⊥AB于点D,所以CD理的CD

二、填空题

例1.(2012全国、文科)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点

F,AF3,FB1,EF

ADDB,由切割线定

CECB,所以CE·CB=AD·DB。

32,则线段CD的长为

【解析】如图连结BC,BE,则∠1=∠2,∠2=∠A

A1,又∠B=∠B,CBF∽ABC,CBBFCBCF,,代入数值得BC=2,ABBCABAC

AC=4,又由平行线等分线段定理得解得CD=

ACCD

AFFB,.【答案】

例2.(2012湖南、理科)如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于

_______.PO交圆O于C,D,如图,设圆的半径为R,由割线定理知

PAPBPCPD,即1(12)(3-r)(3r),r

P

例3.(2012天津、理科)如图,已知AB和AC是圆的两条弦.过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=

32,则线段CD的长为

【解析】∵AF=3,FB=1,EF=

432

ABAF,由相交弦定理得AFFB=EFFC,所以FC=2,FC=83

又∵BD∥CE,∴

AFAB

=

FCBD,BD=

2=

83,设CD=x,则AD=4x,再由切

割线定理得BD=CDAD,即x4x=(练习题

1.(2012湖北、理科)),解得x=,故CD=

43.如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。

答案:

22.(2012陕西、文理科)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若AB6,AE1,则DFDB5。

三、解答题

例1(2012年全国新课标卷)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:

G

F

(Ⅰ)CD=BC;

(Ⅱ)△BCD∽△GBD

【解析】(1)CF//AB,DF//BCCF//BD//ADCDBFCF//ABAFBCBCCD

(2)BC//GFBGFCBD

BC//GFGDEBGDDBCBDCBCDGBD

O相交例2.(2012辽宁、文理科)如图,⊙O和⊙

/

于A,B两点,过A作两圆的切线分别交两圆于C,D

两点,连接DB并延长交⊙O于点E。

证明

(Ⅰ)ACBDADAB;(Ⅱ)ACAE。

例3.(2012江苏、理科)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结

BD并延长至点C,使BD = DC,连结AC,AE,DE.

求证:EC.

【解析】

5.高考立体几何证明垂直 篇五

2013年各省高考理科数学试题分类17:几何证明

一、填空题

错误!未指定书签。错误!未指定书签。(2013年高考陕西卷(理))B.(几何证明选做题)如图, 弦AB

与CD相交于O内一点E, 过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.【答案】 6.的O中,弦AB,CD相交于点错误!未指定书签。

(2013年高考湖南卷(理))如图2,P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.【答案】

320(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C90,A600,AB20,过C作ABC的外接圆的切线CD,BD

CD,BD与外接圆交于点E,则DE的长为__________

【答案】

5错误!未指定书签。(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC为圆的内接三角形, BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB = AC, AE = 6, BD = 5, 则线段CF的长为______.【答案】83

错误!未指定书签。(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何证明选讲

选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若AB6,ED2,则BC_________.E

第15题图

【答案】

错误!未指定书签。(2013年高考四川卷(理))设P1,P2,,Pn为平面内的n个点,在平面内的所有

点中,若点P到P1,P2,,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)

【答案】①④

错误!未指定书签。(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半

径OC上的射影为E.若AB3AD,则CE的值为___________.EO

C

AB

第15题图

【答案】8

错误!未指定书签。(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交

于D.若PA=3,PD:DB9:16,则

PD=_________;AB=___________.【答案】

二、解答题

错误!未指定书签。错误!未指定书签。(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))9;45

选修4-1:几何证明选讲

BC垂直于CD于C,EF,如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EF2AD

BC.【答案】

(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—1几何证明选讲:如

图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.【答案】

错误!未指定书签。(2013年高考新课标1

(理))选修4—1:几何证明选讲如图,直线AB为圆的切线,切

点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【答案】(Ⅰ)连结DE,交BC与点

G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE,又∵DB⊥BE,∴DE是直径,∠DCE=90,由勾股定理可得DB=DC.0

(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC

oo.设DE中点为O,连结BO,则∠BOG=60,∠ABE=∠BCE=∠CBE=30,∴CF⊥BF,∴Rt△BCF

.错误!未指定书签。(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))

A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC

求证:AC

2AD

【答案】A证明:连接OD,∵AB与BC分别与圆O相切于点D与C

∴ADOACB900,又∵AA

∴RTADO~RTACB∴

6.高考立体几何证明垂直 篇六

人教A版必修2等角定理 (如果空间中两个角的两边分别对应平行, 那么这两个角相等或互补) 的推导过程得出:平面中的公理定理对于空间图形, 需要经过证明才能应用.作业中的证明过程必须以书本上出现的公理定理为基础, 不能以直观结论或自认为正确的结论作为证明依据.笔者在“直线与平面平行的判定和性质”教学中, 学生作业中出现了几个典型的错误证明.现例举如下:

例1 求证:如果一条直线和两个相交平面平行, 则这条直线和两个平面的交线平行.

已知:如图1, α∩β=b, a∥α, a∥β.

求证:a∥b.

错证设经过a的一个平面与α 相交于直线c, 因为a∥α, 所以a∥c.

又因为a∥β, , 所以c∥β.

又因为, α∩β=b, 所以c∥b.

又因为a∥c, 所以a∥b.

该证明过程中用到:

结论1 a∥c, a, , a∥β, 则c∥β.

因为学生可以直观地得出, 并能确定结论1是正确的, 于是就直接应用到几何证明中.这个结论并不是书本上的公理定理, 需要我们事先给出证明才能用在其他几何证明中.该题必须用到直线与平面平行的性质定理, 正解如下:

证明如图2, 经过a的一个平面与α相交于直线c, 因为a∥α, 所以a∥c.

同理, 设经过a的另一平面与β相交于直线d, 所以a∥d, 所以c∥d, 则c∥β.

又因为, α∩β=b, 所以c∥b.

又因为a∥c, 所以a∥b.

例2 图3 为一简单几何体, 其底面ABCD为正方形, PD⊥ 平面ABCD, EC∥PD, 且PD =AD =2EC, 求证:BE∥ 平面PDA.

错证作PD的中点F, 连接AF, EF.

因为

又因为∠ADF=∠BCE=90°, 所以

BE∥AF.

又因为AF平面PDA, BE平面PDA, 所以BE∥平面PDA.

由题设学生可以直观得出:

结论2 两全等的三角形两对应边分别平行且方向相同, 则两对应第三边平行.

这个结论也需要我们事先给出证明.该题的正解如下:

证法1 因为EC ∥PD, PD平面PDA, EC平面PDA, 所以EC ∥ 平面PDA.同理可得BC∥平面PDA.

因为EC∩BC=C, 所以平面BEC∥ 平面PDA.

又因为BE平面EBC, 所以BE∥平面PDA.

证法2 作PD的中点F, 连接AF, EF.

因为EFAB, 所以四边形ABEF为平行四边形, 所以BE∥AF.

又因为AF平面PDA, BE平面PDA, 所以BE∥平面PDA.

例3 已知线段AB, CD异面, CDα, AB∥α, E, F分别是线段AC, BD的中点.求证:EF∥α.

错证1 因为AB∥α, 过点D作DH ∥AB, 连结CH, AH;

作AH的中点G, 连结EG, FG (图4) .所以四边形ABDH为梯形.

又因为FG为梯形ABDH的中位线, 所以FG∥HD.所以FG∥α.

又因为EG为 △AHC的中位线, 同理:EG∥α.

又因为EG∩FG=G, 所以平面EFG∥α.

所以EF∥α.

由题设学生可以直观得出:

结论3 如果一条直线平行于一个平面, 过该平面上的一点有且只有一条直线平行于已知直线.

这个结论也需要我们事先给出证明.上述证明过程中产生DH的方法若改为:“设相交直线AB, BD确定的平面ABD满足:平面ABD∩α=DH, 因为AB∥α, 所以DH∥AB.”便是正确运用性质定理得出DH∥AB的方法.

错证2 如图5, 根据已知AB与CD为异面线段, 可得A, B, C, D不共面.连结AD, 并取AD中点G, 可得E, F, G不共线, 故E, F, G确定一个平面.

因为G是BD的中点, 所以FG∥AB.

又AB∥α, 所以FG∥α.

因为E是AC的中点, 所以EF∥CD.

又因为

因为EG∩FG=G, 所以平面EFG∥α.

所以EF∥α.

该证明过程中用到结论1“a∥c, a, a∥β, 则c∥β”, 因此也是错误的.

该题一正解如下:

证明如图6, 连结AF并延长交α 于G, 连结DG, CG.

因为AG∩CD=F, 所以AG, BD确定γ, 且AB∥α,

因为α∥β, 所以AB∥DG.

所以∠ABF=∠GDF.

又∠AFB = ∠DFG, BF = DF, 所以△ABF≌△GDF.所以AF=FG.

又因为AE=CE, 所以EF∥BG.

因为, 所以EF∥α.

2 原因

结论1是由公理4 (平行线的传递性) 类比得到;结论2是由等角定理类比得到;结论3是由“过直线外一点有且只有一条直线和已知直线平行”类比得到.造成上述错误的根源是学生盲目地认为类比推理得出的结论是正确的便可直接应用, 不需要先证明再使用.

若上述结论1, 2, 3出现在选择题的选项中, 学生能够直接判断是正确的, 所以在几何证明题中他们会错误地认为这些结论也可以直接应用.因此, 作业中的选择填空的直观判断也会影响几何证明的推理.

当然, 有的老师在立体几何教学中缺乏必要的提醒和学生对新学的定义、公理定理缺乏分析对比、归纳概括, 也是学生产生上述错误的重要原因.

3 对策

学生将直观结论直接应用于逻辑证明在立体几何学习中屡见不鲜, 下面就防止上述错误证法谈几点看法.

3.1 提前预防提醒, 避免直接应用

在教学立体几何的初始就要正面引导、提前提醒学生.如在公理2 (过不在一条直线上的3点, 有且只有一个平面) 的3个推论教学中, 学生不难理解3 个推论 (如推论2:两条相交直线确定唯一一个平面) .很多老师们因为课时的原因, 并没有给出3个推论的证明.笔者认为:公理2的3个推论师生应该共同探讨, 得出详细的证明过程.这样做, 一有助于提醒学生书本上出现的公理是不需要证明的, 而定理是需要证明的.同时由公理2推论1推论2推论3的推理过程强调:在几何证明中, 只能以现有的、我们学过的公理定理为依据证明其他结论, 由几何直观得出的结论必须经过证明才可以应用, 从而避免直观结论直接应用于逻辑证明.二也有助于在立体几何的学习中培养学生思维的严谨性和书写的规范性 (如证明定理要写明已知、求证和证明) .

3.2 及时归纳整理, 注意运用模型

在立体几何的教学中, 还要有计划、有目的地启发学生对平面几何与立体几何中有关的定理公理进行对比分析和归纳整理, 使学生深刻理解有关概念、定理公理并能灵活运用, 防止出现学生自己类比“创造”的结论用在几何证明中.特别是在直线与平面、平面与平面平行和垂直的性质学习中, 学生容易“创造”出如结论1, 2, 3的性质.因此, 在性质的教学中, 教师应强调性质定理的模型作用, 防止出现上述证明错误.

3.3 强调转化思想, 强化转化意识

7.高考立体几何证明垂直 篇七

考查圆的切线定理和性质定理的应用.

【复习指导】

本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法

.基础梳理

1.圆周角定理

(1)

(2)

(3)圆周角定理的推论

①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.

2.圆的切线

(1)直线与圆的位置关系

(2)①切线的性质定理:圆的切线垂直于经过切点的半径.

②切线的判定定理

过半径外端且与这条半径垂直的直线是圆的切线.

(3)切线长定理

从圆外一点引圆的两条切线长相等.

3.弦切角

(1)

(2)弦切角定理及推论 ①定理:弦切角的度数等于所夹弧的度数的一半.

②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.

双基自测

1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC

为直径的圆与斜边交于点P,则BP长为________.

解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定

理知,AC2=

AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D

是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠

BAC=100°,1∴∠BDC=2∠BOC=50°.答案 50°

3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.

解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=

60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×12=π.答案 π

4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大

小为________.

解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°

5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与

圆O上过点P的切线PA相交于点A,若∠M=30°,AP=3,则圆O的直径为________.

解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以

AP23OP⊥AP,在Rt△ADO中,OP==tan 60°2,故圆

O的直径为4.tan ∠AOP答案

4考向一 圆周角的计算与证明

【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.

解析 连接AD,BC.因为AB是圆O的直径,所以∠

ADB=∠ACB=90°.CDAD又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:==sin∠DACsin∠ACD

ABsin∠ABDAD1=AB=3,又CD=1,所以sin∠DAC=sin∠DAP=3sin∠ABDsin∠ABD

2所以cos∠DAP=

32.2又sin∠APB=sin(90°+∠DAP)=cos∠DAP=2.答案

2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.

【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.

解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π

考向二 弦切角定理及推论的应用

【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.

[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线 段之间的比例关系,从而求解.

解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,BEAB∴△EAB∽△ABC,∴AC=BC.EFBEABEF又AE∥BC,∴AFACBCAF又AD∥BC,∴AB=CD,CDEF5EF∴AB=CD,∴BC=AF,∴8=6,3015∴EF=84.15答案 4

(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.

(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.

【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:

(1)∠ACE=∠BCD;

(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,BCCD所以△BDC∽△ECB,故BE=BC,即BC2=BE×CD

.高考中几何证明选讲问题(二)

从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.

8.高考立体几何证明垂直 篇八

1.如图,四面体ABCD中,AD平面BCD,E、F分别为AD、AC的中点,BCCD. 求证:(1)EF//平面BCD(2)BC平面ACD.

2.如图,P为ABC所在平面外一点,PA平面ABC,ABC90,AEPB于E,AFPC于F PF求证:(1)BC平面PAB;

(2)AE平面PBC;

(3)PC平面AEF.

BAEC3、如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD1⊥平面ACB1(3)求三棱锥B-ACB1体积.

D

1A

D

C

B

C1

A1

B14、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D

1DABBC1

面AB1D1.(2)AC1

C

5.如图,在三棱锥PABC中,ACBC2,ACB90,APBPAB,PCAC.求证:PCAB;

P

A B

C

6.如图,在三棱锥S-ABC中,SABSACACB90,证明SC⊥BC

7.如图9-29,PA⊥平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点. 求证:MN⊥AB.

8.如图:在斜边为AB的Rt△ABC中,过点A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F,(1)求证:BC⊥平面PAC;(2)求证:PB⊥平面AEF.PE

F

A

B

C2

9.如图:PA⊥平面PBC,AB=AC,M是BC的中点,求证:BC⊥PM.P

A

9.高考立体几何证明垂直 篇九

(二)线面平行与垂直

一、定理内容(数学语言)

(1)证明线面平行

(2)证明面面平行

(3)证明线面垂直

(4)证明面面垂直

二、定理内容(文字语言与数学图形)

(1)证明线面平行:

(2)证明面面平行:

(3)证明线面垂直:

(4)证明面面垂直:

三、典型例题

1.如图,在四棱锥PABCD中,底面ABCD是正方形,PD底面ABCD,M、N 分别为PA、BC的中点,且PDAD.(Ⅰ)求证:MN∥平面PCD;(Ⅱ)求证:AC⊥平面PBD.

M

N

A

B

C

2.在三棱锥PABC中,侧棱PA底面ABC,ABBC,E、F分别是棱BC、PC 的中点.

(Ⅰ)证明:EF∥平面PAB;(Ⅱ)证明:EFBC.

3.在直三棱柱ABCA1B1C1中,AA1AC.

F

P

A

E

B

C

BC1;(Ⅰ)若ABAC,求证:AC

1BC1,求证:ABAC.(Ⅱ)若AC1

B

4.在三棱锥PABC中,平面PAB平面ABC,ABBC,APPB,求证:平面PAC平面PBC.

C

B

5.如图所示,在直三棱柱ABCA1B1C1中,ABBB1,AC1平面A1BD,D为AC的中点.

(Ⅰ)求证:B1C//平面A1BD;(Ⅱ)求证:B1C1平面ABB1A1;

(Ⅲ)设E是CC1上一点,试确定E的位置使

平面A1BD平面BDE,并说明理由.

D

A

C

AB1

C1

6.三棱柱ABCA1B1C1中,侧棱与底面垂直,ABC90,ABBCBB12,M,N分别是AB,AC1的中点.

(Ⅰ)求证:MN∥平面BCC1B1;(Ⅱ)求证:MN平面A1B1C;

(Ⅲ)求三棱锥MA1B1C的体积.

B

M

A

CN

A1

B1

C1

四、练习

1.如图,在直三棱柱ABCA1B1C1中,AC3,BC4,AB5,AA14.(Ⅰ)求证ACBC1;

(Ⅱ)在AB上是否存在点D,使得AC1∥平面CDB1,若存在,试给出证明;

若不存在,请说明理由.

CC

1A1

B1

A

B

2.在三棱锥PABC中,PAC和

PBCAB2,O是AB中点.(Ⅰ)在棱PA上求一点M,使得OM∥平面

(Ⅱ)求证:平面PAB⊥平面ABC.

B

.如图,四面体ABCD中,O、E分别是BD、BC的中点,ABADCACBCDBD2.

(Ⅰ)求证:AO平面BCD;

(Ⅱ)在AC上是否存在点F,使AO∥面DEF?若存在,找出点F的位置;

若不存在,说明理由.

B

五、模拟试题与真题

1.如图,正三棱柱ABCA1B1C1的侧棱长和底面边长均为2,D是BC的中点.(Ⅰ)求证:AD平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1ADB1的体积.

2.如图,在四棱锥PABCD中,底面ABCD为菱形,BAD60,Q为AD的 中点,PAPDAD2.(Ⅰ)求证:AD平面PQB;(Ⅱ)点M在线段PC上,PMtPC,试确定t的值,使PA//平面MQB.

3.在四棱锥P-ABCD中,底面ABCD是菱形,ACIBD=O.(Ⅰ)若ACPD,求证:AC平面PBD;(Ⅱ)若平面PAC^平面ABCD,求证:PB=PD;

(Ⅲ)在棱PC上是否存在点M(异于点C)使得BM∥平面PAD?

PPM

若存在,求的值;若不存在,说明理由.

B

C

PC

B

A

O

C

4.如图,四边形ABCD与BDEF均为菱形,DABDBF60,且FAFC.

(Ⅰ)求证:AC平面BDEF;(Ⅱ)求证:FC∥平面EAD.

5.四棱锥PABCD中,底面ABCD是边长为2的菱形,侧面PAD底面ABCD,BCD60,PAPDE是BC中点,点Q在侧棱PC上.

(Ⅰ)求证:ADPB;(Ⅱ)若

6.已知菱形ABCD中,AB=4,BAD60(如图1所示),将菱形ABCD沿对角线BD翻折,使点C翻折到点C1的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点.(Ⅰ)证明:BD∥平面EMF;(Ⅱ)证明:AC1BD;

(Ⅲ)当EF

AB时,求线段AC1的长.

PQ

,当PA∥平面DEQ时,求的值. PPC

Q

CE

A

B

DC

1FM

A

图1

BAE

图2

B

7.如图1,在RtABC中,C90,D,E分别为

AC,AB的中点,点F为线段CD上的一点,将ADE

沿DE折起到A1DE的位置,使A1FCD,如图2.(Ⅰ)求证:DE//平面A1CB;(Ⅱ)求证:A1FBE;

A1

DFC

图1

B

C

F

B

图2

E

⊥平面DEQ?(Ⅲ)线段A1B上是否存在点Q,使AC1

10.怎样证明面面垂直 篇十

为方便,下面#后的代表向量。

#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD

两组对边平方和分别为:

AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC

AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA

则AB2+CD2=AD2+BC2等价于#BD·#BC=#BD·#BA等价于#AC·#BD=0

所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等

证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面

然后转化成一条直线垂直于另一个平面内的两条相交直线

也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

11.高考立体几何证明垂直 篇十一

一、空间向量及其数量积

1、在空间,既有大小又有方向的量称为空间向量。用AB或a表示,其中向量的大小称为向量的长度或

或a。正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。若已知点A坐标为(x1,y1,z1),点B坐标为(x2,y2,z2)则向量AB=(x2-x1,y2-y1,z2-z1)即是终点坐标减起点坐标。222在空间,知道向量=(x,y,z

xyz 

2、空间向量数量积

① 已知两个非零向量a、b,在空间任取一点O,作OA=a,OB=b,则角∠AOB叫向量a与b的夹角,记作<a,b>规定,若0≤<a,b>≤,若<a,b>=

⊥。

② 已知空间两个向量a、b

COS<a,b>叫向量a、b的数量积,记作ab

COS<,>若⊥a=0

③ 若已知空间向量a=(x1,y1,z1),b=(x2,y2,z2)则ab=x1x2+y1y2+z1z2,COS<a,,称a与b垂直,记作a2

x1x2y1y2z1z

2x1y1z1x2y2z2222222

例1 如图,已知直三棱柱ABC-A1B1C1中,∠BCA=900,D1、E1分别为A1B1、A1C1中点,若BC=CA=CC1,求向BD1与AE1所成角的余弦值。

B

D1 1C

6练习:已知正方体ABCD—A1B1C1D1中,B1E1=D1F1=

F

C1B

1C

DB

二、利用向量证线线垂直与线面垂直

A1B

1,求向量BE1与DF1所成角的余弦值。

4例2 在正方体ABCD—A1B1C1D1中,求证A1C⊥平面AB1D1

CC

练习:在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P为DD1的中点,求证:B1O⊥平面PAC。

A

例3 如图,PA⊥矩形ABCD所在平面,M, N分别是AB ,PC中点(1)求证:MN⊥CD

(2)若∠PDA=45,求证:MN⊥平面PCD

6N M

B

C

练习:正方体ABCD—A1B1C1D1中,M是棱D1D中点,N是AD中点,P为棱A1B1上任一点。求证:NP⊥AM

作业:

A1

C1

M C 1.如图,正方体ABCD—A1B1C1D1中,E是BB1中点,O是底面ABCD中心,求证:OE⊥平面D1AC.2.如图,正方体ABCD—A1B1C1D1中,O ,M分别是BD1, AA1中点,求证:OM是异面直线AA1和BD1的公垂线.DA13、如图,直三棱柱ABC-—A1B1C1中,∠ACB=90,AC=1,CB=2,侧棱AA1=1,侧面AA1B1B的两

条对角线交点为D,B1C1的中点为M。求证:CD⊥平面BDM

6AB B1

4在棱长为a的正方体ABCD—A1B1C1D1中,E,F分别为棱AB和BC的中点,M为棱B1B

上任一点,当

B1M

值为多少时能使D1M⊥平面EFB1 MB

A

E5、如图,ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F为BE中点,求证:AF⊥BD

C

A6、如图,已知直三棱柱ABC-A1B1C1中B1C1=A1C1,A1B⊥AC1。求证:A1B⊥B1C

12.高考立体几何证明垂直 篇十二

09:坐标系与参数方程和几何证明选讲

坐标系与参数方程部分:

1.(2009广州一模文数)(坐标系与参数方程选做题)在极坐标系中,直线sin截得的弦长为__.1.432被圆44

x1t,2.(2010广州二模文数)(坐标系与参数方程选做题)已知直线l的参数方程为(参数tR),y42t.

圆C的参数方程为x2cos2,(参数0,2),y2sin.则直线l被圆C所截得的弦长为.2.,3B的极坐标分别为3,3.(2010广州一模文数()坐标系与参数方程选做题)在极坐标系中,已知两点A、4,,则△AOB(其中O为极点)的面积为.6

3.答案

34.(2011广州一模文数)(坐标系与参数方程选讲选做题)已知直线l的参数方程为:数),圆C的极坐标方程为,则直线l与圆C的位置关系为.4.相交

5、(2011广州二模文数)(坐标系与参数方程选做题)设点A的极坐标为2,.

成的角为x2t,(t为参y14t,直线l过点A且与极轴所6,则直线l的极坐标方程为. ...

341或cos1或sin3361cossin20 

5.sin

6.(2012广州一模文数)(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l与曲线C的xt2,x1s,Cl参数方程分别为:(s为参数)和:(t为参数),2y1syt

若l与C相交于A、B两点,则AB. 6

7.(2012广州二模文数)(坐标系与参数方程选做题)在极坐标系中,若等边三角形ABC(顶点A,B,C按

顺时针方向排列)的顶点A,B的极坐标分别为2,



7

则顶点C的极坐标为。,2,6,6

7、.



2

32

说明:第1

4题答案可以是2k(kZ)

3

8.(2007广东文数)(坐标系与参数方程选做题)在极坐标系中,直线l的方程为sin3,则点2到直线l的距离为

8..



π6

9.(2008广东文理数)(坐标系与参数方程选做题)已知曲线C1,C2的极坐标方程分别为

cos3,4cos(0,0),则曲线C1 C2交点的极坐标为

cos3

9、【解析】我们通过联立解方程组,即两曲线的交点

为(0,0)解得2

4cos

6).610.(2009广东文科)(坐标系与参数方程选做题)若直线则常数k=.10、6【解析】将

x12t

(t为参数)与直线4xky1垂直,y23t

x12t37

3化为普通方程为yx,斜率k1,222y23t

434,由k1k21得k6;k2k

当k0时,直线4xky1的斜率k2当k0时,直线y

x与直线4x1不垂直.综上可知,k6.2

211.(2010广东文数)(坐标系与参数方程选做题)在极坐标系(ρ,)(0<2)

中,曲线cossin1与sincos1的交点的极坐标为.11、(1,)

12、(2011•广东文理数)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).

(0≤θ<π)的直角坐标方程为:

12、解答:

解:曲线参数方程

;曲线(t∈R)的普通方程为:;解方程组:得:

∴它们的交点坐标为(1,).故答案为:(1,).

13.(2012广东文数)(坐标系与参数方程选做题)在平面直角坐标系中xoy中,曲线C1和曲线C2的2t

x1xcos2(为参数)

参数方程分别为(为参数,0)和,则曲线C1和曲线C2t

2y2tysin

2的交点坐标为.

13、参数方程极坐标:(1,2)(2,1)

几何证明选讲部分:

1.(2009广州一模文数)(几何证明选讲选做题)已知PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,AC3,PAB30,则线段PB的长为1.

12.(2010广州二模文数)(几何证明选讲选做题)如图3, 半径为5的圆O的两条弦AD

和BC相交于点P, ODBC,P为AD的中点, BC6, 则弦AD的长度为.2.3.(2010广州一模文数)(几何证明选讲选做题)

O 图

4D

C

3如图5,AB是半圆

O的直径,点C在半圆上,CDAB,垂足为D,且AD5DB,设COD,则tan的值

.3.

4.(2011广州一模文数)(几何证明选讲选做题)如图3,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切, 切点为A,MAB35, 则

N

D

4.12

55.(2011广州二模文数)(几何证明选讲选做题)在梯形ABCD中,

图3

ADBC,AD2,BC5,点E、F分别在AB、CD上,且EFAD,若

5.AE

3,则EF的长为 EB

46.(2012广州一模文数)(几何证明选讲选做题)如图3,圆O的半径为5cm,点P

CP1OP3cm,弦CD过点P,且,则

CD的长为cm.7

CD3

6.答案

7.(2012广州二模文数()几何证明选讲选做题)如图4,AB是圆O的CD是圆O的切线,直径,延长AB至C,使BC2OB,切点为D,图3

AD

连接AD,BD,则的值为。

BD

7.8.(2007广东文数)(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则DAC

C

图4

A图4

l

8.30

9.(2008广东文数)(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=________.9【解析】依题意,我们知道PBAPAC,由相似三角形的性质我们有

PAPB

,即2RAB

PAAB2R

2PB2

110.(2009广东文科)(几何证明选讲选做题)如图3,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于.o

o

10【答案】16【解析】连结AO,OB,因为 ACB30,所以AOB60,AOB

为等边三角形,故圆O的半径rOAAB4,圆O的面积Sr16.o

11.(2010广东文数)(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=11.答案

a,点E,F分别为线段AB,AD的中点,则EF=.2a 212、(2011•广东文数)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为 7:5 .

12解答:解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,13.(2012广东文数)(几何证明选讲选做题)

PBADBA,如图3,直线PB与圆O相切与点B,D是弦AC上的点,若ADmAC,n13、几何证明选做题:mn

图3

上一篇:应届大学毕业生药厂实习报告下一篇:十堰市驻村工作队