初一数学知识点大总结

2024-11-17

初一数学知识点大总结(共11篇)

1.初一数学知识点大总结 篇一

单项式的系数是指单项式中字母前的数字,次数是指单项式中所有字母的指数之和。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。

如果一个整式方程中,只含有一个未知数,而且末知数的次数是1,那么这个方程就叫做一元一次方程。解一元一次方程方法及步骤:合并同类项—移项—系数化为1—去括号—去分母。

角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角度制的换算:1°=60′;1′=60″;1周角=360°;1平角=180°;1直角=90°

概念总结:

1、正负符号相反、而绝对值相等的两个数称作互为相反数。互为相反数的两个数相加为0,相除等于-1,0的.相反数仍是0。

2、所含字母相同,并且相同字母的次数也相同的项叫做同类项;同类项相加时,同类项的系数相加作为新的系数,字母和字母的指数不变,这个过程也叫合并同类项。

3、有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

2.初一数学知识点大总结 篇二

【关键词】学科学习;数学;学科领域知识;知识表征

一、问题提出

从学科领域知识的结构来看,初一数学学科领域知识包括:学习目标、知识结构、要点概念等学理内容知识,解题思路、解答步骤、答题过程等认知过程知识,具体解题过程中的限制条件和关键知识等问题条件知识。

在以往的认知学习中,关于领域知识的心理机制有了长足发展,但仔细分析这些研究却会发现,这些研究难免脱离学校教学的真实情境,大大削弱了研究成果的教学实践价值。从研究重点来看,以往的研究以研究问题表征和解决策略为主,较少地从知识表征方面来探讨数学学习心理机制的问题。在初一阶段学生学习数学的知识结构特点会出现转变,此时对学生的知识表征特点展开考察,能够帮助教师发现学生的学习特点,以及时调整教学方案和教学内容,在提高教学效率上有着重要价值。本次调查研究则从学科领域知识的结构与数学学科领域知识的定义出发,通过问卷分析学生在数学学习中其学科领域知识表征特点,从而得出学生关于三类知识的认知情况,以期为教师的教学实践提供相关依据。

二、研究方法

笔者抽取了所在地三所初中总计612名初一学生进行问卷测试,其中有效测试为578名,测试有效率为94.4%,属于统计学要求的合理范围。测试样本中,男生296名,女生282名,所有测试者无明显感官障碍,智力正常。

正式问卷设置学业现状、认知评价两部分,每部分都设置数学学科领域知识表征的三个因素,每个因素5道题,问卷总计30道题。采用李克特式5点评分问卷,因素得分越高,则表明学生与项目描述的内容最接近。测试内容由六位高级教师进修编制,并且过了教育心理学家的评价与修订,因此问卷内容的效度较好。并对所得数据进行复制编制,对数据进行统计和分析采用SPSS15.0软件包。

整个问卷测试过程,问卷整体内部一致性信度是0.94,各因素内部一致性信度在0.80到0.93之间,p值均小于0.01。正式测试阶段,问卷整体内部一致性信度是0.93,各因素内部一致性信度系数在0.82至0.90之间,p值均小于0.01。

三、结果分析

1.不同类型知识表征的差异调查

不同类型的知识表征水平呈现明显差异,其中学理内容知识表征水平最高(n:578,M:19.88,SD:3.82),认识过程知识次之(n:578,M:19.25,SD:4.53),为问题条件知识最低(n:578,M:19.27,SD:3.34)。

2.基于学业成绩分析知识表征类型差异

成绩较优与成绩中等学生,其学理内容认知与认知过程认知差异较小,但这两个因素与问题条件知识均有明显的差异,且比问题条件知识更优。在成绩较差的学生中,则认知过程知识于问题条件知识无较大差异,但这两个因素和学理内容知识有着明显差异。从知识结构上来看,成绩较差者,学理知识内容最优。

3.不同类型知识表征的差异调查

学生对不同类型知识表征的重要性存在明显差异,其中,学生对学理知识内容的评价最高(n:578,M:20.90),其次是认知过程知识(n:578,M:20.48),最后是问题条件知识(n:578,M:20.12)。

四、讨论

1.学生在数学学习中,三种知识的表征结构有着明显的差异,从具体分布来看,学生的知识结构中,学理内容掌握情况最好,认知过程次之,而问题条件则较差。因此,教师在教学过程中,要增强问题条件知识的传授,提高学生的解题技能,帮助学生更好地内化知识。

2.三种知识表征与学生的学业成绩呈现明显的关联性,且认知过程与问题条件是形成学生数学成绩差距的重要因素。因此,教师在帮助成绩较差的学生提高数学学习时,可以加强知识表征知识和问题条件知识的相关练习,促进学生固化知识学业成绩的提升。

3.三种知识表征比较发现,学理知识内容明显高于其他两因素,从学生的认知观中发现,学生认为学理知识内容最重要。学理内容以基础知识模块为主,且主要是记忆方式为主,这表明学生的学理内容掌握较好。因此,教师要合理分配教学内容,让学生能获得多种知识和技能,并通过多种方式进行教学指导。

五、结论

此次调查得出的结论如下:(1)不同知识其表征各异,且差异明显。其中,表征水平最高的是学理内容知识,最低的则是问题条件知识;(2)问题条件知识表征、认知过程知识表征水平和学生的数学学业成绩呈现明显的关联性;(3)在学生的认知观中,认为学理内容知识重要性最强,问题条件知识最弱。

【参考文献】

[1]金慧娟.翻转课堂与高职课程改革融合探讨——以《基础会计》为例[J].福建商业高等专科学校学报,2015(04):81-85

[2]丁玫.基于“翻转课堂”理念的成人会计教学模式改革——以《基础会计》课程为例[J].教育教学论坛,2015(41):125-127

3.初一数学知识点总结 篇三

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

4.初一数学上册知识点总结 篇四

有理数

1.有理数:

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数Û:0和正整数;a>0 , a是正数;a<0 , a是负数;

a≥0 , a是正数或0 , a是非负数;a≤ 0 , a是负数或0 , a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 , a+b=0 , a、b互为相反数.4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为: 或;绝对值的问题经常分类讨论;

(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1, a、b互为负倒数.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; 校区地址:东城市场后门对面810超市左侧电话:***08393316386

(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n , 当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 , a=0,b=0;

(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.校区地址:东城市场后门对面810超市左侧电话:***08393316386

整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).校区地址:东城市场后门对面810超市左侧电话:***08393316386

9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„(检验方程的解).10.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: „„„„ 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间

(2)工程问题:工作量=工效·工时

(3)比率问题:部分=全体·比率

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价-成本,;

5.数学初一下册知识点总结 篇五

(1)数与字母相乘,或字母与字母相乘通常使用“·?”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·?”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。

(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a,写成a3的形式。

(5)a与b的.差写作a-b,要注意字母顺序,若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

实数

1、平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2、立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

3、立方根性质

(1)在实数范围内,任何实数的立方根只有一个

(2)在实数范围内,负数不能开平方,但可以开立方

(3)0的立方根是0

4、实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

平行线

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

1、直线平行的条件

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

2、平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

6.数学初一下册知识点总结 篇六

(1)数与字母相乘,或字母与字母相乘通常使用“·?”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·?”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。

(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a,写成a3的形式。

(5)a与b的.差写作a-b,要注意字母顺序,若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

实数

1、平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2、立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

3、立方根性质

(1)在实数范围内,任何实数的立方根只有一个

(2)在实数范围内,负数不能开平方,但可以开立方

(3)0的立方根是0

4、实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

平行线

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

1、直线平行的条件

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

2、平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

7.初一数学重点知识总结 篇七

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

8.初一数学有理数知识总结 篇八

一、知识概述

(一)正数和负数

1、负数的意义

负数是由实际的需要而产生的,如:某地气温是8℃,由于强冷空气南下,气温下降了12℃,则该地区这时的实际气温是(8-12)℃,但在算术中这个差是不存在的,实际上这个气温是客观存在的,为了解决这个“不够减”的矛盾,引入一个新数——负数,即(8-12)℃=-4℃,表示零下4℃.

2、相反意义的量与正数

为了表示具有相反意义的量,把其中一种意义的量规定为正,另一种与它意义相反的量规定为负,正的量记为“+”,如+6,+2.5,„叫正数;负的量记做“-”,像-4,-6这类带有负号的数叫负数;“0”既不是正数,也不是负数,是正数与负数的界限,规定零是最小的自然数.自然界有许多具有相反意义的量,如上升与下降,向东与向西、盈余与亏损等都可以用正负数来表示.

3、有理数的分类

(1)有理数

(2)有理数

4、字母a的意义

用字母a表示有理数时:

(1)a>0时,a表示正数,-a表示负数;(2)a<0时,a表示负数,-a表示正数.(3)a≥0时,a表示非负数.(二)相反数

1、相反数的意义

(1)代数意义:只有符号不同的两个数叫互为相反数,其中一个数叫另一个数的相反数,0的相反数是0.(2)几何意义:在数轴上的原点两旁,离原点的距离相等的两个点所表示的数互为相反数.(3)相反数的性质:若a、b两数互为相反数,则a+b=0,反之也成立.(4)符号:在一个数前面加“-”号表示这个数的相反数,如数a的相反数是-a.2、多重符号的化简

化简带有多重符号的数的关键是结合数轴理解相反数,按由内到 外的顺序去括号,如:-[-(-3)]=-(+3)=-3.(三)数轴

1、数轴的意义

数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可.

2、数轴的画法

画一条水平的直线,在这条直线上任取一点作为原点,用这个点表示0,规定这条直线上从原点向右的方向(以箭头表示)为正方向,相反的方向(即从原点向左的方向)为负方向,选取某一长度作为单位长度,就得到了如图所示的数轴(number axis).(四)绝对值

1、绝对值的意义:一个数a的绝对值,就是数轴上表示数a的点与原点的距离,记作|a|.(1)绝对值的代数意义是一个正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0.(2)绝对值的几何意义:一个数的绝对值表示的是这个数离开原点的距离,记做|a|,离原点越远,数的绝对值越大.(3)绝对值是非负数,即|a|≥0.互为相反数的两数绝对值相等:|a|=|-a|.2、绝对值的求法:在处理绝对值符号时,应首先确定绝对值里面的数的正、负性,若是非负数,则直接去掉绝对值符号;若是负数,则去掉绝对值符号后,前面加负号,即

(1)

(2)

有理数的大小比较 有理数的加法

一、知识概述

在学习数轴、相反数、绝对值的基础上进一步巩固这些重要概念;利用数轴进行两个或两个以上的有理数的大小比较.

从实际问题探究两个有理数的加法得到有理数的加法法则并会熟练运用.

二、重点知识归纳及讲解

1、利用数轴比较有理数的大小

数轴是我们进初中以后学到的一个重要概念,我们知道有理数均可以用数轴上的点来表示,结合数轴,还可以更深刻地理解相反数的意义:从数轴上看,在数轴上原点的两旁,到原点距离相等的两个点所表示的两个数是互为相反数,其中包含着0的相反数是0的道理.一个数的绝对值的意义,更离不开“数轴”这个工具,我们知道在数轴上表示数a的点到原点的距离叫做数a的绝对值,因为距离是正数或0,所以有理数的绝对值是非负数,即|a|≥0,利用数轴可以表示相 反数和绝对值的几何意义.

我们知道,在数轴上表示的两个有理数,右边的数总比左边的数大,因此,有理数大小比较的法则是:

①正数都大于零, 负数都小于零, 正数大于一切负数;②两个正数,绝对值大的数大;③两个负数,绝对值大的数反而小.2、有理数的加法法则

(1)同号两数相加,取相同符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.(3)一个数与0相加,仍得这个数.

3、有理数加法步骤分两步: 第一步,确定和的符号; 第二步,求和的绝对值.4、利用加法交换律和结合律可以简化计算,通常有以下几种结合的方法:

(1)同号的数放在一起相加;(2)互为相反数的两个数放在一起;(3)同分母的分数放在一起;(4)和为整数的数在一起相加.

5、加法的交换律:a+b=b+a 加法的结合律:(a+b)+c=a+(b+c)

有理数的减法及加减混合运算

一、知识概述

1、有理数的减法(1)有理数的减法法则

减去一个数,等于加上这个数的相反数.这个法则用式子可以表示为a-b=a+(-b).(2)有理数的减法运算

有理数的减法,不像算术里那样直接相减,而是把它转化为加法,借助于加法进行计算.因此,掌握有理数减法的关键是正确地将减法转变为加法.再按有理数的加法法则计算.注意两个“变”:①改变运算符号;②改变减数的性质符号(变为相反数),牢记一个“不变”,被减数与减数的位置不能交换,也就是说,减法没有交换律.

2、有理数的加减混合运算

(1)代数和:几个正数或负数的和称代数和,是在代数和里把加号及加号前的括号省去不写的简写形式,简写后的代数和的符号都 是性质符号,而运算符号“+”均已省略.如-5-2+3-5实际表示-5,-2,+3,-5的和.(2)有理数加减混合运算的步骤:首先变减为加,再写成省略加号的形式,然后利用加法交换律和结合律简化计算.(3)使用加法交换律交换数的位置时,要连同数前面的符号一起交换.

(4)利用交换律的结合律进行简化计算时应遵循几条法则:

①正数和负数分别结合相加;

②分母相同或易于通分的分数结合相加;

③和为整数的结合相加;

④互为相反数的结合相加.二、重难点知识

1、重点:

(1)能用有理数的减法法则进行减法运算;(2)能正确将加减混合运算统一成加法运算.做加减混合运算时要注意:

①先统一成加法; ②省略括号;③分类相加.

2、难点:在加减混合运算中能正确地运用运算律进行简便运算.有理数的乘法和除法

一、知识概述

(一)有理数乘法的法则及运算律

1、有理数的乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.几个有理数相乘的符号确定:

几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一因数为零,积就为零.2、乘法运算律

(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即(ab)c=a(bc).(3)乘法对加法的分配律:一个数与两个数的和相乘,等于把这个数分别与两个数相乘,再把积相加.即a(b+c)=ab+ac.(二)有理数的除法法则

1、有理数的除法法则

法则1:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0;

法则2:除以一个数等于乘以这个数的倒数,0不能作除数.

2、倒数的意义 乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.倒数的求法:

(1)求一个整数的倒数,直接可写成这个数分之一,即a的倒数为.(2)求一个分数的倒数,只要将分子、分母颠倒一下即可,即的倒数为.(3)求一个带分数的倒数,应先将带分数化成假分数,再求倒数.(4)求一个小数的倒数,应先将小数化成分数,再求倒数.二、重点知识归纳及讲解

1、有理数乘法法则是重点,要准确而熟练地运用.乘法运算时,先确定积的符号,特别是确定几个因式乘积的符号,然后再把各因式的绝对值相乘.带分数参与乘法运算时,要把带分数化成假分数.乘法的交换律、结合律、分配律在有理数的运算中应用非常广泛,对简便运算起很大作用要灵活运用.2、有理数的除法,给出了两种形式的法则,用不同的法则计算,所得的商是相同的,但一般情况下,如果不能整除的,则选用“转化”的法则,即把除法转化为乘法来计算,能整除的就直接用除法法则计算较简便,熟练运用除法法则计算也是重点.3、正确理解倒数的意义.(1)乘积为1的两个数互为倒数;

(2)如果两个数互为倒数,那么它们符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.(3)倒数等于本身的数是±1.有理数的乘方 有理数的混合运算

一、知识概述

1、有理数的乘方

一般地,n个相同的因数a相乘,即.,这种求n个相同因数的积的运算叫做乘方(power).乘方的结果叫做幂(power).在中,a 叫做底数(base number),n叫做指数(exponent),an读作a的n次幂(或a的n次方).

指数为1时可以省略不写.

2、乘方的性质

(1)正数的任何次幂都是正数.即当a>0时,>0(n为正整数);(2)负数的奇次幂是负数,负数的偶次幂是正数;

即当a<0时,(3)0的任何非零次幂都是0;

即当a=0时,=0(n为正整数);(4)1的任何次幂为1,-1的偶次幂为1,-1的奇次幂为-1.(5)任何数a的偶次幂为非负数.即≥0,(n为正整数,a为有理数).(6)=

(n为正整数);

=

(n为正整数).3、有理数混合运算顺序

先算乘方,再算乘除,最后算加减. 如果有括号,先算括号里面的.

二、重点、难点和疑点 1.重点:有理数的乘方运算 2.难点:有理数乘方运算的符号法则 3.疑点:

①乘方和幂的区别. ②与的区别.

表示a的n次方的相反数. 表示-a的n次方,有理数小结

9.高二数学推理知识点大总结 篇九

二、合情推理

(一)归纳推理

1. 归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理。简言之,归纳推理是由部分到整体、由个别到一般的推理。

2. 归纳推理的一般步骤:

第一步,通过观察个别情况发现某些相同的性质;

第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想)。

题型1:用归纳推理发现规律

(1)观察:

对于任意正实数,试写出使成立的一个条件可以是 ____.

点拨:前面所列式子的共同特征特征是被开方数之和为22,故

(2)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图。其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数。则

【解题思路】找出的关系式

[解析]

总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系

(二)类比推理

1. 类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理。简言之,类比推理是由特殊到特殊的推理。

2. 类比推理的一般步骤:

第一步:找出两类对象之间可以确切表述的相似特征;

第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想.

题型2:用类比推理猜想新的命题

(1)已知正三角形内切圆的半径是高的,把这个结论推广到空间正四面体,类似的结论是______.

【解题思路】从方法的类比入手

[解析]

原问题的解法为等面积法,即,类比问题的解法应为等体积法,

即正四面体的内切球的半径是高

总结:

① 不仅要注意形式的类比,还要注意方法的类比。

② 类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

(三)合情推理

1. 定义:归纳推理和类比推理都有是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理。简言之,合情推理就是合乎情理的推理。

2. 推理的过程:

思考探究:

(1)归纳推理与类比推理有何区别与联系?

① 归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

② 类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

三、演绎推理

(一)含义:

1. 演绎推理是从一般性的原理出发,推出某个特殊情况下的结论。演绎推理又叫逻辑推理。

2. 演绎推理的特点是由一般到特殊的推理。

(二)演绎推理的模式

1. 演绎推理的模式采用“三段论”:

(1)大前提——已知的一般原理(M是P);

(2)小前提——所研究的特殊情况(S是M);

(3)结论——根据一般原理,对特殊情况做出的判断(S是P)。

2. 从集合的角度看演绎推理:

(1)大前提:x∈M且x具有性质P;

(2)小前提:y∈S且SM

(3)结论:y具有性质P

(三)演绎推理与合情推理

合情推理与演绎推理的关系:

1. 从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特说的推理;演绎推理是由一般到特殊的推理。

2. 从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。

四、直接证明与间接证明

(一)三种证明方法:综合法、分析法、反证法

分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。

综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

反证法:它是一种间接的证明方法。用这种方法证明一个命题的一般步骤:

(1)假设命题的结论不成立;

(2) 根据假设进行推理,直到推理中导出矛盾为止

(3) 断言假设不成立

(4)肯定原命题的结论成立

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题

考点1:综合法

在锐角三角形中,求证:

[解析]

考点2:分析法

已知,求证

[解析]

总结:注意分析法的“格式”是“要证—只需证—”,而不是“因为—所以—”

考点3:反证法

已知,证明方程没有负数根

【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾

[解析]

总结:否定性命题从正面突破往往比较困难,故用反证法比较多

五、数学归纳法

1. 数学归纳法的定义:

一般地,当要证明一个命题对于不小于某正整数N的所有正整数n都成立时,可以用以下两个步骤:

(1)证明当时命题成立;

(2)假设当时命题成立,证明n=k+1时命题也成立。

在完成了这两个步骤后,就可以断定命题对于不小于的所有正整数都成立。这种证明方法称为数学归纳法。

2. 数学归纳法的本质:

无穷的归纳→有限的演绎(递推关系)

3. 数学归纳法步骤:

(1)(递推奠基):当n取第一个值结论正确;

(2)(递推归纳):假设当时结论正确;(归纳假设)

证明当n=k+1时结论也正确。(归纳证明)

由(1),(2)可知,命题对于从开始的所有正整数n都正确。

题型1:已知n是正偶数,用数学归纳法证明时,若已假设时命题为真,则还需证明( )

A. n=k+1时命题成立

B. n=k+2时命题成立

C. n=2k+2时命题成立

D. n=2(k+2)时命题成立

[解析]因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选B

总结:

用数学归纳法证明时,要注意观察几个方面:

(1)n的范围以及递推的起点

(2)观察首末两项的次数(或其它),确定n=k时命题的形式

(3)从的差异,寻找由k到k+1递推中,左边要加(乘)上的式子

题型2:用数学归纳法证明不等式

[解析]

总结:

(1)数学归纳法证明命题,格式严谨,必须严格按步骤进行;

(2)归纳递推是证明的难点,应看准“目标”进行变形;

10.初一数学期中知识点 篇十

七年级数学知识点

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

(4)可以看像的背面;(5)根据前面的结论在头脑中想象。

初一下册数学重点知识点

重要考点

1、整式的乘除的公式运用(六条)及逆运用(数的计算)。

(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an

(5)a0(a≠0)(6)a-p= =

2、单项式与单项式、多项式相乘的法则。

3、整式的乘法公式(两条)。

平方差公式:(a+b)(a-b)=

完全平方公式:(a+b)2(a-b)2

常用公式:(x+m)(x+n)=

5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

6、互为余角和互为补角和

7、两直线平行的条件:(角的关系线的平行)①相等,两直线平行;

② 相等,两直线平行;

③ 互补,两直线平行.8、平行线的性质:两直线平行。(线的平行

9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义

(3)图象交点表示什么意义(4)会求平均值。

11、三角形(1)三边关系:角的关系)

(2)内角关系:

(3)三角形的三条重要线段:

(重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)

(5)全等三角形的性质:

(重点)(6)等腰三角形:(a)知边求边、周长方法

(b)知角求角方法

(c)三线合一:

初一下册数学复习资料

概念知识

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。

20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

23、对称轴:轴对称图形中对折的直线叫做对称轴。

24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

11.初一数学重点知识点总结 篇十一

2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

3、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.

上一篇:幼儿园英语故事教案下一篇:论团队精神论文