数学必修2线面平行的(共9篇)
1.数学必修2线面平行的 篇一
例2已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O
PBC上任意一点,过A点作AE⊥PC于点E,求证:AE⊥平面
证明:∵PA⊥平面ABC,∴PA⊥BC
又∵AB是⊙O的直径,∴BC⊥AC
而PC∩AC=C,∴BC⊥平面PAC
又∵AE在平面PAC内,∴BC⊥AE
∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC
例4在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点
(1)求证:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD
1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为0”的问题,当然也可用其它的证法
证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0),D(0,2,0),A1(0,0,2)
D1(0,2,2),E(2,0,1),F(1,2,0)
(1)AD(0,2,0),D1F(1,0, 2) ADD1F=0×1+2×1+0×(-2)=0, AD⊥D1F (2)AE=(2,0,1)D1F=(1,0,-2),|AE|,|D1F|设AE与D1F的夹角为θ,则
cosθ121001(2)
0
所以,直线AE与D1F所成的角为90°
(3)由(1)知D1F⊥AD,由(2)知D1F⊥AE,又AD∩AE=A,D1F⊥平面AED,∵D1F平面A1FD1M
平面AED⊥平面A1FD
1例5如图,已知AB是圆O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的任一点,求证:平面PAC平面PBC.
分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另一平面垂直的直线即可 解:∵AB是圆O的直径,∴ACBC,又∵PA垂直于O所在的平面,∴PABC,∴BC平面PAC,又BC在平面PBC中,所以,平面PAC平面PBC.
点评:由于平面PAC与平面PBC相交于PC,所以如果平
面PAC平面PBC,则在平面PBC中,垂直于PC的直线一定垂直于平面PAC,这是寻找两个平面的垂线的常用方法
1“直线l垂直于平面α内的无数条直线”是“l⊥α”的A充分条件B必要条件
C充要条件D既不充分又不必要条件
答案:B
2给出下列命题,其中正确的两个命题是
①直线上有两点到平面的距离相等,则此直线与平面平行②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面③直线m⊥平面α,直线n⊥m,则n∥α④a、b是异面直线,则存在唯一的平面α,使它与a、b都平行且与a、b距离相等
A①②B②③C③④D②④
解析:①错误如果这两点在该平面的异侧,则直线与平面相交②正确如下图,平面α∥β,A∈α,C∈α,D∈β,B∈
β且E、F分别为AB、CD的中点,过C作CG∥AB交平面β于G,连结BG、GD 设H是CG的中点,则EH∥BG,HF∥GD
∴EH∥平面β,HF∥平面β ∴平面EHF∥平面β∥平面α ∴EF∥α,EF∥β
③错误直线n可能在平面α内
④正确如右上图,设AB是异面直线a、b的公垂线段,E为AB的中点,过E作a′∥a,b′∥b,则a′、b′确定的平面即为与a、b都平行且与a、b距离相等的平面,并且它是唯一确定的答案:D
4在正方体ABCD—A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD
证明:连结MO
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC
1又A1O平面A1ACC1,∴A1O⊥DB
在矩形A1ACC1中,tan∠AA1O=22,tan∠MOC=,2
2∴∠AA1O=∠MOC,则∠A1OA+∠MOC=90°∴A1O⊥OM
∵OM∩DB=O,∴A1O⊥平面MBD
11在四棱锥P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD
(1)当a为何值时,BD⊥平面PAC?试证明你的结论
(1)解:当a=2时,ABCD为正方形,则BD⊥AC
又∵PA⊥底面ABCD,BD平面ABCD,∴BD⊥PA∴BD⊥平面PAC
故当a=2时,BD⊥平面PAC
2.若m、n是两条不同的直线,α、β、γ是三个不同的平B面,则下列命题中的真命题是()
A.若m⊂β,α⊥β,则m⊥α
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若m⊥β,m∥α,则α⊥β
D.若α⊥γ,α⊥β,则β⊥γ
解析:两平面垂直并不能得到一个平面内的任一直线都与另一平面垂直,故A为假命题;以三棱柱的侧面和侧棱为例知B为假命题;若α⊥γ,α⊥β,则β⊥γ或β∥γ,故D为假命题;若m∥α,则α中必存在直线l与m平行,又m⊥β,∴l⊥β,故α⊥β,故选C.答案:C1、给出以下四个命题:
(1)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;
(2)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;
(3)如果两条直线都平行于一个平面,那么这两条直线互相平行;
(4)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
其中真命题的个数是()A、4B、3C、2D、12、设、、为平面,m、n、l为直线,则m的一个充分条件是()
,l,mlB. m,,
C. ,,mD. n,n,m A、
3、m、n是空间两条不同直线,、是空间不同平面,下面有四个命题:
①m,n//,//,则mn②mn,//,m,则n//
③mn,//,m//,则n④m,m//n,//,则n
其中真命题的编号是________(写出所有真命题的编号)。
4、已知PA⊥正方形ABCD所在的平面,垂足为A,连PB,PC,PD,AC,BD,则互相垂直的平面
有对。
三、例题讲解:
例
1、如图,已知PA⊥三角形ABC所在平面,∠ACB=900 ,AM⊥PC,AN⊥PB
(1)求证:PC⊥BC
(2)求证BC⊥平面PCA
(3)求证AMN⊥平面PCD。
1、设,,为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题: ①若,,则∥;②若m,n,m∥,n∥,则∥;
,则l∥;④若l,m,n,l∥,则m∥n.⑤若//,m,n,则m//n⑥若m,n,m//n,则//
⑦若,m//,n//,m,n,则// ③若∥,l
其中真命题的个数是
(A)1(B)2(C)3(D)
42、在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立...的是()(A)BC//平面PDF(B)DF⊥平面PA E
(C)平面PDF⊥平面ABC(D)平面PAE⊥平面 ABC3、如图,在正方形ABCD中,E、F分别是AB、BC的中点,现
在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P,那么在四面体P-DEF
中,必有()
A、DP⊥平面PEFB、DM⊥平面PEF
C、PM⊥平面DEFD、PF⊥平面DEF4、已知P是△ABC所在平面外一点,O是点P在平面内的射影
(1)若P到△ABC的三个顶点的距离相等,则O是△ABC的;
(2)若PA、PB、PC与平面所成的角相等,则O是△ABC的;
(3)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的;
(4)若平面PAB、PBC、PCA与平面所成的角相等,且O在△ABC的内部,则O是△ABC的;
(5)若PA、PB、PC两两垂直,则O是△ABC的;
(6)若PA⊥BC,PB⊥AC,则O是△ABC的;
5.等边三角形ABC的边长为1,BC上的高为AD,沿高AD折成直二面角,则A到BC的距离是()A.2B.2C.D. 22
4AB,BB1,B1C1例
1、(1)如图,在正方体ABCDA1BC11D1中,E,FG,H分别为AA1,的中点,则异面直线EF与GH所成的角等于()
(2)如图,正棱柱ABCDA1BC11D1中,AA12AB,则异面直线A1B与AD1所成角的余弦值为___
(3)如图,在直三棱柱ABC-A1B1C1中,∠BCA=90,点D1、F1分别是A1B1和A1C1的中点,若BC=CA=CC1,求BD1与AF1所成的角的余弦值_________。
(4)在正四面体A-BCD中,异面直线AB与CD所成角的大小是
_______.A
1
例
2、在正四棱柱ABCDA1BC11D1中,AB2BB12,P为B1C1的中点.
1、求异面直线AC与BP所成的角;
2、求点B到平面APC的距离.
例
3、在正三棱锥S—ABC中,D为AB的中点,且SD与BC所成的角为45,则SD与底面所成的角的正弦值为()
A、123B、C、D、323
31.(全国Ⅰ•理•7题)如图,正四棱柱ABCDA1B1C1D1中,AA12AB,则异面直线A1B与AD1所成角的余弦值为()
4123
A.5B.5C.5D.
5ABC内的5(全国一11)已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面
射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()
A.1
23B
.3C
D.3 答案:C6、(福建卷6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为
答案:D
2.线面平行证明的常用方法 篇二
2线面平行证明的常用方法
摘要:立体几何在高考解答题中每年是必考内容,线面平行的证明经常出现,很多同学总觉得证明方法很多很繁,在这里给大家用作辅助线的常用方法及空间坐标系的方法进行阐述。
关键词:找平行线;找第三个点;作平行平面;建立空间坐标系
立体几何在高考解答题中每年是必考内容,必有一个证明题;证明的内容包括以下内容:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:
在线面平行这节里有三个重要的定理:
直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条
直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平
面和这个平面相交,那么这条直线和这个交线平行。
平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直
线和另一个平面平行。
从前面两个定理不难发现:要证线面平行(那么这条直线一定是平行于这个平面的),由性质定理可以得到这样一个结论:只要过这条直线作一个与平面相交的平面,那这个直线一定是与交线平行得。这样我们就可以找到与平面内的直线平行的直线。那么关键是怎样作一个平面与已知平面相交且过直线的平面。下面给大家介绍
方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平行线使它们
与已知平面相交,关键:找平行线,使得所作平面与已知平面的交线。
(08浙江卷)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=90,AD=3,EF=2。求证:AE//平面DCF.分析:过点E作EG//AD交FC于G,DG就是平面
与平面DCF的交线,那么只要证明AE//DG即可。
证明:过点E作EGCF交CF于G,连结DG,可得四边形BCGE为矩形,又ABCD为矩形,∥EG,从而四边形ADGE为平行四边形,所以AD 故AE∥DG.
因为AE平面DCF,DG平面DCF,所以AE∥平面DCF.
方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点,使得所作平
面与已知平面的交线。
(06北京卷)如图,在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,点E是PD的中点.求证:PB//平面AEC.分析:由D、P、B三点的平面与已知平面AEC的交线最易找,第三个点选其它的点均不好找交线.证明:连接BD,与 AC 相交于 O,连接
∵ABCD 是平行四边形,∴O 是 BD 的中点又 E 是 PD 的中点∴EO∥PB.又 PB平面 AEC,EO平面 AEC,∴PB∥平面 AEC.方法三:两个平面是平行, 其中一个平面内的直线和另一个平面平行,关键:作
平行平面,使得过所证直线作与已知平面平行的平面
(08安徽卷)如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,
ABC, OA底面ABCD, OA2,M为OA的中点,N为BC的中
点,证明:直线MN‖平面OCD 分析:M为OA的中点,找OA(或AD)中点,再连线。
证明:取OB中点E,连接ME,NE
ME‖AB,AB‖CD,ME‖CD
又NE‖OC,平面MNE‖平面OCD MN‖平面OCD
方法四:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系
(或找空间一组基底)及平面的法向量。
(07全国Ⅱ•理)如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.证明EF∥平面SAD;
分析:因为侧棱SD⊥底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。
证明:如图,建立空间直角坐标系Dxyz.
0,0),S(0,0,b),则B(a,a,0),C(0,a,0),设A(a,Eaa,0
,F0ab222,
EFba,0
2.
因为y轴垂直与平面SAD,故可设平面的法向量为n
=(0,1,0)
则:EFnba,0
2
(0,1,0)
=0 因此EFn
3.线面平行证法探讨 篇三
惠来一中方文湃
今年我校高一级第一学期质检考试试题第17题第一小题的题目如下: 题目:如图,四边形ABCD是正方形,MA⊥平面ABCD,MA∥PB。
求证:DM∥面PBC
这是一道证明线面平行的经典题目,大家知道,线线平行、线面平行、B面面平行在一定条件下,是可以相
互转化的。其关系如下图:
线∥面面∥面
一、转化为线线平行
证明线面平行的一种方法思路,是转化为线线平行,其关键是在已知平面内找到一条直线与之平行,而 “DM∥面PBC”(线面平行)是待证的正确结论,过已知直线DM的任一截面与平面PBC的交线l显然均与直线DM平行。这就给我们指出了找“线线平行”的平行线的一条康庄大道,所以“线线平行”与“线面平行”是可以互相转化的,辅助截面是实现这一转化的“桥梁”。
接下来的问题,是怎样作出辅助截面。其理论依据有“两平行线确定一个平面”、“两相交线确定一个平面”。于是有下面两种不同解法:
[法一]:运用“两平行线确定一个平面”做出辅助截面。
惠来一中数学科组方文湃
1过M作MN∥AB,交PB于N,连结CN。∵MA∥PB,∴ABNM是平行四边形 即MN∥AB,MN=AB ∵DC∥AB,DC=AB ∴MN∥DC,MN=DC 即DCNM是平行四边形 ∴DM∥CN,N
B
∵CNÌ面PBC,DMË面PBC,∴DM∥面PBC
[法二] 运用“两相交直线确定一个平面”做出辅助截面。若PB=MA,易证DM∥CP,从而DM∥面PBC; 若PB¹MA,设PM∩BA=E,ED∩BC=F(如图所示)。∵MA∥PB,AD∥BC ∴EM:EP=EA:EB=ED:EF
B∴DM∥FP,∵FPÌ面PBC,DMË面PBC
∴DM∥面PBC
小结:线面平行找平行线,辅助截面来帮忙。
二、转化为面面平行
证明线面平行的的另一种方法思路,是转化为面面平行,其关键是在过已知直线的平面中找到一个平面与已知平面平行。而证明“面面平行”的一种方法是,寻找“线线平行”证“线面平行”,得出“面面平行”,再由“面面平行”得出 “DM∥面PBC”(线面平行)。所以 “线线平行”、“线面平行”、“面面平行”是相互
惠来一中数学科组方文湃
密切、相互转化的关系。
[法三]:∵MA∥PB,AD∥BC PBÌ面PBC,MAË面PBC,BCÌ面PBC,ADË面PBC ∴MA∥面PBC,AD∥面PBC ∵MA∩AD=A ∴面MAD∥面PBC ∵DMÌ面MAD∴DM∥面PBC
[法四]:对于本题,转化为面面平行的一种比较方便的方法是证明两个平面MAD、PBC同垂直于同一条直线AB(略)
B
三、向量工具
自从新教材引入向量,向量作为解决几何问题一个行之有效的工具,由于避开了几何繁琐的推理过程,而受到同学们的青睐。向量来解决几何问题首先必须将几何问题转化为向量的运算,最后还要将运算结果翻译几何的结论。
[法五]:容易证明AB⊥PB,AB⊥BC,所以AB是平面PBC的法向量;证明AB
⊥平面MAD可得AB⊥MA,于是MA^AB,故DM∥面PBC
[法六] ∵MA∥PB,∴存在lÎR,使AM=lPB,
∵DA∥CB,DA=CB,∴DM=DA+AM=CB+lBP
CB、BP 是共面向量,∴DM∥面PBC 即 DM、
练习题:如图,已知矩形ABCD和矩形 ADEF所在平面互相垂直,点M,N分别
1在对角线BD,AE上,且BMBD,ANAE
3惠来一中数学科组方文湃
B
C
求证:MN//平面CDE
具体解法,仿照上述。
“问渠哪得清如许,为有源头活水来”。以上各种方法,看似难以想到,毫不相干,其实每一种方法都有它的根源、有它的理论根据。所谓有“果”,必有“因”,找到它的“因”,自然能够修成“正果”。我们在教学中提倡“授之以鱼”,不如“授之以渔”。我们不但要教给学生解题的方法,还要让学生学会解一大类题,融会贯通,达到“举一仿三,触类旁通”的效果,更要让他们理解各种方法的由来,以及其体现的数学思想。
4.《线面平行的判定》课后教学反思 篇四
一、在探究问题上,我首先列举了实际生活中的两个例子,一个是门旋转问题,一个是镜子旋转问题。
通过这两个例子,使学生更加清楚的认识线面平行。然后再课件中,通过学生观察平面外一条直线和平面内一条直线平行,让学生来思考面外这条线和这个面是否平行。这个问题对于初学者是有难度的。我特意在这个班做了一些铺垫。应该说许多学生还是能够马上回答出来的。
二、探究之后是定理内容的`总结及应用。几个比较好的.小地方是:
(1)及时强调了定理内容的三个要点并在做题步骤中一直进行强调,使学生把握住了做题的关键;
(2)在黑板上进行了例题1的规范步骤的板书,并一直保留着这块板书,使学生有依可循;
(3)让学生上黑板进行板书,对学生的做题程度进一步掌握,并及时发现解决了一些问题(这一点似乎每个老师在开课的时候都有这个环节)。
不足之处:
(1)最后一道练习题只是把思路给学生说了说,然后是作为课后作业给布置下去的,这一点需要改进一下,其实主要原因还是因为时间上没控制好,因为开头花的时间有点多,导致最后时间不够用了,前松后紧;
(2)最后的当堂练习如果给学生只是检测2个题会更好一些,时间上也更充裕,特别是第三题有点难度,导致有点拖堂;
5.数学必修2线面平行的 篇五
课题:线面平行、面面平行
教学目标:掌握线面平行、面面平行的判定方法,并能熟练解决线面平行、面面平行的判定问题.(一)主要知识及主要方法:
1.线面平行的证明1判定定理:如果平面外一条直线与这个平面内一条直线平行,那么这
a,条直线与这个平面平行;ba∥,2两平面平行的性质定理:
ABnABn0∥b.3向量法.方法1;AB∥ ABàABàA AB∥CD方法2;AB∥ABà C CDÔ
方法3;C
即利用平面向量基本定理进行证明.如图,CDxACyABCD∥(其中x,yCDà
BCA
2.面面平行的证明:1判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.2垂直于同一条直线的两个平面平行;3平行于同一个平面的两个平面平行.3设n1、n2分别是平面、的法向量,若n1∥n2,则∥
(二)典例分析:
问题1.(06北京)如图,在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且 PAAB,点E是PD的中点.1略; 2求证:PB∥平面AEC;3略.EA B D 437
问题
2008届高三理科数学第一轮复习讲义第60课时
S2.如图,在正三棱锥SABC中,E
D、E、F分别是棱AC、BC、SC上的点,且CD2DA,CE2ES,CF2FB,G是AB的中点.1求证:平面SAB∥平面DEF;
2求证:SG∥平面DEF
(三)走向高考:
AD
C
GS
E
AD
G
1.(07全国Ⅱ)如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD, E、F分别为AB,SC的中点. 1证明EF∥平面SAD;2略.S
F
C
A
E
B
6.线面平行的证明中的找线技巧 篇六
1.已知直线a∥平面,直线a∥平面,平面平面=b,求证a//b.
分析: 利用公理4,寻求一条直线分别与a,b均平行,从而达到a∥b的目的.可借用已知条件中的a∥α及a∥β来实现.
证明:经过a作两个平面和,与平面和分别相交于直线c和d,∵a∥平面,a∥平面,∴a∥c,a∥d,∴c∥d,又∵d平面,c平面,∴c∥平面,又c平面,平面∩平面=b,∴c∥b,又∵a∥c,所以,a∥b.
2.已知:空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//A平面BCD. 证明:连结BD,在ABD中,∵E,F分别是AB,AD的中点,∴EF//BD,EF平面BCD,BD平面BCD,∴EF//平面BCD.
3、已知:空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥平面BCD。
B
证明:连结BD,在△ABD中,∵E、F分别是AB、AD的中点 ∴ EF∥BD
B正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.又 EF平面BCD,BD平面BCD,∴EF∥平面BCD(直线和平面平行判定定理)
A
F
D
C
证法一:如图9-3-4(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB.又∵AP=DQ,∴PE=QB.又∵PM∥AB∥QN, ∴
PMAB
PEAE,QNDC
BQBD
.∴
PMAB
QNDC
.∴即四边形PMNQ为平行四边形.∴PQ∥MN.又∵MN面BCE,PQ面BCE,∴PQ∥面BCE.证法二:如图9-3-4(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.∵AD∥BC,∴
DQQB
AQQK
.又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ,∴
AQQK
APPE
.则PQ∥EK.∴EK面BCE,PQ面BCE.∴PQ∥面BCE.点拨:证明直线和平面平行的方法有:①利用定义采用反证法;②判定定理;③利用面面平行,证线面平行.其中主要方法是②、③两法,在使用判定定理时关键是确定出面内的与面外直线平行的直线.5 已知:如图9-3-6,面α1∩面α2=b,a∥面α1,a∥面α
2.求证:a∥b.证法一:过直线a作两个平面β1和β2,使得平面β1∩平面β1=c,面β2∩面α2=d.∵a∥面α1,a∥面α2,∴a∥c,a∥d.∴c∥d.∵d面α2,c面α2.∴c∥面α2.又∵c面α1,面α1∩面α2=b,∴c∥b.∴a∥b.证法二:经过a作一平面π,使得平面π∩面α1=k,面π∩面α2=l.∵a∥面α1,a∥面α2, ∴a∥k,a∥l,则k∥l∥a.∵三个平面α
1、α
2、π两两相交,交线分别为k、l、b且k∥l,∴k∥l∥b,则a∥b.证法三:在b上任取一点A,过A和直线a作平面和平面α1相交于l1,和平面α2相交于直线l2.∵a∥面α1,a∥面α2, ∴a∥l1,a∥l2.∵过一点只能作一条直线与另一直线平行,∴l1与l2重合.又∵l1面α1,l2面α2,∴l1与l2重合于b.∴a∥b.点拨:证明直线与直线平行,有下列方法:(1)若a,b面α,则a∥b;(2)若α∩β=a,β∩γ=b,γ∩α=c且a∥b∥c;(3)若a∥b,b∥c,则a∥c;(4)若a∥α;aβ,α∩β=b,则a∥b.6.P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ..证明:如答图9-3-2,连结AC交BD于点O.∵ABCD是平行四边形,∴AO=OC.连结OQ,则OQ在平面BDQ内,且OQ是△APC的中位线,∴PC∥OQ.∵PC在平面BDQ外,∴PC∥平面BDQ.7.在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D
四点共面;(2)面AMN∥面EFBD..证明:(1)分别连结B1D1、ED、FB,如答图9-3-3,则由正方体性质得 B1D1∥BD.∵E、F分别是D1C1和B1C1的中点,∴∴121
2B1D1.BD.∴E、F、B、D对共面.(2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.∵M、N为A1B1、A1D1的中点,∴MN∥EF,EF面EFBD.∴MN∥面EFBD.∵O,∴四边形PAOQ为平行四边形.∴PA∥OQ.而OQ平面EFBD,∴PA∥面EFBD.且PA∩MN=P,PA、MN面AMN,∴平面AMN∥平面EFBD.//
S72S。
证明:
GDGHGAC//BD
EACFBD
HEHAHAE//BF
ACBD
GAGB
9
21AE∥BF
BFAE
HBHA
1628
AC∥BD
SAECSBFD
212
ACAEsinA
BFBDsinB
37374
4∴ SBFD96正方形ABCD交正方形ABEF于AB(如图所示)M、N在对角线AC、FB上且AM= FN。求证:MN //平面BCE
证:过N作NP//AB交BE于P,过M作MQ//AB交BC于Q
CM
QM
BN
NPEF
AC
ABBF
NPMQ
又 ∵
NP//AB//MQMQPN
MN//面BCE
PQ面BCE
PE
CF
FA求证:EF//面PCD
CF
HFFB
MN//PQ
10.P为ABCD所在平面外一点,EPB,FAC,且EB
.证:连BF交CD于H,连PHAB//CD∴ ABF∽CFH∴ FA
PE
CFFA
HFFB
在BPH中EB
EF//PH
EF面PCDPHPCD∴ 11已知:平面α∩平面β=a求证:a、b、c证明:∵α∩β=a,β∩∴a、bβ
∴a、b相交或a∥b.(1)a、b相交时,不妨设a∩b=P,即P∈a,P∈b 而a、bβ,aα
∴P∈β,P∈α,故P为α和β的公共点 又∵α∩γ=c
由公理2知P∈c
∴a、b、c都经过点P,即a、b、c三线共点.(2)当a∥b时
∵α∩γ=c且aα,aγ ∴a∥c且a∥b ∴a∥b∥c
故a、b、c两两平行.12如图,正方体ABCD—A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.证法一:连AF延长交BC于M,连结B1M.∵AD∥BC ∴△AFD∽△MFB ∴
AFFM
DFBF
又∵BD=B1A,B1E=BF ∴DF=AE ∴
AFFM
AEB1E
∴EF∥B1M,B1M平面BB1C1C ∴EF∥平面BB1C1C.证法二:作FH∥AD交AB于H,连结HE ∵AD∥BC
∴FH∥BC,BCBB1C1C ∴FH∥平面BB1C1C 由FH∥AD可得
BFBD
BHBA
又BF=B1E,BD=AB1 ∴
B1EAB1
BHBA
∴EH∥B1B,B1B平面BB1C1C ∴EH∥平面BB1C1C,EH∩FH=H
∴平面FHE∥平面BB1C1C EF平面FHE
∴EF∥平面BB1C1C
说明:证法一用了证线面平行,先证线线平行.证法二则是证线面平行,先证面面平行,然后说明直线在其中一个平面内.∴△END的面积为
nm
7.数学必修2线面平行的 篇七
例
1、若某空间几何体的三视图如图所示,则该几何体的体积是
()(A)2(B)1(C)2 31(D)
3例
2、一个几何体的三视图如图,该几何体的表面积是()
(A)372(B)360(C)292(D)280
例
3、如图1,△ ABC为正三角形,AA//BB //CC , CC ⊥平面ABC且3AA=
()
例
4、一空间几何体的三视图如图所示,则该几何体的体积为().A.2
B.4
3BB=CC=AB,则多面体△ABC-ABC的正视图(也称主视图)是
2C.2
练习
D.4 3
3正(主)视
侧(左)视图
俯视图
1.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图2所示,则这个几何体的体积为 A.
234B.2C.D.
433
2.如图所示,一个空间几何体的正视图和侧视图都是边 长为1的正方形,俯视图是一个圆,那么这个几何 体的体积为 ..
B. 42
C.D.
2A.
侧视图
3.一个几何体的三视图如图2所示,那么这个几何体的表面积为
....
2正视图
2侧视图
正视图
侧视图
俯视图
俯视图
4.已知某几何体的三视图如图所示, 其中俯视图是腰长为2的等腰梯形, 则该几何体的体积为
A.C.空间点、直线、平面之间的位置关系 1平面
判定直线在平面内:如果一条直线上的两点在一个平面内,那么这两条直线在此平面内。
确定一个平面:过不在一条直线上的三个点,有且只有一个平面 推论1:一个直线外的点与一条直线确定一个平面 推论2:两条相交直线确定一个平面 推论3:两条平行直线确定一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
空间中直线与直线的位置关系
判断直线与直线平行:平行于同一条直线的两直线互相平行(平行的传递性)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。异面直线垂直:如果两条异面直线所成角是直角,那么这两条线互相垂直。·异面直线所成角不大于90度!空间中直线与平面之间的位置关系
·直线与平面的位置关系:在平面内,与平面相交,与平面平行。平面与平面之间的位置关系
·平面与平面的位置关系有且只有两种:相交于平行 2 直线、平面平行的判定及其性质 直线与平面平行的判定
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
定理2:若两个平面平行,则其中一个面的任意一条直线与另一个面平行。平面与平面平行的判定
定理1:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 定理2,:若两条相交直线与另外两条相交直线分别平行,则这两个平面平行直线与平面平行的性质
定理1:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与此平面平行。
(·作用:证明线线平行 ·做法:经已知直线做一个平面与已知平面相交)平面与平面平行的性质
定理:如果两个平行平面同时和第三个平面相交,那么他们的交线平行。
补充:证明线线平行的方法: 1.平行的传递性
2.线面平行的性质定理(·关键:寻找面面的交线)3.证明为第三个平面与两个平行平面的交线
一、选择题
1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面;B.一个平面内的两条直线平行于另一个平面 C.一个平面内有无数条直线平行于另一个平面 D.一个平面内任何一条直线都平行于另一个平面
2、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是()A.b∥αB.b
α
C.b与α相交D.以上都有可能
3. 直线a,b,c及平面,,使a//b成立的条件是()
A.a//,bB.a//,b//C.a//c,b//cD.a//,b 4.若直线m不平行于平面,且m,则下列结论成立的是()A.内的所有直线与m异面B.内不存在与m平行的直线 C.内存在唯一的直线与m平行D.内的直线与m都相交 5.下列命题中,假命题的个数是()
① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④平行于同一条直线的两条直线和同一平面平行;
A.4B.3C.2D.1 6.在空间中,下列命题正确的是(). A.若a∥α,b∥a,则b∥α
B.若a∥α,b∥α,a⊂β,b⊂β,则β∥α C.若α∥β,b∥α,则b∥β D.若α∥β,a⊂α,则a∥β.β是两个不重合的平面,a,b是两条不同直线,在下列条件下,可判定∥β,的是()
A.,β都平行于直线a,b
B.内有三个不共线点到β的距离相等 C.a,b是内两条直线,且a∥β,b∥β
D.a,b是两条异面直线且a∥,b∥,a∥β,b∥β
8.平面α∥平面β,a⊂α,b⊂β,则直线a,b的位置关系是(). A.平行C.异面
B.相交 D.平行或异面
9.设a,b表示直线,,表示平面,P是空间一点,下面命题中正确的是()A.a,则a//B.a//,b,则a//bC.//,a,b,则a//bD.Pa,P,a//,//,则a 10.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是()
A.异面B.相交C.平行D.不能确定 11.下列四个命题中,正确的是()①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A.①③B.①②C.②③D.③④ 12.在下列命题中,假命题的是A.若平面α内的任一直线平行于平面β,则α∥βB.若两个平面没有公共点,则两个平面平行
C.若平面α∥平面β,任取直线aα,则必有a∥β
D.若两条直线夹在两个平行平面间的线段长相等,则两条直线平行
二、填空题
13.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
14.正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1和平面ACE位置关系是.
15.a,b,c为三条不重合的直线,α,β,γ不在平面内,给出六个命题:
a∥ca∥∥c①a∥b;②a∥b;③∥;b∥cb∥∥c④
为三个不重合的平面,直线均
∥c
∥∥
a∥;⑤∥⑥a∥a∥c∥a∥
其中正确的命题是________________.16.如图,若PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面
8.必修2数学课件 篇八
本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课。其中直线与平面垂直的概念及判定定理的形成是教学重点。
直线与平面垂直在本节中的位置。线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例。在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式。线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容。例如,空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用。
通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法。因此,学习这部分知识有着非常重要的意义。
教学目标设置
(1)理解直线与平面垂直的定义和判定定理,会用自然语言、图形语言、符号语言来表示定义和判定定理。
(2)掌握线线垂直与线面垂直之间的相互转化关系,从而体会降维化归的思想。
(3)在定义及定理的探究活动中,发展学生合情推理能力与演绎推理的能力。
(4)经历借助实例、图形思考问题的过程,进一步发展空间观念。
学生学情分析
1.学生已有的认知基础
学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直与线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法。
2.达成目标所需要的认知基础
要达成本节课的目标,这些已有的知识和经验基础不可或缺,除此之外,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时还需要具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯。
学生情况:学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整及严谨的数学思维习惯,对问题的探究能力也有待培养。
3.教学难点及突破策略
教学难点:
(1)运用类比及化归等数学思想方法来研究直线与平面垂直的定义,突破对“任意”的生成和理解。
(2)探究、归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化。
突破策略:
(1)启发学生明确研究的内容与方法,从总体上认识研究的目标与手段。
(2)引导学生经过直观感知、操作确认、思辨论证的过程形成线面垂直的定义和判定定理。
(3)发动学生通过问题串交流、汇报、展示思维过程,相互启发。
9.关于线面平行问题的探讨 篇九
刘玉扬中市第二高级中学 中学二级教师
摘要:本文重要通过几个例题,对高考中常见的线面平行问题做一些简单的探讨,主要讨论如何运用判定定理来证明线面平行问题。
关键词: 高考 线面平行 立体几何
正文
直线和平面平行是立体几何初步中的一类重要题
型,如何判断并证明线面平行,也是历年高考中的常见
题型。本文拟从几个经典的线面平行例题出发,结合往
年高考题对线面平行做进一步的探讨。
【例1】如图,E,F,G,H分别是空间四边
形ABCD的边AB,BC,CD,DA的中点,求证:
(1)四点E,F,G,H共面;(2)BD//平面EFGH,AC//平面EFGH。
分析:(1)要证明E,F,G,H四点共面,可以根据公理3的第3个推论,证明这四点所在的两条直线EH和FG平行,或者直线EF和HG平行;
(2)易得,BD//FG,AC//EF,从而根据线面平行的判定定理证明。解:(1)E,F分别为AB,BC的中点,EF//AC
同理HG//AC,从而EF//HG
所以,直线EF和直线HG可以确定一个平面,E直线EF,直线EF,E。同理,F,G,H
故E,F,G,H四点共面。
(2)由(1)知,EF//AC,又EF面EFGH,AC面EFGH,AC//面EFGH。同理,BD
//面EFGH
点拨:本题是苏教版数学必修2第36页习题第3题,第(2)问主要考查线面平行的判定定理,比较简单。
【探究一】将上例改为:E,F,G,分别是空间四边形ABCD的边AB,BC,CD,的中点,试在边DA上找一点H,使得四点E,F,G,H共面,并讨论当BD和AC满足什么关系时,四边形EFGH为菱形、正方形?
分析:本题可以利用线面平行的性质定理,将HG看成是平面EFGH与平面ACD的交线,从而EF//HG,从而易知四边形EFGH为平行四边形,再根据边的关系进一步探讨平行四边形ABCD的形状。
解:E,F分别为边AB,BC的中点,EF//AC
又EF面ACD,AC平面ACD
EF//面ACD
E,F,G,H四点共面,即平面EFGH平面ACDHG
从而,EF//HG,故HG//AC,所以,H为边DA的中点。11AC,GH//AC,所以EFGH,故四边形EFGH为平行四2
211边形。当EFFG,即ACBD,也即ACBD时,四边形EFGH为菱形;22
当ACBD时,有EFFG,从而,当ACBD且ACBD时,四边形EFGH易得,EF//为正方形。
【探究二】如果将例1中的E,F,G,H是各边中点弱化,改为:在空间四面体ABCD
G,H分别是边AB,BC,CD,DA上的点,中,且满足E,F,AEAHCFCG,EBHDFBGD
结论还成立吗?
分析:要证明四点共线以及线面平行,只要找到线线平行就可
以了。例1中,遇到中点经常联系到中位线得到平行,其实,得到
平行的方法还有很多,思维不能定势,在做立体几何题目的时候要
注意思维的灵活性,抓住线面平行判定的常用方法,找准线线平行
就可以了。
牛刀小试:[2011·北京卷改]如图,在四面体PABC中,PCAB,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(1)求证:DE//平面BCP;
(2)求证:四边形DEFG为矩形;
解:(1)证明:D,E分别为AP,AC的中点,DE//PC
又DE平面BCP,PC平面BCP
DE//平面BCP
(2)点D,E,F,G分别是棱AP,AC,BC,PB的中点.
DE//PC//FG,DG//AB//EF
四边形DEFG为平行四边形.
又PCAB,DEDG,从而平行四边形DEFG为矩形.
点评:证明线面平行的方法一般有三种:定义法、线面平行的判定定理、面面平行的性质。而在高考中,常见的是运用判定定理来证明,这就需要在平面内找一条直线与已知直线平行。上面这几个题目找平行线都不难,下面我们再分析一下,一般情况下如何找平行线。
【例2】如图,正方体ABCDA1B1C1D1中,M,N分别是B1C,BD的中点,求证:MN//平面AA1B1B。
分析:只要在平面AA1B1B中找到一条直线与MN平行即可。一种方法,因为M,N分别是B1C,BD的中点,容易联想到中位线,连结AB1和AC,易得MN//AB1;其次,可以将点C看成投影中心,MN在平面AA1,故MN//AB1B1B的投影正好是AB1。除了用判定定理之外,本题还可以取BC的中点G,通过证明平面MNG//平面AA1B1B得到MN//平面AA1B1B。
解:连结AB1和AC,因为M,N分别是B1C,BD的中点,故MN//AB1,又MN平面AA1B1B,AB1平面AA1B1B,所以,MN//平面AA1B1B。
【探究一】将原题改为:正方体ABCDA1B1C1D1中,点N在BD上,点M在B1C上,且CMDN,求证:MN//平面AA1B1B。
分析:将中点弱化为线段上的点,并没有改变由线线平行得到线面平行的本质,只是在找平行线时遇到了困难。用中心投影的方法,本题非常简单,但是不用这个方法,怎么找出交线呢?显然,CN必和AB相交,设交点为E,CMA1B1B1,从而,B1E可看做是
MN//平面AA过MN的平面CMN与平面AA1B1B成立,根据线面平1B1B的交线,若结论
行的性质定理,必有MN//B1E,也就是说,只要我们能够证明MN//B1E,就可以证明最终的结论了。而要证明MN//B1E,根据已知条件,结合正方体的特点,证明并不难。
证明:如图,延长CN交直线AB于点E,连结B1E。CMDN,
而CMDN,MB1NBDNCNCMCN,从而,即有MN//B1E,又MN平面AA1B1B,NBNEMB1NE
B1E平面AA1B1B,所以,MN//平面AA1B1B。
点评:本题是将线面平行的问题放在正方体这个背景中,但是,实际解决问题时,我们完全可以仅仅将这个问题放在四棱锥B1ABCD中,适当改变
相应的条件。
【探究二】如图,在四棱锥PABCD中,底面ABCD
为
菱形,BAD60,Q为AD的中点,点M在线段PC上,PMtPC,试确定实数t的值,使得PA//平面MQB。
分析:如图,MN是过PA的平面PAC与平面MQB的交线,若PA//平面MQB,PMANANAQ1PCACANNCAQBC3。则有PA//MN,从而
解:连结AC交BQ于点N,则过PA的平面PAC与平面MQB的交线为MN,若
PMAN,PA//平面MQB,由线面平行的性质定理,知PA//MN。从而,tPCAC
ANAQ1ANAN11,所以,即又在菱形ABCD中,有NCBC2ACANNC12
31t。3t
点评:解决这类探究性的命题,其基本方法就是将结论当作已知条件。立体几何中这类题型往往不是很难,只要能够抓住条件,如本题,充分运用线面平行的判定、性质定理,化难为易。
牛刀小试:如图,平面内两个正方形ABCD与ABEF,点M,N分别在对角线AC,FB上,且AM:MCFN:NB,沿AB折成直二面角。(1)证明:折叠后MN//平面CBE;
(2)若AM:MC2:3,在线段AB上是否存在一点G,使平面MGN//平面CBE?若存在,试确定点G的位置。
分析:这是一类创新的题型——折叠问题,要能够把握折叠前后的不变量,问题就可以
迎刃而解。解决第二问时,只要根据面面平行的判定定理,由第一问的结论,再在面ABCD内过M点作AB的垂线,垂足即为点G。对于第一问,既可以通过面面平行来证,也可以在平面CBE内找一条直线与MN平行即可,还是可以利用线面平行的性质定理,延长AN交BE于点H,则直线CH为过MN的平面AMN与平面CBE的交线,则只要证明MN//CH即可,与例2的“探究二”类似。
解:(1)延长AN交BE于点H,则由AF//BE知,所以ANFNFNAM,而,NHNBNBMCAMAN,从而MN//CH。又因为MN平面CBE,CN平面CBE,所以,MCNH
MN//平面CBE;
(2)若平面MGN//平面CBE,由平面ABC平面MNGMG,AGAM2。平面ABC平面CBECB知MG//BC,从而,GBMC3
【小结】本文通过两个例题,对高考中常见的线面平行这一类重要证明题型做了简单的分析,并根据例题进一步展开,探讨一般情况下如何找线线平行,进而根据判定定理来证明线面平行,当然,线面平行大体上有三种证法,由于篇幅限制,本文主要对判定定理进行了
拓展,希望对同学们在复习这部分内容时有所帮助。
参考文献:
[1]鲍启静.线面平行之常见题型[N].中学生数理化.2008(2)
[2]崔君强.好记好用得“光照法”证明线面平行[N].中学生数学.2011-6月上(419)
【数学必修2线面平行的】推荐阅读:
高中数学必修5高中数学必修5《2.2等差数列(二)》教案07-17
数学必修2教学设计08-05
高中数学必修2第28页06-29
高一数学必修2知识点(人教版-新课标)07-23
高中数学 2.1.2指数函数及其性质(二)教案 新人教A版必修08-19
2016年高中北师大版数学必修一教案教学设计:2.3映射08-19
数学必修二总结10-25
高三数学必修三复习的知识点分析08-22
高中数学必修15目录08-18
高中必修二数学教案10-20