余弦函数的性质说课稿(通用10篇)
1.余弦函数的性质说课稿 篇一
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识目标:掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3) 情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的图像与性质.
难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化.
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透数形结合、分类讨论等数学思想方法.
(4)用探究性教学、提问式教学和分层教学
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1) 探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
归纳得出对数函数的图像与性质。
(2) 主动式学习:学生自己归纳得出对数函数的图像与性质。
四、说教程
1、温故知新
我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。
设计意图:这与本节内容有密切关系,有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生分析问题的能力.
2、探求新知
研究对数函数的图像与性质.关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的.方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质.
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习.
3、课堂研究,巩固应用
例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解.
例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况.
例3 解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.
4、巩固练习
使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握.从两方面进行小结:
(1) 掌握对数函数的图像与性质,体会数形结合的思想方法;
(2) 会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的
解法,体会分类讨论的思想方法.
6、作业:p97习题3,4,5
选做题 6题
2.余弦函数的性质说课稿 篇二
今天我说的是:人教版义务教育课程标准实验教科书八年级下册第十九章第一节“平行四边形及性质”一课。我主要从以下几个方面介绍我对本节课的设计。
一、设计理念
本节课以学生观察操作、合作探究、感悟发现为学习主要方式, 实施开放式教学。创设民主、宽松的教学气氛, 最大限度地调动学生的积极性, 体现了教师的教学行为和学生的学习方式的转变。
二、教材及学情分析
1. 教材的地位和作用
平行四边形不仅是对已学的平行线和三角形知识的应用与深化, 而且为以后将要学习的矩形、菱形、正方形、梯形等知识打下了基础, 起着承上启下的桥梁作用。另外, 为证明线段相等、角相等、两直线平行提供了新的方法和依据。因此, 本节课的重要性是不言而喻的。
2. 学情分析
学生在小学时已经对平行四边形有了初步的、直观的认识, 但对于严密的推理论证, 从知识结构和知识能力上都有所欠缺。而利用动手操作来实现探究活动, 对学生具有一定的吸引力, 可激发学生的强烈的求知欲。
3. 教学目标
根据课程标准的要求, 结合教材的具体内容, 从学生的实际认知水平出发, 确立了以下三个维度的教学目标。
(1) 知识与技能:掌握平行四边形的相关概念和性质, 培养学生初步应用这些知识解决问题的能力。
(2) 过程与方法:通过观察、实验、猜想、推理、交流等教学活动, 学生亲历探索的过程, 体会解决问题策略的多元化。
(3) 情感态度与价值观:培养学生独立思考的习惯与合作交流的意识, 激发学生探索数学奥秘的兴趣, 使学生在数学活动中获得成功的体验。
4. 教学重、难点
教学重点:理解并掌握平行四边形的概念和性质。
教学难点:利用图形变换的思想, 探究平行四边形的性质。
5. 教材的处理
按教材编排, 平行四边形性质共分5课时完成, 我对本节教学内容进行适当的重新组合。第一课时重点是安排学生探究平行四边形的概念及所有性质, 并初步运用这些性质进行有关的论证和计算。这样安排, 能很好地体现知识结构的完整性和系统性。
三、教学方法和手段
本节课在教法上体现教师的启发引导, 帮助学生实现认识上与态度上的跨越。在学法上突出学生的自主探究、合作交流, 利用多媒体、自制教具辅助教学, 增强教学的直观性、实效性。
四、教学程序
1. 创设情境, 揭示主题
问题一:同学们, 你们留意观察过我们教学楼前的两个花坛吗?它们是由一些什么样的图形组成的?学生根据已有的经验, 可能回答是平行四边形、菱形、四边形等。教师用多媒体展示, 直观上看是平行四边形构成的。
问题二:房屋装修, 想换掉旧的瓷砖, 需要预算一下用料情况。聪明的瓦工说, 平行四边形有一种对称的美, 只要量出一个角的度数, 就能知道其他三个角的度数, 测量出一组邻边长, 便能计算出周长, 这样根据瓷砖的尺寸就可以预算了。这是为什么?告诉学生, 学习完本节课就能明白解决问题的道理。出示课题。
这样设计, 从学生的生活实际出发, 创设情境, 提出问题, 激发学生的强烈的好奇心和求知欲。让学生感受到平行四边形与生活实际紧密相连, 同时把思维的兴奋点集中到要研究的平行四边形上来, 为下一步的学习新知识创造良好的开端。
2. 实践探究, 感悟新知
本环节设置以下几个活动:
活动一:拼一拼。你能利用两个全等的三角形拼出四边形吗?学生动手操作, 教师留意观察。请同学们把拼出的6种不同的四边形展示在黑板上。
活动二:看一看。观察拼出的特殊四边形对边有怎样的位置关系?说说你的理由。给出平行四边形的定义, 对黑板上的图形进行识别, 让学生体验类比的教学思维。
活动三:画一画。让学生根据定义画一个平行四边形, 观察它有哪些基本元素。教师示范画图, 结合图形介绍对边、对角、对角线及平行四边形的记法、读法, 规范学生的几何语言。教师强调定义的两方面作用。
通过拼图、看图、画图游戏让学生经历概念的探究过程, 自然而然地形成概念, 符合学生的认知规律, 避免概念教学的机械记忆。同时, 学生对平行四边形相关元素也获得丰富的直观体验, 为介绍图形性质作了有利铺垫。
3. 大胆猜测, 探究新知
首先, 教师展示模型, 让学生仔细观察, 大胆猜测, 对边、对角、对角线大小有什么关系。培养学生仔细观察, 积极思维的能力。其次, 学生利用模型, 采用度量、平移、旋转、折叠、拼图的方法, 初步验证猜测的结论。小组合作探究, 教师以合作身份参与并适当予以指导。鼓励学生探究方式、结果表示方法的多样化, 并填写实验报告。第三, 学生展示实验过程、结果, 教师引导按边、角、对角线进行归类梳理, 使知识的呈现具有条理性。学生相互交流, 并用规范的语言描述性质。然后请大家思考, 利用以前学过的知识, 对以上结论进行验证, 教师小结。
本环节注重直观操作和简单推理有机结合。把几何论证作为探究活动的自然延续和必然发展, 使学生的实践精神、创新意识和自觉说理的能力得到提高。
4. 开放训练, 深化新知
例1:平行四边形ABCD中∠A比∠B大40度, AB=8, 周长等于24。从这些信息中你能得到哪些结论?把“周长等于24”改为“对角线AC、BD交于点O, △AOB的周长为24”求AC、BD的和是多少?本环节打破讲解书上例题的传统, 自己设计开放题作为例1, 有利于充分运用已学的性质, 加强对新知识的应用意识。
例2:解决课前提出的实际问题。你现在知道它是怎么计算的吗?依据是什么?回扣导言, 体现数学教学的连贯性和知识的应用性。
5. 分层作业形成技能
A类练习:
(1) △ABC中, 已知∠A=50°, 则∠B= () , ∠C= () , ∠D= () 。
(2) △ABC中, 已知∠A+∠C=200°, 则∠A= () , ∠B= () 。
(3) △ABC中, AB=3, BC=5, 则△ABC的周长为 () 。
(4) △ABC中, AC、BD相交于点O, AC=10, BD=8, △AOB的周长为16, 则AB= () 。
B类练习:
(1) 试一试, 把一根平放在平行四边形ABCD的纸条固定在对角线的交点处, 然后拨动纸条, 观察几次拨动的结果, 你有什么发现?学生在这样动态的思维场景中观察、分析、归纳、推理, 培养学生发现问题、分析问题、解决问题的能力, 使学生真正成为知识的探究者。
(2) 已知平面内三点A、B、C, 是否存在点D, 使得这四个点顺次联结构成平行四边形, 如果存在, 作出图形并说明理由。
作业的设计体现了分层训练的教学原则, 同时为探究平行四边形性质的应用, 做好铺垫。做到既着眼学生的共同发展, 又关注学生的个性差异。
6. 反思小节, 启迪升华
这是一次知识与情感的交流。引导学生谈谈本节课的收获及在知识获得过程中的体验和感受。这样可以及时反馈学生的学习效果, 便于课堂教学的优化。
(1) 通过探究本节课你得到了哪些结论?
(2) 总结解决四边形的问题的方法, 证明线段相等、角相等的方法。
(3) 在应用性质解题时应注意哪些问题?
7. 板书设计 (图略)
五、教学反思
3.《菱形的性质》说课稿 篇三
(一)教材所处的地位及作用
《菱形》在初中数学中是继矩形之后所研究的第二种特殊的平行四边形。它既是对平行四边形和矩形的延续和深入,同时也为后面正方形的学习打下基础,教学上存在“温故”和“知新”两方面内容,在本章中起着承上启下的作用。
(二)教学目标
(1)了解和掌握菱形的性质和概念,会进行简单的计算;
(2)在操作和观察的基础上,发现菱形区别于平行四边形的主要特征,体会几何说理的基本方法; 同时培养自主探索,合作学习的精神和能力。
(三)重点、难点
本节课的教学重点是菱形的性质及应用,教学难点是菱形性质的探究和菱形的面积公式的推导。
二、学情分析
学生刚刚学完平行四边形和矩形,已具备平行四边形的相关知识及探究矩形的方法 ,有了一定的活动经验。同时初二的学生思维活跃,求知欲强,对实验、猜想、探索性的问题充满好奇,有一定的动手能力和获取新知识的能力。
三、教法与学法分析
针对本节课的特点,采用“动手实践、主动探究、合作交流”为主线的教学模式,在教学方法上采用设疑、讨论、引导、归纳等启发式教学。 渗透类比、转化以及分类讨论的数学思想。
四、教学过程分析
为了让学生有效地掌握本节课的重点,从而突破难点,我设计了八个活动和让学生去探究。
活动一:创设情境
上课一开始,我就通过多媒体,平移平行四边形的一条短边,给学生演示平行四边形到菱形的转变过程,从而引入课题。引入以后,我接着问:那怎样的图形是菱形呢?学生思考,老师再次给同学们更详细地演示平行四边形到菱形的转变过程,学生通过观察,思考,讨论,探究,从而得出菱形的定义。
1.菱形定义:在这需要强调两点:第一,菱形是平行四边形.第二,邻边相等。
2.图片欣赏,感受生活(接着我给学生展示了生活中的一些菱形图片)。
学生通过欣赏自然会想:这么美丽的图形有什么独特的性质呢?从而进入到下一活动中。我设计这一活动的目的是:第一,通过多媒体演示激发起学生的学习欲望,同时能让学生直观感受到平行四边形和菱形两者之间的关系,引入课题,给出定义。第二,通过欣赏生活中的图形,从中抽象出 “菱形”的模型,让学生体会“数学就在我们身边”,感受几何美与生活美,激发学生的创作欲望。
活动二:合作探究
活动二是我整个教学过程的重点,安排了充分的时间让学生去探究,去突破。在这一活动中我设置了两个环节,一是探究菱形的性质,二是探究菱形的面积:
1.菱形的性质的研究
先让学生拿出课前准备好的剪刀和一张矩形纸,引导学生将这张矩形的纸对折两次,然后沿着图中的虚线剪出一个菱形,通过观察折叠等方法发现、讨论、总结菱形的性质,完成以下设置的问题。探究菱形的性质:
(1)边,角,对角线;
(2)你能自己完成证明吗?请写出已知、求证,并证明;
(3)请找出菱形中的等腰三角形,直角三角形,全等三角形;
这里我采用的是小组合作,小组竞赛的形式去完成,在学生折叠,观察,讨论探究中,老师要给他们以引导,鼓励方法的多样性,鼓励从不同角度去探究,让学生畅所欲言,整体感知。从边,角,对角线等方面,有条理的总结结论。
2.探究菱形的面积:S菱形=底×高=对角线乘积的一半
在探究菱形面积时,鼓励学生用不同方法去表示,当发现学生有困难时,老师可适当引导一下,让学生明白首先菱形是特殊的平行四边形,所以可用平行四边形底乘以高来求,还可以利用菱形独特的特征将菱形的面积转化为四个全等的直角三角形的面积和,进而发现菱形的面积等于两条对角线乘积的一半。
〖设计意图〗:通过这一活动能让学生在相互的交流中发现性质;在合作探究中感受化归、类比、转化的数学思想。同时感受到合作的乐趣。
活动三:学以致用
探究出性质以后,就要应用性质,于是在活动3中我设置了两道例题,因为学生第一次接触菱形,性质的灵活运用对他们来说是有难度的,教师要做好引导,给出规范解题格式。所以这一环节采用师生合作探究,老师质疑,学生思考,老师引导,学生解决,能让学生把所学的知识得以灵活应用,融会贯通。
活动四:巩固提高
通过例题的探究解决,学生具备了一定的独立思考解决问题的能力,根据本节课的内容和知识点设置了4道巩固提高题目,限定时间让学生独立完成。
活动五:归纳小结
为了更好的巩固所学知识,让学生理清本节课的知识结构,我设计了归纳小结这一活动,让学生畅所欲言,分享与交流,再次给学生搭建一个交流的平台。
活动六:当堂检测
为了反映出学生的知识掌握情况,也能看出教师课堂教学的效果。我设计了当堂检测。这一活动必须做到:当堂完成、当堂批改、当堂反馈三个环节,主动权主要在学生,无论是练、批、讲、调整都以学生为主。时间控制在6分钟以内.
活动七:挑战自我,拓展提高
这是选做内容,老师、学生都可根据具体情况灵活处理。
〖设计意图〗:给有余力的同学提供拓展的机会,体现出让不同的学生学到了不同的数学,不同的学生得到不同的发展的教学理念。
活动八:作业布置,分层发展
〖设计意图〗:给有余力的同学提供发展的机会。
教学设想:
1.渗透“以学生自主学习,自主探究为主,老师引导为辅”的教学理念。
2.把教材用活、把学生教活。教学中要讲求实效,提高教学质量,要学生在探究中真正学会知识和方法.
3.问题设置坡度化,知识的形成探究化,数学思想渗透化。
4.指数函数及其性质(说课稿) 篇四
各位评委,各位同行:大家好!我本节课说课的内容是高中数学人教A版必修一2.1.2“指数函数及其性质”的第一课时.本节课的课标要求为:
1、通过具体实例(如细胞的分裂等),了解指数函数模型的实际背景。
2、理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
3、在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。根据课标要求,结合学生情况,我将从教材分析、教学目标、教学重难点、教法,教学过程设计及反思,教学评价这几个方面加以说明.一、教材分析
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中.指数函数又是一重要的函数模型.本节课是学生在已掌握了函数的概念和性质以及指数幂运算的基础上,进一步研究指数函数,以及它的图像与性质.它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数等知识打下坚实的基础.因此,本节课的内容十分重要,它对知识起到了承上启下的作用.二、教学目标:
1、知识与技能:使学生理解指数函数的定义,掌握指数函数的图象和性质,初步学会运用指数函数解决问题。
2、过程与方法:引入,剖析、定义指数函数的过程,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感、态度与价值观:通过本节课的学习,使学生获得研究函数的规律和方法,提高学生的学习能力,养成积极主动、勇于探索、不断创新的学习习惯和品质,树立学科学,爱科学,用科学的精神。
三、教学的重点和难点
教学重点:指数函数的图像、性质及其运用;
教学难点:指数函数图像和性质的发现过程,及指数函数图像与底数关系.四、教法选择:
启发发现法、小组讨论法、师生共同探究、多媒体辅助教学方法
五、教学设计:
通过创设情境(两个问题)引导学生归纳出两个函数,得出指数函数的定义,根据解析式画出图象,根据图象特征,引导学生观察、分析、归纳得出指数性质。通过性质,讲解应用。解析式→图象→性质→应用
六、教学评价及反思:
5.一次函数的图象和性质说课稿 篇五
青岚山初级中学刘清华
各位老师大家好,今天我要说课内容是人教版九年义务教育课程标准实验教科书初中数学八年级下册第十九章第二节第二课时。
一、教材分析:
(一)地位和作用
本节教材是一次函数的第二课时,它是紧接一次函数的概念教学内容之后学习的。从知识的掌握来看,它是对前面所学知识的深化和运用。从对后继内容的学习来看,它为探究二次函数等较为复杂函数提供了探究的方向和方法.再有结合近年中考命题,一次函数往往是考察的重点和热点知识。
(二)教学目标:
[学习目标]:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
3、掌握一次函数的性质.。
[教学重点]:一次函数的图象和性质。
[教学难点]:根据函数的图象归纳得出一次函数的性质及对性质的理解。
二、教法、学法分析
根据本节的教学内容以及教学目标和学生的认知规律,我采用启发、类比、归纳的教学方法。在教学过程中,力求调动学生学习积极性和主动性,突出学生的主体地位,通过自主学习、小组交流、合作探究等方法对学生进行学法指导,培养他们动手、动口、动脑的能力。但在实际教学过程中教师包办的多,学生交流的少,没能充分调动学生的积极性,为了突出重点,突破难点,提高课堂效率,采用了多媒体教学,激发学生的学习兴趣,帮助学生理解一次函数的图象和性质。
三、教学设计
1、提问复习,引入新课;
2、新课讲解,实施目标;
3、巩固新知,学以致用;
4、概括总结
首先复习提问,学生通过回顾正比例函数性质等,为类比学习一次函数的图象及其性质作好铺垫,引入新课。
其次通过动手画一次函数y=—6x和y=—6x+5的图像。通过学生观察、对比、猜想得出这两个函数的图像也是一条直线。接着老师又通过课件的演示让学生再一次观察类比得出正比例函数的图像与一次函数的图象有什么相同点和不同点,进一步加强学生对一次函数图象理性认识,突出从特殊到一般的方法及归纳能力。接下来归纳知识:一次函数图像是一条直线,画一次函数的图像的简单画法:两点法。
接着采用小组合作方式,通过用“平移法”和“描点法”做y=2x-1与y=-0.5x+1的函数图像,很好地巩固了之前探究活动中发现的一些一次函数的特点,特别是在找点的过程中,通过用,找什么样的点比较方便,让学生体会找点的技巧。
再者通过一次函数Y=X+
1、Y=-X+
1、Y=2X+
1、Y=-2X+1的图像通过改变一次函数k的取值,引起直线位置和变化趋势的改变,使得一次函数性质这一教学重点自然浮出水面,从数和形两个方面去理解和掌握一次函数性质。教师又通过一个动态的画函数图像的课件,再一次让学生体会一次函数图像变化与k有关,从而引导学生发现一次函数性质,使这节课的难点得到了解决。
本节课设计了与所学知识紧密联系的4个练习题,有针对性的训练学生通过数形结合法去分析和解决问题的能力。
总结回顾:总结回顾学习内容,有助于学生及时把所学新知识系统化、条理化。
在教学过程中力求不断调动学生的认知需求和探索心理,通过生生“对话”,师生“对话”,让学生参与知识的发生、发现和运用的全过程,在宽松的学习环境中展示自己,建立自信,体验发现的乐趣,感受数学思想。
6.余弦函数的性质说课稿 篇六
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
二、学生学习况情分析
指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。
三、设计思想
1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、【解析】法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。
2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点:
⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
3.通过课堂教学活动向学生渗透数学思想方法。
四、教学目标
根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和【解析】式这两种不同角度研究函数学学习
数学学习总结资料
数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。
五、教学重点与难点
教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、【解析】式归纳指数函数的性质。
六、教学过程:
(一)创设情景、提出问题(约3分钟)问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„„一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?
学生回答: y与 x之间的关系式,可以表示为y=2。
问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答: y与 x之间的关系式,可以表示为y=0.84。
设计意图:看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①a>1②0
(二)导入新课
引导学生观察,两个函数中,底数是常数,指数是自变量。
设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=
2、y=0.84 分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授
1.指数函数的定义 一般地,函数的含义:数学学习xxxx 叫做指数函数,其中x是自变量,函数的定义域是R。
数学学习总结资料
设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞)问题:指数函数定义中,为什么规定“
”如果不这样规定会出现什么情况?
设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若a<0会有什么问题?(如(2)若a=0会有什么问题?(对于
x,则在实数范围内相应的函数值不存在)都无意义),(3)若 a=1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定a>0且 在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
.2:若函数
是指数函数,则a=------设计意图 :加深学生对指数函数定义和呈现形式的理解。2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
设计意图:对于
时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
数学学习
数学学习总结资料
利用几何画板演示函数征。由特殊到一般,得出指数函数 的图象,观察分析图像的共同特的图象特征,进一步得出图质:
(1)观察总结a>1,0
x
-x
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。师生共同总结指数函数的性质,教师边总结边板书。
为帮助学生记忆,教师用一句精彩的口诀结束性质的探究:
左右无限上冲天,永与横轴不沾边。
大1增,小1减,图像恒过(0,1)点。
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
(四)巩固与练习
数学学习
数学学习总结资料
例1: 比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。(5)题底不同,指数相同,可以利用函数的图像比较大小。(6)题底不同,指数也不同,可以借助中介值比较大小。例2:已知下列不等式 , 比较m,n的大小 :
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
通过本节课的学习,你学到了哪些知识?你又掌握了哪些数学思想方法?你能将指数函数的学习与实际生活联系起来吗?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。
(六)布置作业
1、练习B组第2题;习题3-1A组第2题
2、观察指数函数的图象,比较a,b,c,d,的大小。
数学学习
数学学习总结资料
设计意图:课后思考的安排,激发学生的学习兴趣,主要为学有余力的学生准备的。并为下一节课讲授指数函数图像随底数a变化规律作铺垫。
(七)板书设计:
八、教学反思
1、本节课不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。、要通过函数图象来研究指数函数的性质,学生的作图能力还是很差,在以后的教学过程中一定要加强作函数图象的练习
九、教学点评
本节课注重了让学生动手操作、猜想归纳、小组讨论、全班交流。学生在操作中加深对指数函数图象及其性质的运用;学生在猜想归纳中,可培养自己的创造性思维;学生在小组讨论中,有机会表达自己的想法,也学会听取别人的观点。学生在交流中相互启发,在不同观点、创造性思维火花的相互碰撞中,发现问题、探索问题、解决问题。但课上练习的题量较少,根据时间可以适当增加一些练习。总体来说作为一节新授课,这堂课还是很好的,很多方面都有可取之处。
数学学习
数学学习总结资料
7.余弦函数的性质说课稿 篇七
http:// 百万教学资源免费下载
4.8正弦函数、余弦函数的图象和性质(1)
教学目的:
1.理解并掌握作正弦函数和余弦函数图象的方法.
2.理解并熟练掌握用五点法作正弦函数和余弦函数简图的方法.
3.理解并掌握用正弦函数和余弦函数的图象解最简单的三角不等式的方法. 教学重点:用单位圆中的正弦线作正弦函数的图象. 教学难点:用单位圆中的余弦线作余弦函数的图象. 教学过程:
一、复习引入:
1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)
P与原点的距离r(r则比值 比值yrxrx2y2xy220)
P(x,y)r叫做的正弦 记作: sin叫做的余弦 记作: cosyrxr
3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有
sinyrMP,cosxrOM
向线段MP叫做角α的正弦线,有向线段OM叫做角α的余弦线.
二、讲解新课:
1. 用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)正弦函数y=sinx的图象(结合课件第二页“离散点”,第三页“反射法”讲解)第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角0,6,3,2,„,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.
亿库教育网
http:// 百万教学资源免费下载 亿库教育网
http:// 百万教学资源免费下载
根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x(xR)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(课件第二页“正弦曲线”)
(2)余弦函数y=cosx的图象
用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”[把坐标轴向下平移,过O1作与x轴的正半轴成4角的直线,又过余弦线O1A的终点A作x轴的垂线,它与前面所作的直线交于A′,那么O1A与AA′长度相等且方向同时为正,我们就把余弦线O1A“竖立”起来成为AA′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点.](课件第三页“反射法”)
也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O1M按逆时针方向旋转亿库教育网
http:// 百万教学资源免费下载 亿库教育网
http:// 百万教学资源免费下载
2到O1M1位置,则O1M1与O1M长度相等,方向相同.)(课件第三页“旋转法”)
根据诱导公式cosxsin(x2),还可以把正弦函数
x=sinx的图象向左平移
2单位即得余弦函数y=cosx的图象.(课件第三页“平移曲线”)
yy=sinx 1o-4-33-6-5-45-226x-1
y y=cosx1
--5-3345-42-6-26x-1
正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:
(0,0)(2,1)(,0)(232,-1)(2,0)
32余弦函数y=cosx
x[0,2]的五个点关键是
(0,1)(,0)(,-1)(,0)(2,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.
三、讲解范例:
例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=|sinx|,(3)y=sin|x|
例2 用五点法作函数y2cos(x123),x[0,2]的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
四、作业:习题4.8 1.8.《优化设计》P34 强化训练(1)sinx;(2)cosx12,(0x52).亿库教育网
8.余弦定理说课稿 篇八
职技校机械学区:汪 巍
我今天说课的题目是:余弦定理。
一、教材分析:(说教材)
《余弦定理》是全日制中等职业教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。
二、说教学思路
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
三、教学方法 在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1.任务驱动法
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2.引导发现法、观察法 通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3.归纳总结法 学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4.讲练结合法
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
四、学生学法
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
五、教学目标
(一)知识目标
1、使学生掌握余弦定理及其证明。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
六、教学重点
教学重点是余弦定理及应用余弦定理解斜三角形;
七、教学难点
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
八、教学过程
教学中注重突出重点、突破难点,从五个层次进行教学。创设情境、任务驱动; 引导探究、发现定理; 完成任务、应用迁移; 拓展升华、交流反思; 小结归纳、布置作业。
(一)、导入
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)
经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课
3.证明猜想,导出余弦定理及余弦定理的变形
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4.解决二个任务
5.操作演练,巩固提高。6.小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。7.作业:
分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高
九、板书设计
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
十、课后反思
9.余弦定理优秀说课稿 篇九
一、说教材
(一)教材地位与作用
《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了“边”与“角”的互化,从而使“三角”与“几何”产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标
根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:
⒈知识与技能:
掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形
⒉过程与方法:
在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒊情感、态度与价值观:
培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;
(三)本节课的重难点
教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
二、说学情
从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
三、说教法和学法
贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式。让学生自主探索学会分析问题,解决问题。
四、说教学过程
下面为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下五个环节展开:
环节⒈复习引入
由于本节课是余弦定理的第一课时,因此先领着学生回顾复习上节课所学的内容,采用提问的方式,找同学回答余弦定理的内容及公式,并且让学生回想公式推导的思路和方法,这样一来可以检验学生对所学知识的掌握情况,二来也为新课作准备。
环节⒉应用举例
在本环节中,我将给出两道典型例题
△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求(精确到)。
已知三点A(1,3),B(-2,2),C(0,-3),求△ABC各内角的大小。
通过利用余弦定理解斜三角形的思想,来对这两道例题进行分析和讲解;本环节的目的.在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。
环节⒊练习反馈
练习B组题,1、2、3;习题1-1A组,1、2、3
在本环节中,我将找学生到黑板做题,期间巡视下面同学的做题情况,加以纠正和讲解;通过解决书后练习题,巩固学生当堂所学知识,同时教师也可以及时了解学生的掌握情况,以便及时调整自己的教学步调。
环节⒋归纳小结
在本环节中,我将采用师生共同总结-交流-完善的方式,首先让学生自己总结出余弦定理可以解决哪些类型的问题,再由师生共同完善,总结出余弦定理可以解决的两类问题:⑴已知三边,求各角;⑵已知两边和它们的夹角,求第三边和其他两个角。本环节的目的在于引导学生学会自己总结;让学生进一步体会知识的形成、发展、完善的过程。
环节⒌课后作业
必做题:习题1-1A组,6、7;习题1-1B组,2、3、4、5
选做题:习题1-1B组7,8,9.
基于因材施教的原则,在根据不同层次的学生情况,把作业分为必做题和选做题,必做题要求所有学生全部完成,选做题要求学有余力的学生完成,使不同程度的学生都有所提高。本环节的目的是让学生进一步巩固和深化所学的知识,培养学生的自主探究能力。
五、说板书
10.《小数的性质》说课稿 篇十
《小数的性质》说课稿1
一、说教材
1、教学内容:六年制小学数学第八册P100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米“这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.20xx.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
《小数的性质》说课稿2
一、教学内容:
人民教育出版社出版的原通用教材六年制小学课本《数学》第八册第73页例1~例4。
二、教学目的:
使学生掌握小数的性质,能运用小数的性质化简小数,能根据实际需要不改变原数的大小,写成指定位数的小数。
三、学具准备:
同桌的两名学生准备用硬纸条做的米尺一把;长短不一的纸条(长度要大于5分米);剪刀一把。
四、教学过程:
师:[板书:0.6元0.60元]0.6元、0.60元各表示多少钱?说明了什么?
生:0.6元表示6角钱,0.60元也表示6角钱。说明了0.6元等于0.60元。
师:很好,[板书:0.6元=0.60元]
师:[板书:5、50、500]“5、50、500”是三个大小不同的数,谁能添上不同的单位名称使它们所表示的量相等?
生:5元、50角、500分。
生:5分米、50厘米、500毫米。
生:5米、50分米、500厘米。
师:同学们都发表了自己的意见,现在我们选其中的一组来研究。
[板书:5分米50厘米500毫米]
这三个数量相等吗?请同学们拿出准备好的长纸条,再拿出自己用硬纸条做的米尺,第一大组的同学在长纸条上量出5分米的长度,剪下来,第二大组的同学在长纸条上量出50厘米的长度,剪下来,第三大组的同学量出500毫米的长度,剪下来。
[学生操作、教师巡视]
师:同学们量得很好,请每个大组交上来一张剪好的纸条。[教师依次把5分米、50厘米、500毫米长的纸条对齐贴在黑板上]你看出了什么?
生:我看出了三张纸条一样长。
师:对,这说明了5分米=50厘米=500毫米。
[教师在黑板上的5分米、50厘米、500毫米中间添上等号]
师:谁能把5分米、50厘米、500毫米改写成用米作单位的小数?
生:5分米是0.5米,50厘米是0.50米,500毫米是0.500米。
师:[板书:对齐上面板书的5分米、50厘米、500毫米,分别在它们的下面写上0.5米、0.50米、0.500米]0.5米、0.50米、0.500米相等吗?为什么?
生:相等。因为5分米=50厘米=500毫米。
师:[板书:0.5米=0.50米=0.500米]
师:我们再来比较0.3和0.30的大小(见图30)。
请同学们拿出印好的两个正方形,用阴影分别表示出0.3和0.30。
[同时请一名学生在幻灯片上的正方形中分别画上阴影,表示出0.3和0.30]
师:[教师巡视]很好,同学们都画完了,请看幻灯演示[用抽拉片将两个正方形中的阴影部分重合]同学们看出了什么?
生:0.3等于0.30
师:[板书:0.3=0.30]请同学们观察0.3和0.30有什么相同的地方?
生:0.3和0.30都是小数。
生:它们的整数部分都是0,十分位上都是3。
生:它们的大小都不够1。
生:它们的大小相等。
师:再看看它们有什么不同的地方?
生:0.3是一位小数,0.30是两位小数。
生:0.3的百分位上没有0,0.30的百分位上有0。
师:同学们说得都对,它们最主要的相同点是大小相等,最主要的不同点是0.30的百分位上有个“0”,现在看看这个“0”在小数的什么地方?
生:这个“0”在小数的最后面。
生:这个“0”在小数的末尾。
师:对,这个“0”在小数的末尾。今天我们专门来研究小数末尾的“0”。
[教师指着板书的等式0.3=0.30]从左往右看有什么变化?
生:小数的末尾添了个“0”。
师:从右往左看有什么变化?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没变。
师:请同学们再看前面板演的等式。
0.5米=0.50米=0.500米
从左往右看小数的末尾怎样?
生:小数的末尾添上了“0”。
师:从右往左看小数的末尾怎样?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没有变。
师:[再指着第一次板演的等式0.6元=0.60元]请同学们从左往右看,再从右往左看,你发现了什么规律?它们的大小怎样?
生:从左往右看小数的末尾添上了“0”,从右往左看小数的末尾去掉了“0”,它们的大小没有变。
师:同学们观察得很好,这就是今天我们要学的“小数的性质”。
[板书课题]
请同学们打开书第74页看第二段,谁来读?
生:[读]小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
师:[在黑板上出示小数的性质]小数的性质分几部分内容?请你讲一讲。
生:分两部分内容,一是小数的末尾添上“0”,小数的大小不变,二是小数的末尾去掉“0”,小数的大小不变。
师:很好!学习小数的性质有什么用途呢?请同学们看第74页第三段。[看完后请学生回答]
生:根据小数的性质可以把小数化简。
师:对,怎样化简小数呢?
[出示例3]把0.70和105.0900化简。
生:把0.70末尾的零去掉。
师:[板书:0.70=0.7]105.0900这个小数化简时只能去掉哪里的“0”?谁上来指一指?
生:只能去掉小数末尾的“0”。
师:[板书:105.0900=105.09]
下面我们进行巩固练习(做练习十九第2、3两题)。
1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉?
3.90 0.300 1.8000 500
5.780 0.0040 102.020 60.06
2.化简下面的小数。
0.40 1.850 2.900 0.50600
0.090 10.830 12.0000 0.0750
[学生做练习,教师巡视、辅导,然后集体订正,及时反馈矫正]
师:学习小数的性质还有什么用途呢?请看课本第74页第四段,看完后回答。
生:根据需要可以在小数的末尾添上“0”。
生:可以把整数改写成小数的形式。
师:对,[出示例4]
例4 不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
生:0.2=0.200
生:4.08=4.080
师:很好,根据什么可以这样改写?
生:根据小数的性质:小数的末尾添上“0”,小数的大小不变。
师:怎样把“3”改写成小数部分是三位的小数呢?
生:在“3”的右下角点上小数点,再添上3个“0”,3=3.000。
师:很好,在整数的个位右下角点上小数点,再添上“0”,就能把整数改写成小数的形式。下面我们进行练习(做练习十九第4、5两题)。
1.用“元”作单位,把下面的钱数改写成小数部分是两位的小数。
3元2角 18元 6角 1元零3分
2.不改变数的大小,把下面的数改写成小数部分是三位的小数。
5.4 30.04 7 8.01
13 4.87 0.9 185.34
[学生做练习,教师巡视辅导,集体订正]
师:[挂出小黑板]我们再进行下一项练习。
3.把左右两边相等的数用直线连接起来。
0.300 2.08
0.003 2.80
2.080 0.030
2.800 20
20.00 0.3
[请一名同学在小黑板上连线]
师:为什么0.003不和0.030连接起来呢?
生:因为0.003和0.030不相等。
师:对。请同学们再看下一道判断题。
4.判断(对就打“√”,错就打“×”)。
小数点末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的性质。( )
[请一名同学在小黑板上判断]
师:这位同学打的是“×”,错在哪里?
生:应该是:小数的末尾添上“0”或者去掉“0”,小数的大小不变。而不是“小数点&
《小数的性质》说课稿3
一、教材
1.教学内容:五年制小学数学第七册第三单元小数的意义和性质第三课时:“小数的性质”(课本第64-65页,例1—例4)包括:
(1)小数的性质;
(2)小数性质的应用(六年制第八册第四单元)。
2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3.教材的重点和难点:对小数的性质这一概念的理解是本节的难点,小数性质的应用是本节的重点。
4.教学目标:
(1)识记理解小数的性质;
(2)根据需要把小数化简或是把整数改写成指定数位的小数。
二、教法
1.通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
2.采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口、动眼以及采用对口令抢答等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。
三、学法
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
四、教学程序
(一)谈话法导入新课
在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。
(二)讲授新课
1.研究小数的性质
(1)出示例1,比较0.1米,0.10米和0.100米的大小。
首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出1分米、10厘米、100毫米是同一点,说明:1分米=10厘米=100毫米(板书)。
请同学们看米尺想,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
在这里应用直观演示法,变抽象为具体。然后板书准备比较,观察上下两个等式,说明0.1、0.10、0.100相等,再添上“因为”、“所以”、“=”。
A.从左往右看,是什么情况?(小数的末尾添上”0“,小数大小不变)
B.从右往左看是什么情况?(小数的末尾去掉”0“,小数大小不变)
C.由此,你发现了什么规律?(小数的末尾添上”0“或去掉”0“,小数的大小不变)
在这里应用了比较法,便于发现规律,揭示规律,总结性质。
(2)为了进一步证明小数性质的可靠性出示例2:比较0.30和0.3的大小。(图略)
教师指导学生自学例2。
教师指示,学生思考:
①左图是把一个正方形平均分成几份?(100份)阴影部分占几分之几?(30/100)用小数怎样表示?(0.30)
②右图是把一个正方形平均分成几份?(10份)阴影部分占几分之几?(3/10)用小数怎样表示?(0.3)
③引导学生小结从图上可以看出:0.30是30个1/100,也是3个1/10。0.3是3个1/10。所以得出:0.30=0.3。
④由此,你发现了什么规律?
师生共同小结、板书如下:
例2:0.30=0.3
小数的末尾添上”0“或者去掉”0“,小数的大小不变,这叫做小数的性质。
为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添”0“或去”0“,小数的大小就不变呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例说明)整数是否具有这个性质?(没有,理由同上第二点)
2.小数性质的应用
教师谈话:根据这个性质,遇到小数末尾有”0“的时候,一般地可以去掉末尾的”0“,把小数化简。
(1)化简小数
出示例3:把0.70和105.0900化简。
提问:这样做的根据是什么?(把小数末尾的”0“去掉,小数的大小不变)弄清题意后,学生回答,教师板书:0.70=0.7;105.0900=105.09。通过这组练习巩固新知,为以后小数作结果要化简作准备。
口答:课本“做一做”第1题。
(2)把整数或小数改写成指定数位的小数
教师谈话:有时根据需要,可以在小数的末尾添上”0“;还可以在整数的个位右下角点上小数点,再添上”0“,把整数写成小数的形式。
如:2.5元=2.50元3元=3.00元
出示例4:不改变小数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
小组讨论后,2人板演,其余学生齐练,订正,表扬。
0.2=0.20xx.08=4.0803=3.00
练习:口答课本第65页的`“做一做”第2题。
讨论小结:改写小数时一定要注意下面三点:
A.不改变原数的大小;
B.只能在小数的末尾添上”0“;
C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添”0“。(想一想为什么)
3.学生仔细阅读课本第64页的例1、例2,记住并理解小数的性质;阅读课本第65页例3、例4掌握小数性质的应用。
五、巩固练习
1.练习十三第1题:下面的数,哪些”0“可以去掉,哪些”0“不能去掉?指名同桌对口令,其余学生当小评委。
第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
第3题:下面的数如果末尾添”0“哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律(小数的末尾添”0“大小不变,整数的末尾添”0“大小变了)。
第4题:化简下面小数,采取抢答来完成。
第5题:先填书上再口答订正。
2.练习十三第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练,评价鼓励。
附板书设计:
小数的性质
例1:比较0.1米、0.10米和0.100米的大小。
因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
0.1=0.10=0.100
──────→
←──────
例2:0.30=0.3
小数的末尾添上”0“或者去掉”0“,小数的大小不变。这叫做小数的性质。
《小数的性质》说课稿4
一、说教材
1、教学内容:六年制小学数学第八册P100例1、2。
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
2、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
3、教学目标:
(1)利用知识的迁移规律,让同学在自主探究、合作交流中理解和掌握小数的性质,提高同学运用知识进行判断、推理的能力。
(2)让同学进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、说教法
1、通过直观、图示,让同学充沛感知,经过比较归纳,最后概括出小数的性质;从而使同学的思维从形象思维过渡到笼统思维。
2、采用引探教学法,依据同学认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动同学学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。
三、说学法
通过本节教学,要使同学掌握一些基本的学习方法:
1、学会通过比较、归纳,最后概括出一类事物的实质属性。
2、引导同学自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养同学的自学能力和合作交流的好习惯。
四、说教学程序
(一)情景导入 激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0. l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥妙了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小同学喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)调整例题 探索新知
1.教学例1
(1)出示米尺投影图
(2)引导同学观察米尺图,提问:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合同学回答,例1 图上的标注应改为:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为 1分米= 10厘米=100毫米
所以 0.l米=0.10米= 0.100米
这样,同学根据小数的意义,主动从“0.l米、0.10米、0.100米”动身研究问题。在问题得以解决的过程中,同学锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程规范)强调:数学活动必需建立在同学的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米= 0.10米= 0.100米”这个等式,并标上考虑符号“→”,先让同学从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.l米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出考虑箭头“→”,让同学从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化动态的求知过程,让同学真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了同学归纳概括事物实质属性的能力。
2.教学例2
在例1的学习过程中,同学已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡同学先独立看书,然后小组讨论,汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影局部用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10, 因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。
这样使同学的思维从形象思维逐步过渡到笼统思维,达到突破难点的目的,同时,通过看书交流,培养了同学的自学能力和合作意识。通过两道例题,让同学进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥妙:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化 拓展思维
这是教学中不可缺少的环节,这一阶段是同学巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住同学的求胜心理进行了练习、要进一步激发同学的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.080 8.0 880.00 80.80 800
2.判断下面各组两个数是否相等?为什么?
0.25和0.2500 0.25和0.205 0.7和0.07 3和300 3和3.00
3.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让同学对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
《小数的性质》说课稿5
一、说教学内容
课标版小学数学第八册第四单元的例1、例2、例3及“做一做”和练习十第1至3题。
二、说教材
1、教材分析
“小数的性质”是九年义务教育六年制小学数学第八册第四单元第2小节“小数的性质和小数的大小比较”的内容。本课为这一小节第1课时,教学P58-59页例1-例3,完成“做一做”及练习十的第1-3题。
小数的性质是一节概念课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则运算的基础。小数的性质实质上是研究在什么情况下两个小数相等的,它与分数的基本性质是相通的,但由于学生还没有学过分数的基本性质,所以教材通过直观和学生所熟悉的十进复名数来进行教学。这部分内容安排了3个例题。例1教学小数的性质,例2、例3教学小数性质的应用。例2是根据小数的性质可以把末尾有零的小数化简,例3是不改变小数的大小,把一个数改写成指定位数的小数。
2、教学目标
(1)借助实物和直观图,使学生理解和掌握小数的性质,会应用小数的性质把一个小数化简和把一个数改写成指定位数的小数。
(2)通过小数性质的概括,培养学生的抽象、概括能力。通过应用小数性质,培养学生应用所学知识,解决实际问题的能力。
(3)通过理解小数的性质,渗透“变”与“不变”的辩证思想。
3、教学重点
小数性质的推导和理解,真正掌握并正确运用这一性质解决相关问题。
4、教学难点
掌握在小数部分什么位置添“0”去“0”,小数大小不变。
5、教具准备:教学课件
三、说教法学法
为了实现本课的教学目标,在导入新课时,采用创设故事法导入,在抽象、概括小数的性质(即教学例1及下面的“做一做”)的过程中,主要运用了直观教学法,运用多媒体出示实物图和直观图,让学生充分感知,联系旧知,经过比较、归纳,最后概括出小数的性质,从而使学生的思维从形象思维向抽象思维过渡。在应用小数的性质(即教学例2、例3)的教学中,主要采用了讲练结合的方法,充分发挥教师教的主导作用和学生学的主体作用,鼓励学生积极发言,敢于质疑,培养学生的抽象、概括能力和解决实际问题的能力。
通过本课教学,使学生学会借助直观图理解、掌握新知的方法,学会有顺序地观察问题,对比分析问题,概括知识的方法。培养学生运用所学知识解决实际问题的能力。
四、说教学程序:
1、情景导入,激趣揭题。
同学们,你们喜欢听故事吗?今天老师给大家讲一个《西游记》唐僧师徒一起去西天取经的故事。有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0。l米、0。10米、0。100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0。100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
【设计意图】这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
2、教学例1
(1)课件演示0。1米、0。10米、0。100米。
①0。1米、0。10米、0。100米分别可以写成哪个比米小的单位表示?
②用分数又怎样表示
③你发现了什么?
(2)小组汇报得出:(师板书)
①0。1米是1/10米→1分米
0。10米是10/100米→10厘米
0。100米是100/1000米→100毫米
②0。1米、0。10米、0。100米都是指米尺上同一段的长度。(课件出示)
又因为1分米=10厘米=100毫米
所以0。1米=0。10米=0。100米(多请几个学生说一说)
【设计意图】这样,学生根据小数的意义,主动从“0。l米、0。10米、0。100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
(3)观察得小数的性质
①这三个数从左往右有什么变化?(小数的末尾添上0,小数的大小不变)
②这三个数从右往左有什么变化?(小数的末尾去掉0,小数的大小不变)
③你发现了什么规律?
小数的末尾添上或者去掉0,小数的大小不变。这就是小数的性质。(点题)
呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
【设计意图】这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
(4)练习:(课件出示)
①辨别下面各数中的“0”,哪些“0”是属于小数末尾的“0”(按数位说)
0。0800。60300500。00000
②58页做一做(出示课件)(学生先在书上练,再出示课件)
【设计意图】这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。
五、小数性质的应用:
在实际生活中我们可以根据需要,有时要把某些小数化简,有时则要把某些小数改写成含有指定小数位数的小数。怎样才能满足这些需要呢?请大家带着这两个问题自做下面两道题:
1、教学例2:化简下面的小数
0。70=105。0900=10。000=
练一练:下面各数中,哪些“0”可以去掉59页做一做1
2、教学例3:不改变数的大小,把下面各数写成三位小数
0。2=4。08=3=
(注意:整数的右下角点上小数点,再添0。)
练一练、59页做一做2
六、探究练习
1、0。70去掉末尾的0大小有变化吗?
4。08去掉0会怎样?
0。31可以填0吗?
2、小结:添“0”或去“0”只能在小数的末尾。
七、巩固练习
1、64页1题。(出示课件)
2、判断理解:(“末尾”能否说成“小数点的后面”)
①把0。500。0600的小数点后面的“0”去掉,小数的大小不变。
②在5。3的末尾添上三个“0”,它的大小不变。()
③一个数末尾添上“0”或者去掉“0”,大小不变。()
3、64页第3题。(课本练习)
八、拓展练习。
1、你能在下面三个数中各点一个小数点使它们相等吗?试试看,相信你一定行。
602060260200
2、试试看你能写几个与30。200相等的数。
【设计意图】这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、进一步激发学生的学习兴趣,让学生有了思考的方向,为探究和提炼改写规定小数部分位数的方法提供了很好的方法指导,同时也为各个能力阶段的孩子提供了自主探究的空间和机会。确保学习任务的圆满完成。
九、全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价
十、作业布置
1、化简下列小数
0。5025。3000。0090108。000
2、不改变数的大小,按要求改写下列小数。
1。5改写成两位小数是______
29。5改写成三位小数是_____
8。0改写成三位小数是______
0。400改写成一位小数是______
12改写成四位小数是______
以上是我对小数的性质的简单的设想,有不到之处请各位领导和老师批评、指正。
《小数的性质》说课稿6
各位领导:
你们好!
今天我说课的题目是《小数的性质》,本课时是青岛版教材数学四年级上册第三单元蛋的世界——小数的意义和性质信息窗二第二课时的内容,是在学生对小数和分数有了初步认识并且学习了小数的意义、小数的大小比较的基础上进行学习的,是深入学习小数有关知识的开始。学好这部分知识可以为今后学习“分数的基本性质”、“比的基本性质”等规律性较强的知识打下一个比较好的铺垫。
根据《数学课程标准》要求和对教材内容理解、分析,我将本节课的教学目标定位为:
1、让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。
2、让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
3、激发学习数学的兴趣,体验数学问题的探究性和挑战性。
教学重点:
让学生理解并掌握小数的性质,并能应用小数的性质解决实际问题。
教学难点:
理解小数性质归纳的过程
教具、学具准备:直尺、正方形纸片,多媒体课件
课程标准告诉我们,数学学习过程应引导学生主动地进行观察、实验、猜测、验证、推理与交流,而“动手实践、自主探索与合作交流”应成为学生学习数学的重要方式。因此,我设计了如下的教法与学法。
1、以学生活动为主体。通过多种形式的学生活动,促使学生动手、动脑、动口参与学习活动。
2、体现规律形成的全过程。教学中,教师不是简单的奉送结论,而是在展示知识的发生、发展过程中引导学生自己去观察、猜测、操作、验证,发现、分析、归纳和巩固运用。
3、坚持面向全体,以学生发展为本。教学中兼顾到不同层次的学生,尽最大的努力体现因材施教,促进学生个性发展,并在空间、时间上为学生提供发展的充分条件。
基于以上对教材教法的分析,我设计了以下几个教学环节:
一、创设情景,引发兴趣
以超市购物的话题引入,让学生根据信息提出关于小数大小比较的问题,引导学生猜测“铅笔和橡皮,哪一个贵?”,这样设计,不仅让学生复习上课时的内容,而且从学生的生活经验入手,使学生切身体会数学来源于生活,感受数学与生活的密切联系,引发学生的探究欲望,为主动探究新知识聚集动力。
二、猜想验证,探究性质
本环节我设计以下几个层次:
1、小组合作,初步感知在猜测0。9=0。90的基础上,引导学生质疑:你的猜想正确吗?小组合作,选择喜欢的工具,通过量一量,涂一涂,验证自己的猜想。然后让学生“观察等号左右两边的小数,你有什么发现吗?”(先留给学生充分的时间独立思考,然后小组内交流)(引导出小数的末尾有没有0,小数的大小一样。)
这样设计把问题放到小组中,让学生在讨论的基础上找到解决问题的方法。教师参与活动,以合作者的身份与学生平等相处,提出自己的看法,尊重学生的意见,鼓励学生大胆动手量一量、涂一涂进行验证,培养学生敢于表达见解的精神,充分调动学生的积极性。
2、举例验证,总结性质初步验证的基础上,引导学生进一步质疑“我们的猜想是不是对所有的小数都适用?”,组织学生进行举例,然后小组合作验证,全班交流,最后引导学生“观察这些数据,你有什么发现?”,通过交流,总结板书:小数的末尾添上0或者去掉0,小数大小不变。(板书课题:小数的性质)这样,让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程,不仅让学生初步学会了举例验证的方法,而且体现了辨证唯物主义的思想。
本环节意在尽可能多地提供机会让学生在实践操作中学习,引导学生通过动手实践、自主探究,在观察、实验、猜测、验证、推理与交流的数学活动中,初步理解和掌握小数的性质。
3、利用性质,体会价值
本环节设计让学生初步应用小数的性质对小数进行化简改写,先让学生独立完成题目,在这个过程中,设置关键性问题“这个0可以去掉吗?”“怎样把5改写成三位小数呢?”要引导学生重点理解“13。040中间的0为什么不能去掉”“把5变成小数后为什么要在它的右下角加上小数点”,为学生提供充足的独立思考和合作探索的时间和空间,使学生在解决问题的过程中加深对小数性质的理解,体会小数性质的价值。
三、练习反馈,巩固内化
本环节设计三个层次的题目,包括基本题,综合题和拓展题。基本题的设计面向全体,使每个学生都能巩固基本的方法和技能,综合题关注差异,使不同程度的学生有不同的发展,拓展题关注发展,使不同层次的学生得到不同程度的提高。
四、总结质疑,自我提高
让学生交流学习的收获,引导学生梳理所学知识,总结学习方法,并在自评与互评的反思中提高。
基于教学环节的设计,为了突出重点,为学生掌握知识和记忆打下坚实的基础,板书如下:
小数的性质
小数的末尾添上0或者去掉0,小数大小不变。
以上是我对这一课时的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。说课完毕,欢迎指正,谢谢!
《小数的性质》说课稿7
一、说教材
1、教学内容:苏教版小学数学第九册第三单元认识小数第三课时,“小数的性质”(课本第34—3 5页,例5—例6)。
2、教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3、教学目标:
(1)让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。
(2)学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
4、教学重点:掌握小数的性质。
5、教学难点:理解小数的性质。
二、说教法
通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
三、说学法
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
四、教学程序
1、出示例5:
(1)读题
(2)分组准备,讨论。
(3)说出结果。 0.3元=0.30元
(4)为什么?
学生阐明自己的观点。
A、0.3元和0.30元都是3角,所以0.3元=0.30元。
B、画图理解。
C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。
(5)这两个相等的小数,小数部分有什么不同?
提问:小数部分末尾的0添上或去掉,什么变了,什么没变?
(小数变了,小数的大小没有变)。
2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。
(1)学生自主填空。
(2)交流自己的看法,并阐明观点。
(3)汇报自己的结果。
由1分米=10厘米=100毫米,得到0.1=0.10=0.100。
(4)观察板书:
你得到什么结论?学生自由发言。
总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。
五、理解内涵,学会应用
1、课件出示例6:
学生自主填空。
提问:这些小数中,哪些0可以去掉?指名回答。
(着力于对小数“末尾”的理解。)
结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
学生尝试做“练一练”第1题。独立完成,集体订正。
2、试一试。
不改变数的大小,把下面各数改写成三位小数。
0.4=3.16=()10=()
学生自主改写。
交流:
(1)改写这三个数时应用了什么知识?
(2)为什么给三个数添上的“0”的个数不同?
(3)“10”是整数,怎样在小数的末尾添上“0”?
给学生充分的交流时间,进一步体验小数性质的应用。
3、练一练第2题。
学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。
六、巩固练习
练习六的1—5题。
第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0。
第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。
这些练习题使学生在应用中掌握小数的性质。
《小数的性质》说课稿8
一、说教材
1、教学内容:六年制小学数学第八册P100例1、2。
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
2、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
3、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、说教法
1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。
2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。
三、说学法
通过本节教学,要使学生掌握一些基本的学习方法:
1、学会通过比较、归纳,最后概括出一类事物的本质属性。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)调整例题探索新知
1、教学例1
(1)出示米尺投影图
(2)引导学生观察米尺图,提问:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,例1图上的标注应改为:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
《小数的性质》说课稿9
一、说教材
1、小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
2、教材的重点和难点
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
3、教学目标
(1)引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。
(2)利用知识迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(3)让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与数学活动。
二、说教法
1、通过自主探索和小组合作交流,概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。
2、采用故事导入法,调动学生学习的自觉性、积极性。
三、说学法
通过本节教学,要使学生掌握一些基本的学习方法:
1、学会通过比较、归纳,最后概括出一类事物的本质属性。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
四、教学过程设计
首先故事导入,激趣揭题。通过西游记故事引入数学问题0.1米、0.10米、0.100米谁长谁短?通过小组合作解决这个问题,再通过学生观察思考、教师引导概括出小数的性质。新课标指出:数学的学习必须建立在学生的认知发展水平和已有的知识经验基础之上。这部分教学就是在学生学习了小数的意义的基础上的,是小数意义的运用。紧接着学生明白了小数的性质,开始用性质去解决一些简单的问题,这就是例2与例3的教学,通过这部分教学为以后小数四则计算做准备,小数性质理解了,在应用过程中并不是什么难事,只是有些细节问题需要教师做以提示,所以这部分主要以学生自学、自讲、自练为主。
最后的练习是必不可少的,巩固知识,形成技能,发展智力,所以设计了不同层次的练习,尤其是安排了一个思维拓展题,以游戏的形式出现,让学生在轻松、愉快的氛围中品尝到思考的乐趣。
《小数的性质》说课稿10
一、说教材
1、教材分析:本课是九年制义务教育小学数学人教版第八册第四单元的“小数的性质和小数大小的比较”第一课时的内容。在此之前学生已经学过小数,形成了一定的概念。本节课主要是帮助学生在原有的小数基础上建立小数性质这个概念,为今后继续学习小数知识打下基础。
2、教材地位:本节是让学生正确掌握小数、加深对小数的理解,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3、教学目标
(1)认知目标:让学生进一步体验数学和日常生活的密切联系,体验数学问题的探究性和挑战性。
(2)能力目标:利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(3)情感目标:在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
4、教学重难点
A、教学重点:让学生理解、掌握小数的性质,并能应用小数的性质解决实际问题。
B、教学难点:理解小数性质归纳的过程
5、教具、学具准备:直尺(10厘米以上)
多媒体课件(以辅助教学)
二、说教法
1、采用创设故事法导入(激发学生学习的兴趣,让学生主动投入到学习中来)
2、通过直观、推理让学生充分感知,联系旧知,经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
3、采用自主合作探究教学法,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口参与到探索新知的旅程中来
三、说学法
俗话说:“授人以鱼,不如授人以渔”,教师应以教导学生学会怎么学习为己任,以下是我在教学过程中要教导学生掌握的学习方法:
1、学会借助直观图理解、掌握新知的方法。
2、学会有顺序地观察问题,对比分析问题,概括知识及联想的方法
3、引导学生自主探究,培养他们用已有知识解决新问题的能力以及运用所学知识解决实际问题的能力。
四、说教学过程
(一)情景导入,激趣揭题
同学们,喜欢《蜡笔小新》吗?今天老师给你们讲一个关于小新的故事:有一天,小新跟妈妈一起到超市买东西,小新跑到熊仔饼的货架上拿熊仔饼,突然,小新叫起来了:“妈妈,妈妈,快来啊!熊仔饼怎么涨价了?”小新妈妈,跑过来一看,哈哈大笑起来。原来,标价上写着“5.00元/盒”,可是之前买的时候是5元钱一盒。
提问:“同学们,你们知道小新妈妈为什么哈哈大笑吗?
学习了这节课,我们就知道其中的奥秘了。”
(二)主动参与、探索新知
1、出示例1,比较0.1米,0.10米和0.100米的大小。
(1)复习:首先让学生拿出事先准备好的直尺(10厘米以上),比比1分米、10厘米、100毫米的大小,引领学生在直尺上找出1分米、10厘米、100毫米是同一距离,说明:
1分米=10厘米=100毫米(板书并出示课件)
(2)请同学们看着课件仔细观察思考:
A、1分米是米,可写成怎样的小数?(0.1米)
B、10厘米是10个米,可写成怎样的小数?(0.10米)
C、100毫米是100个米,可写成怎样的小数?(0.100米)
(3)根据学生回答,我会出示上面三道题的答案,并与同学们共同推导出0.1米=0.10米=0.100米。
2、观察0.1米、0.10米、0.100米,概括小数的性质
①从左往右观察、比较这三个数,你们发现了什么?(在小数的末尾添上0,小数的大小不变)
②从右往左观察、比较这三个数,你们发现了什么?(在小数的末尾去掉0,小数的大小不变)
③你发现了什么规律?(引导学生归纳)
小数的末尾添上或者去掉0,小数的大小不变。这就是小数的性质。
④为了进一步证明小数性质的可靠性,出示做一做:比较0.3和0.30的大小。
教师指导,学生按要求涂色并前后四人一组讨论问题:
左图是把一个正方形平均分成几份?(10份)涂色部分占几分之几?
右图是把一个正方形平均分成几份?(100份)涂色部分占几分之几?()
提问:从图上可以看出0.3是三个,0.30是30个,也是3个,那么0.3和0.30是什么关系?
学生思考回答:0.3=0.30
这里运用了什么规律?
3、呼应课始,引导学生揭示奥秘:(出示课件,唤起学生的记忆)由于小新妈妈掌握了小数的性质,知道5元=5.00元,所以才会哈哈大笑的。
提问:那么小数的性质是什么呢?(让学生运用知识)
4、联系生活,再现新知:
同学们在商场看到货物的标价如:这本书标价:4.50元/本。
设问:“这样写有什么作用?”
答:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
提问:4.50元中的“0”可以去掉吗?3.05呢?
引导学生再次说出小数的性质。
这时我让学生尝试做题(出示例题,从旁提示、引导学生自主探索新知,获取新知):
(1)把小数化简
0.70=0.7 105.0900=(105.09)
提示:根据小数的性质,遇到小数末尾有“0”的时候,一般地可以去掉小数末尾的“0”,把小数化简
(2)不改变小数的大小,把0.2、4.08、3改写成三位小数。
0.2=0.200 4.08=
提示:整数的右下角点上小数点,再添0。
(三)巩固深化,扩展思维
按要求说出一个数
①所有“0”都不能去掉
②所有“0”都能去掉
③既有能去掉的“0”,又有不能去掉的“0”。
(四)全课小结
1、通过本课的学习,你有什么收获和大家分享?
2、我们是怎样探索小数的性质的?
【设计意图】:让学生自己整理总结所学知识,达到及时整理思路、巩固本节课所学内容的目的。
五、作业布置
练习十第一题
【设计意图】:这一道题能让学生充分运用这节课学到的知识,更进一步加深对小数的性质的理解。
《小数的性质》说课稿11
各位老师:
下午好!
我今天上的是苏教版数学第八册内容:小数的性质。小数的性质这节课包括两方面内容:一是例1例2小数性质的揭示,二是例3例4小数性质的应用。
这部分内容是学生学习小数的开始。由整数学习进入小数学习,对于学生来讲,是数的概念的一次扩展。小数的性质这一部分内容的教学十分重要,一方面可以使学生通过在小数末尾添0去0而不改变其大小,来加深对小数意义的理解,同时他还是小数四则运算的基础。本课的教学目的:
1、通过推理比较使学生发现小数的性质。
2、能运用小数的性质化简小数,能根据实际需要不改变原数的大小,写成指定位数的小数。
基于对教材的理解,作了以下教学设计:
一、以疑引思
在整数的末尾添上或去掉0,整数的大小会发生很大的变化,那么在小数中是不是也一样呢?课堂的一开始向学生提出这样的疑问,引发学生的思考。从而展开对0.1米0.10米0.100米这三个数量的探讨。
二、初步感知
例1是三个以米作单位的小数的长度,进行大小比较,小数的大小比较的方法学生并不清楚。那到底怎样比较这三个数量的大小呢?一方面通过转化,将小数转化成用整数表示的量1分米10厘米100毫米,另一方面引导学生观察这三个数量表示的实际长度。从而发现0.1米=0.10米=0.100米然后进一步观察这道等式,使学生初步知道小数末尾添上去掉0后小数大小不变。
三、深入研究
在小数末尾添上0去掉0大小不变,对于0.1米0.10米0.100米这三个数量是这样,那么对于其他更多的小数是不是也适用呢?这个性质是不是具有普遍性?这个问题的提出,引发了学生更深层次的思考与研究。同时也在潜移默化中教给了学生科学的研究方法和态度。学生通过给两个正方形图阴影知道了0.40=0.4以及和同座位合作发现0.30=0.3 0.6=0.60等一系列等式。当发现这一系列小数相等的时候,小数性质的可靠性得到了证实。
四、发现性质
回顾整个研究的过程,第一次对0.1米0.10米0.100米三个数量的初步感知以及第2次全面深入的研究,学生很容易地就发现:在小数末尾添上0或去掉0小数的大小不变这一性质。不同的学生对小数性质的理解程度是不相同的,通过“关于小数的性质,你想提醒大家注意什么”这样的交流,使学生对小数的性质有了更深入的理解。
五、实际应用
小数的性质是小数学习中非常重要的一个结论,那么它到底有什么用呢?首先带领学生到生活中去寻找。超市里商品的价格通常都是用元做单位,改写成两位小数表示的,这就是一个很好的实例。学习和生活有了共鸣,学生再自学例3例4,从而掌握化简小数和改写小数的方法,解决一些实际的问题。
在小数性质这节课的教学中
1、通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
2、采用问题教学法,创设一个个有价值的问题,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动眼以及采用多种形式的巩固练习,使学生学有所疑学有所思,力求把数学课上得有趣、有益、有效。
《小数的性质》说课稿12
一、说教材、学情
本次说课的内容是人教版小学数学四年级下册第四单元《小数的性质》。
小数的性质属于数与代数领域的知识,是学生在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它也是小数的化简、改写和四则运算的基础。
二、说教学目标
根据课程标准的要求,和对教材内容的分析,我确定了如下教学目标。
(1)知识与技能:使学生理解并掌握小数的性质。
(2)数学思考:培养学生观察、分析、比较、抽象、概括的意识以及简单的推理能力。使学生学会主动思考问题。
(3)问题解决:通过直观推理、自主探究、合作交流,理解和掌握小数的性质,提高学生运用知识进行推理的能力。
(4)情感态度价值观:使学生经历小数的性质探究过程,获得成功的体验,体会数学与实际问题的联系,激发学生的数学学习兴趣。
三、说教学重难点
针对上述教学目标,结合学生的认知基础,我将本节课的教学重难点定位如下:
1、教学重点:理解并掌握小数的性质。
2、教学难点:探究小数性质的知识形成过程。
四、说教法和学法
1、教法
本节课我准备采用的教学方法有:情境教学法,引导发现法,多媒体辅助法等教法。让学生在教师营造的“可探索”的环境里,主动参与,主动探究,主动发现小数的性质。
2、学法
预设的学习方法是:观察发现法、自主探究法、合作交流法、练习法等。让学生在师生互动,生生互动中主动探究,主动发现,主动提高,有效培养学生自主学习的能力。
3、教学准备
为了更好地辅助课堂教学,顺利完成教学任务,达到预期的教学目标,在教具、学具上我准备了米尺,正方形方格纸,多媒体课件等。
五、说教学过程
根据本节课的教学内容,为了切实落实教学目标,有效突破重难点,我设计了以下五个教学环节。分别是:创设情境、激趣引思;体验操作、探究新知;巩固深化、学以致用;课堂总结、回顾反思和作业布置。
(一)第一环节:创设情境,激趣引思
1、多媒体出示超市情境图,将学生带入到具体的生活情境中去:老师昨天想去买一只中性笔,可是两家超市的标价不一样,我要去哪家买更便宜一些呢?(出示中性笔价格图片:一家是2.5元,一家是2.50元)
2、学生会根据已有的知识经验回答:去哪家买都一样。
教师在这时追问为什么,并引导学生说出:因为2.5元表示2元5角,2.50元表示2元50分,5角=50分,所以2.5元=2.50元(教师板书)
3、教师引导学生观察两个小数的区别,学生会发现:小数的末尾多了一个0,大小还没变。
4、教师提出质疑:
那是不是所有的小数都有这样的特点呢?这节课让我们共同来探究一下吧,让学生带着好奇心开始新知识的探究。
设计理念:
通过超市价格标签的具体生活情境引出小数性质的教学,利用学生熟悉的人民币直观感知相等关系,激发学生的学习兴趣,使学生带着对知识的好奇心走进知识的殿堂。
(二)体验操作,探究新知
在这一环节,我设计了以下3个教学层次:
1、小组合作,初步感知
课件出示:0.1m,0.10m,0.100m这三个长度,让学生进行大小比较。
(1)我为每个学习小组都准备了米尺,让学生在尺上先找一找0.1m,0.10m,0.100m这三个长度,并与小组成员说说你是怎么找的,然后在纸上画出来,比较他们的大小。(教师进行随堂指导)
(2)小组探究完成后进行展示交流
每个小组派代表分别展示他们找到的0.1m,0.10m,0.100m的长度,并说说是怎么找的,也就是小数的意义。
学生们得出探究结果:因为这三个长度都相等,所以这3个小数的大小是一样的。
(3)教师让学生观察0.1m,0.10m,0.100m这3个小数,引导学生发现三个小数的区别:三个小数末尾的0不一样多,但是大小一样。
看来像这样大小相等但末尾0不一样多的小数的确存在。
设计理念:
借助长度单位初步体会小数的性质,让学生动手在米尺上找出0.1m/0.10m/0.100m的长度,使学生直观感受到0.1m,0.10m,0.100m的长度相等,所以大小相等,初步感知小数的性质。
2、大胆猜想,独立验证
教师板书0.3和0.30这两个小数,让学生猜一猜这两个小数有什么关系?学生根据刚才的探究会说“相等”。
(1)这时我为学生准备了两个同样大小的正方形,一个正方形平均分成了10份,另一张正方形平均分成了100份,让学生独立验证自己的猜想。(教师进行随堂指导)
(2)学生独立验证后进行汇报展示
找学生投影展示涂方格的方法并说一说自己的想法(引导学生说出小数的意义,因为涂的面积相同,所以两个小数相等)
设计意图:
利用直观图比较0.3和0.30的大小,通过观察,引导学生借助小数的意义发现0.3和0.30的异同点,进而脱离具体的量,进一步理解小数的性质。
3、观察比较,发现规律
(1)教师引导学生观察3组算式:我们先从左往右看,小数的末尾有什么变化?从右往左看呢?他们的大小呢?你有什么发现?
(2)让学生说说自己的发现:
小数的末尾添上“0”或去掉“0”小数的大小不变(板书)
(教师强调并解释:末尾指的是小数点后面最后一个非0的数。帮助学生区分哪些0可以去掉,哪些0不能去掉)
(3)教师强调课题:我们把这个小数所共有的特点叫做小数的性质(板书课题)
设计意图:
让学生在探究验证之后,尝试自己总结规律,培养学生对知识的概括能力。
(三)巩固深化、学以致用
1、对口令游戏:教师说一个小数,学生对出相等的小数。
2、哪些数可以去掉末尾的0(重点区分小数中哪些0可以去掉,整数与小数的区别,强化小数的性质)
3、连线
设计理念:
注重练习设计的层次性,满足不同层次的需要,体现新课标中人人获得必需的数学,人人学有价值的数学,不同的人在数学中得到不同的发展的要求。
(四)课堂总结,回顾反思
俗话说“千金难买回头看”。课的结尾,通过提问:今天你有什么收获?你是怎样获得新知的?你还有什么疑惑?来回顾所学知识,梳理知识。引导学生对本节课所学知识和获取知识的方法进行总结和反思。
(五)作业布置
小游戏:你能只动三笔,使5,50,500,5000四个数相等吗?既检查学生对知识的掌握情况,又带有趣味性,激发了学生在课下探究数学知识的兴趣。
六、说板书设计
板书素有“微型教案”之称,它具有高度的概括性、艺术性和指导性的特征。本节课的板书是随着教学进度依次呈现的,它能体现本节课的教学重难点,对学生整堂课的学习,起着重要的指导作用。
小数的性质
2.5元=2.50元
0.1m=0.10m=0.100m
0.3=0.30
小数的末尾添上“0”或去掉“0”,小数的大小不变。
【余弦函数的性质说课稿】推荐阅读:
正弦函数的性质说课稿10-30
高中数学《对数函数的图像与性质》说课稿08-15
《正切函数的性质与图像》高一数学说课稿06-23
《正比例函数的性质》评课稿07-04
初中《函数的使用》说课稿06-30
二次函数复习课说课稿11-03
§2函数极限的性质11-07
指数函数的性质及应用07-23
对数函数及其性质教学反思11-17
正余弦定理综合应用07-08