三角形的全等sss教案(精选2篇)
1.三角形的全等sss教案 篇一
《全等三角形的判定》说课稿
各位老师:
大家好!我说课的内容是人教版义务教育标准实验教科书八年级数学第十一章第二节《全等三角形的判定1》,下面我从教材分析、教学目的的确定、教法学法的选择、教学过程的设计等几个方面对本节课进行分析说明。一 教材分析:
《全等三角形的判定1》是八年级上册的内容,本节是三角形全等判定的第一课,主要讲的是如何利用“边边边”的条件证明两个三角形全等。本节课的内容是在学习了全等三角形的概念、全等三角形的性质后展开的,是证明两个三角形全等的重要方法之一。全等三角形是两个三角形最简单、最常见的关系,它不仅是学习后面知识的基础,而且也是证明线段相等、角相等的重要依据,学生只有很好的掌握了全等三角形的判定方法,并且能灵活地运用它,才能为以后学习《四边形》、《圆》等知识打下良好的基础。学生已学过线段、角、相交线、平行线以及三角形的有关知识,并且七年级两册教科书中又安排了一些说理的内容,这些都为本节学习全等三角形的判定做好了准备。学生只要对“边边边”的判定条件掌握好了,并能运用它进行推理论证,那么再学习其它的判定条件就不困难了。二 教学目标:
根据教材地位和学生实际,依据教学大纲,本着向学生传授知识,发展思维能力,同时向学生进行思想教育为目的,我将本节课的教学目标划分为三个层次:①知识目标 ②能力目标 ③思想目标。
⒈知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等。
⒉能力目标:经历探索三角形全等条件的过程,体会如何探索研究问题,让学生初步体会分类思想,提高分析问题和解决问题的能力。
⒊思想目标:通过画图比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。三 教学重点、难点:
教学重点:用“边边边”证明两个三角形全等。教学难点:探究三角形全等的条件。四 教法、学法分析:
(1)教法分析
针对八年级学生活泼好动、好奇心和求知欲都非常强,但观察、分析、认识问题能力较弱的特点,我在本节课的教学过程中采用了如下的教学方法:
在探究三角形全等条件的新课阶段以启发谈话法为主,通过提出问题,引导学生探讨问题和解决问题,始终让学生参与整个问题的“发生”和“解决”过程,让学生即掌握了新的知识,又培养了学生探索问题的能力,激发学生的求知欲。另外,在这个阶段还运用了电教手段进行直观演示,增强教学的直观性,使学生获得感性认识,这样做也容易使学生集中注意力,激发学生的学习兴趣。
在三角形全等条件的应用阶段采用讲练结合法,对于例题的学习,通过教师引导,学生观察思考,寻求解决问题的方法.在解题中使学生展开思维。通过对例题的学习,教师给出了规范的证题过程,然后让学生做类似练习,写出证明过程,教师评析,纠正不规范的地方。
(2)学法分析
在整个的教学过程中我还强调自主活动,注重、合作交流,让学生的学习在探究的过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,提高学生探究、发现问题的能力,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的思维能力。
六、教学过程
关于本节课的教学过程我设计的如下六个环节
1、复习引入
2、新课讲解
3、题例训练
4、反馈练习
5、归纳小结
6、布置作业。
1、复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。
2、讲授新课 全等三角形的判定条件的探究 首先提出问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。接着再提出问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。接下来提出问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。
3、题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题,在讲解例2时首先要给学生指出证题的思路“要证明△ABD≌△ACD可以看这两个三
角形的三条边是否对应相等,而由已知条件可知AB=AC,图中又有公共边AD=AD,关键是第三对边BD、CD是否相等,由D是BC中点可知BD=CD,从而找全三个条件。”然后教师给出规范的证明格式。并且通过此题给学生总结证明三角形全等的书写步骤。所以,通过例2要使学生理解证明的基本过程,掌握证明三角形全等的书写步骤,例3是习题的拓展与提高,主要是利用三角形全等来证明角相等,通过此题要使学生认识到全等三角形性质的运用。在讲解此题时我是这样给学生分析思路的,“要证明∠A=∠C,首先要看这两个角在那两三角形中,由图中可知这两个角在△ABD和△CDB中,只要证它们全等就可以了,而已知中已给出两组边相等,图中还有一组公共边,从而可得证明这两个三角形全等的条件。”然后让学生口述此题的证明过程,教师给出规范的证明过程。
4、反馈练习:
为了检测学生对本节课的内容掌握情况,我又设计了反馈练习,学生独立完成,教师评析,对其中出现的问题及时纠正。
5、课堂小结 从三个角度总结:
(1)本节课所讲的内容。(2)如何用判定条件证明三角形全等。(3)证明时应注意的问题。
6、布置作业及复习思考题
布置作业是用来巩固本节课所讲的内容,检验本节课的教学效果,同时本着面向全体学生因材施教的原则,布置一道思考题,使学有余力的同学得到锻炼,能力得到提高。
这是我对本节课的总的设计过程,具体过程将体现在我的课堂教学中。
2.全等三角形教案 篇二
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:
1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图 能力;
3.让学生通过观察生活中的全等形和动手操作获得全等三角形 的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:
重点:全等三角形的概练和性质;
难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:
1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。
教学流程: 创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。
教学过程设计:
一、创设情境,引入新课。
1、与学生谈话,努力走近学生之中。
2、游戏情景,引入新课 出示课件:大家来找茬游戏
引导:
1、观察两副图形在形状、大小、位置方面的共同点
2、两副图形形状、大小若相同该如何检验?
引导:什么样的图形叫做全等形?
定义:能够完全重合的两个图形叫做全等形; 列举生活中的实例(一百元人民币)感知全等形。
二、合作交流,探索新知。
1、手脑并用,感受新知
用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。
2、观察诱导,探究新知。(1)全等三角形相关概念
引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;
中国人民邮政
能够完全重合的两个三角形叫做全等三角形 引导学生概括对应顶点、对应边、对应角定义;
全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。
(2)全等三角形的表达式
引导学生书写全等三角形的表达式:△ABC≌△DEF,读作 :△ABC全等于△DEF。
温馨提示:
①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。
引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题
(3)全等三角形性质
引导学生观察并概括全等三角形性质
全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质: ∵△ABC≌△DEF(已知)∴AB=DE,AC=DF,BC=EF;
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)
3、合作交流,探究新知(1)手脑并用,体验新知
利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?
通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。
(2)观察交流,探究新知
引导学生观察,交流探索规律。在全等三角形中,一般是: 1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;
3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;
引导学生观察,交流发现规律。
针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。
三、合作交流,应用新知。
例:如图,△ABO≌△DCO,指出所有的对应边和对应角。
解:∵△ABO≌△DCO(已知)∴AB=DC,BO=CO,AO=DO(全等三角形的对应边相等)
∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC(全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。
解: ∵△ABC≌△DCB(已知)∴AB=DC,BC=CB,AC=BD(全等三角形的对应边相等)
∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC(全等三角形的对应角相等)
四、课堂练习,巩固新知。
(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm, 求DE的长.解:∵△ABD≌△EBC,且AB=3cm,BC=5cm(已知)
∴AB=EB=3cm,BC=BD=5cm(全等三角形的对应边相等)∴DE=BD-EB=5-3=2cm
(2)如图,已知△ABC≌△ADE, 想一想: ∠ BAD= ∠ CAE吗?为什么?
解:相等,∵△ABC≌△ADE(已知)∴∠BAC=∠DAE(全等三角形对应角相等)∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE
五、师生互动,小结新知。
学习了这堂课你有哪些收获?并把它与同伴一起分享。
1、全等形的定义:能够完全重合的两个图形,叫做全等形。
2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
4、寻找全等三角形的对应边、对应角得规律。(1)观察图形特点;
(2)观察表达式(对应关系)
六、布置作业。
课本P92习题15.1,第2、4题。
七、教 后 感
······
板书设计:
15.1 全 等 三 角 形
定义:
表示 性质:
【三角形的全等sss教案】推荐阅读:
全等三角形教案07-09
数学全等三角形教案08-24
三角形全等的判定教案10-27
12.2三角形全等的判定教案07-12
数学全等三角形教学设计教案09-13
第十三章 全等三角形全章教案07-27
全等三角形专题课件09-09
111全等三角形教学案08-05
全等三角形判定角边角09-12
三角形全等证明经典题08-29