3的倍数教学案例分析

2024-10-31

3的倍数教学案例分析(精选14篇)

1.3的倍数教学案例分析 篇一

《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:

第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。

整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。

反思这节课的不足我觉得在每个环节的`过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。

2.3的倍数教学案例分析 篇二

苏教版《义务教育课程标准实验教科书数学》四年级 (下册) 第76~77页。

二、教学目标

1.使学生掌握3的倍数的特征, 能够正确地判断一个数是不是3的倍数。

2.让学生经历科学的探究过程, 激发学生探索新知的兴趣, 培养学生的自主学习能力。

3.结合知识的教学, 培养学生的观察、猜想、分析、比较、归纳等思维能力。

4.让学生获得探索成功的体验, 增强学好数学的自信心, 培养学生的数学兴趣。

三、课前准备

计数器、算珠、计算器

四、教学过程

(一) 复习旧知, 引出新知

1.复习旧知

出示:周西中心小学四年级师生为玉树灾区小学捐款3860元。

(1) 如果将这些钱平均分给2所学校, 每所学校得到的钱数是整元数吗?你是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

(2) 如果将这些钱平均分给5所学校, 每所学校得到的钱数是整元数吗?你又是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

2.引出新知

如果将这些钱平均分给3所学校, 每个学校分到的钱是整元数吗?你是怎么知道的?能不用计算3860÷3的方法判断吗?

⒊导入新课

同学们, 3的倍数有特征吗?有什么特征呢?今天我们就来研究3的倍数的特征。

教学意图:一方面通过复习帮助学生回忆2、5倍数的特点, 巩固前一节学习的知识, 另一方面引出本节课要研究的知识——3的倍数的特征, 自然过渡到新知教学。

(二) 猜想验证, 制造悬念

1.请同学们猜一猜3的倍数的特征可能是什么?

[学生最有可能猜想:个位上是0、3、6、9的数是3的倍数]

2.这只是个猜想, 到底对不对呢?还需要我们干什么?你们打算怎样验证呢?

3.请同学们举出个位上是0、3、6、9是3的倍数的数?

学生举例, 如30、33、36、39……都是3的倍数。

4.个位上是0、3、6、9的数都是3的倍数吗?举例说明。

学生举例, 如:10、13、16、19……都不是3的倍数。

5.个位上不是3、6、9的数都不是3的倍数吗?请举出个位上是1、2、4、5、7、8、的数是3的倍数的例子, 再举出个位上是1、2、4、5、7、8、0的数但不是3的倍数的例子。

6.从这里可以看出:看各位数能判断一个数是不是3的倍数吗?为什么?

教学意图:由于2、5倍数的特征都是看个位数, 所以学生自然会猜想到个位上是0、3、6、9的数一定是3的倍数, 这是知识的负迁移造成的。这个猜想、验证的研究活动, 一方面可以打破学生这种思维定势, 另一方面通过制造了认知上的冲突, 激发学生进行深入的研究。

(三) 摆数判断, 探索规律

谈话:下面我们一起来用计数器做一些数学游戏, 从游戏中也许会发现规律。每个6人小组都有个计数器和一些算珠, 请同学们以组为单位按要求在计数器上摆数。

1.用3颗珠子摆数研究

(1) 用3颗珠子在计数器上摆数, 可以摆出哪些不同的数?

学生先摆数, 并做记录, 最后汇报:3、30、12、21、300、210、201、120、102、111。

(2) 请同学们算一算, 这些数是3的倍数吗?

学生独立计算 (可以用计算器帮助计算)

(3) 谁来汇报一下, 判断的结果是什么?你有什么发现?

教学意图:通过学生自己摆数、计算的活动, 发现规律:用3颗珠子摆成各种不同的数, 都是3的倍数。

2.用4颗珠子摆数研究

(1) 用4颗珠子可以摆出哪些数?

学生先摆, 并做搞好记录, 最后汇报:4、40、31、22、13、400、310、301、220、202、211、130、103、121、112。

(2) 这些数是3的倍数吗?

(3) 你又有什么发现?

教学意图:通过让学生摆数、计算等活动, 发现规律:用4颗珠子摆成的不同的数, 都不是3的倍数。

3.观察比较, 寻找简便方法

(1) 把3颗珠子和4颗珠子摆的数联系起来看一看, 有什么发现?

(2) 从这里可以看出, 只要看摆出的几个数就知道摆出的其他数是不是3的倍数了?

教学意图:通过对3颗、4颗珠子摆数、判断的比较, 发现规律:摆出的数要么全是3的倍数, 要么全不是3的倍数, 从而寻找到简便的判断方法:只要判断摆成的一个数是不是3的倍数就知道其他的数是不是3的倍数了, 为下面快速地判断奠定基础。

4.用n颗珠子摆数研究

(1) 用5颗珠子摆成的数是3的倍数吗?为什么? (如:104不是3的倍数, 所以摆成的其他数都不是3的倍数)

(2) 用6颗珠子摆成的数是3的倍数吗?为什么?

(3) 用7颗珠子摆成的数是3的倍数吗?为什么?

(4) 用8颗珠子摆成的数是3的倍数的数吗?为什么?

(5) 用9颗珠子摆成的数是3的倍数吗?为什么?

教学意图:通过快速地判断5、6、7、8、9颗珠子摆成的数是不是3的倍数的研究, 为下面的研究规律提供丰富的素材, 为发现和概括规律奠定基础。

5.观察比较, 发现规律

(1) 请同学们观察上面的研究, 有什么发现?

(2) 猜想一下还可以用几颗珠子摆成的数都是3的倍数?为什么?验证一下猜想对不对?

(3) 为什么不猜10颗、11颗珠子摆的数?验证一下对不对?

(4) 请同学们想一想:摆成的3的倍数与珠子的颗数有什么关系?

(5) 再请同学们思考:珠子的颗数就是摆成的数的什么?

(6) 把珠子颗数换成“各位上数的和”说说3的倍数有什么特征?

教学意图:先帮助学生寻找到摆成的3的倍数的数与珠子的颗数之间的关系, 初步发现规律, 再引导学生思考:珠子的颗数就是摆成的数的各位上数的和, 最终发现3的倍数的特征。

6.举例判断, 验证规律

师:这个规律对不对呢?怎样去验证?学生举几个例验证 (略) 。教学意图:因为这个规律是采用不完全归纳法归纳出来的, 具有一定的局限性, 正确与否还需要进行验证, 学生随机举例验证, 从而证明规律的正确性。

(四) 巩固练习, 消化理解

1.下面哪些数是3的倍数?你是怎么想的?

45 546 776 108 181 802

2.在下面每个数的□里填上一个数字, 使这个数是3的倍数。你是怎么想的?

4□3□5 12□□12

可以填哪些数?有什么规律?

⒊熊爸爸在狐狸办的工厂干了3个月的活, 月工资856元, 这一天, 熊爸爸带着小熊到狐狸家里领工资。他们通过计算, 得出以下的结果:狐狸:856×3=2468 (元) , 小熊:856×3=2558 (元) , 熊爸爸:856×3=2568 (元) , 你知道谁算对了吗?为什么?

⒋有个很大的数, 如:46091362930, 它是3的倍数吗?你是把所有的数字都加来的吗?有更简便的方法吗?

(五) 回顾总结, 结束全课

3.“3的倍数的特征”教学设计 篇三

义务教育课程标准实验教科书北京师范大学版五年级上册第6页“3的倍数的特征”,及第7页试一试、练一练1~3题。

教学目标:

1.掌握3的倍数的特征,会正确判断一个数是不是3的倍数;

2.会根据2、3、5倍数的特征对给出的数进行判断;

3.培养学生观察、比较、推理、概括等思维能力。

教学重点、难点:

3的倍数的特征,能正确判断一个数是不是3的倍数。

教学过程:

一、复习

1.是2或5的倍数的数各有什么特征?举例说明。

2的倍数特征是:个位上是0、2、4、6、8的数。例如120、52、34、76、98等。5的倍数的特征是:个位上是0或5的数。例如40、125等。同时是2、5的倍数的数有什么特征?举例说明。

2.同时是2、5的倍数的特征是:个位上是0的数。例如10、130等。

3.我们是怎样研究和发现是2或5的倍数的数的特征的?

二、引入新课

1.下面这些数是3的倍数吗?试一试。

30 21 42 63 54 45 36 57 18 69

2.师:上面这些数都是3的倍数,观察一下“是3的倍数的数”只看个位上的数字还行吗?为什么?

生:不行,因为这些数的个位上包括了数字0、1、2、3、4、5、6、7、8、9。

3.师:今天我们共同来研究是3的倍数的数的特征。

板书课题: 3的倍数的特征

三、探究新知

1.创设教学情景。师:要判断一个数是不是3的倍数,只看个位上的数字显然是行不通的,不过老师掌握了一种巧妙的判断方法,不论数目大小,我都能很快地判断出来。不信,你们可考考老师。(学生举例,教师判断)

2.师:你们想知道这个秘密吗?请自学课文第6页。

3.小组交流讨论:(1)是3的倍数的数各位上的数字加起来的和与3有什么关系?(2)是3的倍数的数有什么特征?

4.小组汇报,全班交流。板书:一个数各数位上的数字加起来的和是3的倍数,这个数就是3的倍数。

5.试一试:在下面的数中圈出3的倍数。

284553873665

6.质疑、解疑。师:判断一个数是不是3的倍数,与判断一个数是不是2或5的倍数的特征方法相同吗?有什么不同的地方?

生:判断方法不同。是2或5倍数的数的特征都在个位上,是3的倍数的数的特征不在个位上。

四、生活中的数学

判断下面各数哪些是3的倍数,哪些不是3的倍数?

1.我们班有54个同学,其中男生30人,女生24人。

2.小明的爸爸每天打工收入84元。

3.小红家养鸡69只,养鸭75只,养鹅97只。

五、巩固练习

第7页 练一练 第1、2题

六、深化练习

师:在6834和19456中,谁是3的倍数?谁不是3的倍数?

生:6834是3的倍数,因为6+8+3+4=21,21是3的倍数。

19456不是3的倍数,因为1+9+4+5+6=25,25不是3的倍数。

师:在上面求和的计算中,如果我们把本身是3的倍数的数字3、6、9排除,只利用余下的其他数字求和来进行判断,结论是不是相同的呢?请同学们试一试。

师:现在请同桌两人互相举例,分别用上面两种方法来判断,再看看结论是不是一样的?

生:两种方法判断的结论是一样的。

师:比一比:哪种方法较简便?

生:第二种较简便。

教师小结:今后同学们如果要判断一个数是不是3的倍数,当遇到数目较大的数时,采用第二种方法来判断较好。

七、拓展练习

第7页练一练第3题“在下表中找出9的倍数”。

1.学生独立练习。

2.小组讨论:(1)9的倍数有什么特征?(2)这些数的排列有什么特征?(3)如果把这张表格扩充到200,并找出99后面是9的倍数的数,它们将在表中的什么位置?

3.小组汇报,全班交流。

4.做一做,检查自己的答案是不是正确的。

八、课堂小结

1.今天学习了什么内容?你学会了哪些知识?

2.你还想说什么?

九、作业设计

1.在26、48、85、60、42、75、20中。

(1)是3的倍数的数有:()。

(2)是2倍数,同时又是3的倍数的数有:()。

(3)是3倍数,同时又是5的倍数的数有:()。

(4)是2倍数,同时又是5的倍数的数有:()。

(5)是2倍数,同时又是3、5倍数的数有:()。

2.在1~20中,是3的倍数的最小的奇数是(),最小的偶数是(),最大的奇数是(),最大的偶数是()。

3.在下面每个数的□里填上适当的数,使每个数都是3的倍数。

4.3的倍数特征教学反思 篇四

“试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。

5.《3的倍数特征》教学反思 篇五

一、跨年级学习新数学知识,知识衔接不上,不符合学生的认知规律。

虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。

二、为了体现“容量大”,教学延堂。

备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。

三、学生合作学习的效果较好,但展示未体现立体式。

6.《3的倍数的特征》教学反思 篇六

《3的倍数的特征》教学反思

小组合作教学所占优势最明显的一点是对各层次学生的了解,能够在课堂上关注不同层次的学生,能够让不同的孩子在课堂上有不同的发展,因此在教学时本人充分地利用了“小”的优势,教学中从三个“小”入手,尊重学生的差异,关注A(学习能力强的尖子生)、B(学习能力较好的一般学生)、C(学生能力较弱需帮助的学生)三类学生,促使学生通过互助互动而全体参与到数学学习中。一、“分配”满足个体需求 魏书生老师说:“如果在教学中把学生当成学习的主人,而且是活生生的,心理和生理都有着无限潜力的、不断变着的主人,那么教师想出来的办法就容易使学生接受。”随着自主性研究性学习要求的不断提高,孩子们的两极分化情况日益严重。因此,教学时在大目标的.前提下,按学生的接受和承受能力,给他们安排不同的学习目标与学习任务,关注每个孩子的学习需求,使每个孩子在探索活动中有不同的分工,互帮互助,全体参与,人人都能体验到成功。二、“小”激起个性张扬 小班化教学仍处在班级授课制的形式下,但人数的量小使教师容易控制和操作教学的进程,有利于调整自主学习活动的形式。“小活动”要求的是目标设定小,学生容易达到,并能在活动中找到自我位置,激发起每一个孩子的学习积极性,激起个性的张扬。“小活动”的设计对班级来讲既有整体性,又有零散性,它如同散沙但又易凝聚,如同水滴又能汇成江流,它既能扩大教学影响,丰富教学资源,又能展示一种从个体到总体的精神面貌,给教学增添活力。对个体来讲,激励学生有创造性地解决遇到的问题,让活动具有集体开展的意义,又有自我表现的特点。三、“小组合作”实施多型构建自主学习强调了学生个体在学习过程中的独立价值,而合作学习则体现集体智慧的交融,“小组合”的构建利于弥补一切固定式、形式化的大集体教学的局限,有助于教师教学的巩固和发展,学生在交往中相互影响,相互传递和整合多方资源,每个小组里4、5人通过强强碰撞、强帮助弱等渠道进行互助互学,实现共同发展。

7.3的倍数教学案例分析 篇七

一、学生真的验证了吗

这节课我先教学5的倍数的特征, 通过观察100以内的5的倍数, 从而初步得出5的倍数的特征, 然后再拓展到大于100的其他数, 学生通过验证, 最后得出结论。但在验证这一环节, 第一个学生举了72845这个数, 当我追问他72845÷5等于几时, 他顿时哑口无言了。接着我又点了几名学生, 结果他们都没有通过计算去验证。由此可见, 学生在学习的过程中有可能出现“偷工减料”的情况, 这时, 教师作为学生学习的组织者、引导者和合作者就有必要引导学生把这个漏洞及时补上, 帮助学生养成良好的学习习惯, 树立正确的数学思想和方法, 从而体会到数学的严谨性。

二、学生真的理解2、5的倍数的特征吗

这节课主要是引导学生通过观察——猜想——验证, 从而发现2、5的倍数的特征, 但由于2和5的倍数的个数是无限的, 无法一一验证, 所以当时有一个学生就提出了质疑:有没有可能存在这样一个数, 它个位上是0, 但却不是2的倍数, 也不是5的倍数。此问一出, 当即遭到了其他同学的反对, 但他们也只能用几个有限的例子来反驳, 这说明学生对于2、5的特征还没有完全理解。

课后我查阅了一些资料。在人民教育出版社出版的《数学五年级下册教师教学用书》的第44页的“参考资料”中有如下介绍:假设有一个数anan-1…a1a0那么

因此可以把这个数看成是两个数的和, 第一个加数必定是2或5的倍数, 所以只需看个位上的数是不是2或5的倍数就可以了。这一证明过程可谓严谨科学, 但对于小学五年级的孩子来说, 这个过程就显得太艰深了, 因此, 《教师教学用书》在第38页就写到, 只要求总结出2、5的倍数的特征就可以了, “不要求严格的数学证明”。

虽然《教师教学用书》中说“不要求严格的数学证明”但是有少部分学生已经意识到这种用不完全归纳法得到的结果可能存在漏洞。既然《教师教学用书》中的证明过程太复杂了, 那么有没有一种更简洁明了, 易于被学生接受的证明方法呢?我在2012年第6期的《中小学数学》中找到了答案。这一期中李美盈老师介绍了用数位的意义来证明2、5的倍数的特征。

比如一个四位数abcd=1000a+100b+10c+d, 1000、100和10都是2或5的倍数, 所以只要看个位是的d是否是2或5的倍数。这种方法建立在学生已有的知识水平之上, 易于被学生接受。

8.“因数与倍数”的结构教学研究 篇八

在以往的教学中,教师一般从“整除”的概念出发,先引出因数和倍数这两个最基本的概念,然后再进一步衍生出各个下位概念。

沿着这样的思路,教师在教学中往往表现出以下方面的问题。

第一,情境引入问题。由于这个单元知识是对自然数内部规律的探索,它与现实生活中的情境往往并不能建立直接的联系。如果一味地从一个个现实生活情境引入,那么就很容易造成探索研究的思路断裂。有的教师并没有认识到这样的问题存在,往往冥思若想、精心构思如何为学生的规律发现进行铺垫性的设计,期望学生通过这些铺垫就能水到渠成地发现规律。

如“能被3整除的数的特征”的教学引入,教师设计了一个抽骰子组数的游戏:投3次骰子,随机得到三个数字,用这三个数字组成一个三位数,将之记录在下表中,然后观察那些能被3整除的数的特征,你发现什么?

由于三个数字可能组成六个不同排列的三位数,如1、2、3三个数字可以组成的三位数有123、132、213、231、312、321,这些数能被3整除;又如1、2、4三个数字组成的三位数有124、142、214、241、412、421,这些数不能被3整除。在这里,六个不同排列的三位数就成为了学生发现能被3整除的数的特征的一个铺垫。有了这个铺垫,学生就能很容易地发现能被3整除的数的特征:与数字的排列位置没有关系,而是与数位上数的和有关。

然而,在具体的教学实践中,大部分学生不知道其中的奥妙所在,出现很多问题:有的学生通过投骰子虽然得到了三个数字,但不知道怎么填写这张表,就在一个空格内填写一个数字;有的学生虽然知道三个数字可以组成六个三位数,但由于通过投骰子确定的三个数字具有随机性,到活动停止时还得不到能被3整除的数;有的学生虽然比较顺利地完成了表格的填写任务,但表格中能被3整除的数只有6个,很难一下就寻找出其中的规律所在……凡此种种表现,反映了大部分学生显然不领老师的情,他们不太情愿进入老师设计的“圈套”。当然,总是有个别的学生会很配合老师,他们既完成了表格的填写,又“发现”了能被3整除的数的特征。

第二,演绎概念的问题。在这个单元知识的学习中,由于概念比较多且比较集中,大大小小的概念20个左右,要让学生记住这些名词术语且不发生混淆还真是一个不容易的事情。再者,这些概念的抽象程度又比较高,给学生的学习也带来了一定的难度。如质因数的概念,它是质数、因数、合数等概念的综合。不仅如此,教师往往在教学中不注意引导学生经历概念的形成过程,而是用演绎概念的方式直接呈现概念,并要求学生对这些抽象的概念进行记忆、辨析强化和巩固运用。以“公倍数”的教学为例,一般的教学过程是:先创设一个具体情境,让学生通过动手操作、观察交流,在活动的基础上得出结论——呈现“公倍数”的概念,然后通过进一步观察得到“最小公倍数”的概念,最后让学生在记忆概念的基础上,通过一一列举的方法寻找两个数的最小公倍数。从整个教学过程来看,尽管有学生的动手操作、对比观察等环节,又沟通了新旧知识的联系,也揭示了新的概念,还有新概念的巩固与运用。但是,学生其实并未经历在大量事实材料基础上的观察比较、归纳概括和提炼抽象的概念形成过程。因此,用这样演绎方式获得的概念,对于学生来说不仅是外在的,而且还是抽象和不容易理解的。于是,学生对于这些概念的学习就好比是雪上加霜一般。在这种多重困难的层层重压下,学生对于“因数与倍数”知识的学习往往觉得不堪重负。

上述问题的出现其实并非偶然,原因在于这个单元的知识点比较多,主要有以下几个知识点:因数与倍数,求一个数的因数或倍数的方法;2、5、3的倍数的特点;偶数、奇数的认识;质数、合数的认识;公因数与最大公因数的认识;公倍数与最小公倍数的认识;求最大公因数与最小公倍数。当教师的视野被局限在这些知识点内,知识之间内在的结构关系,以及知识中内含丰富的育人资源往往就会被遮蔽。当我们的视角从一个个的知识点中跳出来,整体地分析和研究整个单元知识的结构和联系,我们就会发现,这一单元所有的知识点实际上都是对自然数范围内的非零自然数的特征和关系而展开的研究,它们具有如下的结构关系:就知识之间的框架结构关系而言,是从本单元最上位的两个概念“因数”和“倍数”出发分别开展各自内部的特征研究和关系研究。从自然数的“倍数”出发,研究衍生出两个分支:一个分支是对一个自然数(如2、5和3)的倍数进行特征研究,在研究2的倍数特征的基础上又得到奇数和偶数的特征;另一个分支是对两个甚至两个以上自然数的倍数进行关系研究,形成公倍数和最小公倍数的概念。从自然数的“因数”出发,同样也可以研究衍生出两个分支:一个分支是对一个自然数的因数进行特征研究,形成质数和合数的概念;另一个分支是对两个甚至两个以上自然数的因数进行关系研究,形成公因数、最大公因数和互质数的概念。这也正是这个单元知识用“因数和倍数”进行命名比较合理的原因之所在。通过分析可以发现,倍数知识与因数知识之间具有类同的结构关系。

就研究方法结构而言,基本上可以从研究目的、研究路径上进行提炼。一个数的倍数的特征如2、5和3的倍数特征,以及一个数的因数的特征如质数和合数的学习方法是:为了发现数的倍数和因数特征,要先确定研究的小范围和罗列研究材料,从特殊情况进行偶然发现,用列举法开展研究,然后扩大范围进行一般的验证,最后获得结论。公因数教学和公倍数教学的学习方法是:为了发现数之间的关系,先从两个数的一般情况出发研究,用列举法作为工具,然后研究两个数的特殊情况,最后再把两个数的关系研究拓展到三个数的关系研究。因此,这样的学习方法结构可以概括提炼为:研究目的、研究路径(研究过程是一般到特殊或特殊到一般)、研究材料、研究工具。

以3的倍数的特征认识的教学为例,为了研究3的倍数特征,研究的路径可以从特殊情况研究拓展到一般情况来展开研究,既确定一个相对较小的范围进行规律发现,然后再研究这个结论在扩大的范围内是否都能成立。如可以利用小组4人合作开展研究的有利条件,每个人研究一个范围,4个人连续的小范围就构成一个相对较大的研究范围。如第一人从50~100,第二人从100~150,第三人从150~200,第四人从200~250,4个人合起来的研究范围就是50~250之间。确定了研究范围之后,就可以有序地罗列这个范围的3的倍数。之所以要有顺序地排列,是因为排列有规律有利于观察和发现。如果排列杂乱无章,即使有发现也可能是出于偶然。

nlc202309030037

“因数和倍数”单元不仅具有类同的知识结构关系和学习方法结构,还具有基本相同的体现综合性和灵活性教学过程结构。就2、5和3的倍数特征的教学而言,研究获得的是一般的结论,所以教学过程还要注意引导学生经历从偶然现象或特殊问题出发进行发现,然后作出是否普遍存在的猜想,最后在举例验证的基础上获得一般结论的过程。因此,2、5和3的倍数特征的教学展开逻辑可以提炼为“发现和猜想——举例验证——归纳概括结论”的过程结构。就质数与合数的教学而言,是在对一个因数进行特征研究的基础上获得一般结论,所以其教学展开逻辑也需要经历同样过程。不仅如此,还要在教学中帮助学生建立质数与合数的概念。由于这些概念是前人经历观察比较、归纳概括和提炼抽象的过程而给出的概念定义,它是高度概括和抽象的结果,所以教学过程要引导学生像前人那样经历观察比较、归纳概括和提炼抽象概念的形成过程。因此,质数与合数的教学展开逻辑是在“发现和猜想——举例验证——归纳概括结论”的基础上,还要经历“材料感知——比较分析——归纳概括和提炼抽象”的概念形成过程,这是一个规律发现的过程与概念形成的过程之间交织与复合的推进过程。就“公因数”和“公倍数”的教学而言,研究的思路是先研究两个数之间的关系,然后再拓展研究三个数之间的关系。因此,基本的教学展开逻辑可以提炼概括为“关系研究(研究2个数的关系,分一般情况和特殊情况进行研究)——概念形成——拓展延伸(3个数)”的过程结构。不仅如此,“公因数”与“公倍数”的教学过程不仅内含了“发现和猜想——举例验证——概括结论”的研究过程,而且还内含了“材料感知——比较分析——归纳概括和提炼抽象”的概念形成过程。从这个意义上可以说,“公因数”与“公倍数”的教学过程更体现了综合性与灵活性的结构特征。

从上述的框架结构、学习方法结构和教学过程结构的分析中可以看出,这些知识之间是环环相扣的,每一个知识点的学习都必须建立在学生已有知识的的基础上,以这种结构状的方式呈现规律探索研究的不断推进过程。较之割裂的“点状”知识的学习,具有更强的组织和迁移能力,唯有通过结构的教学,才有可能使学生头脑中形成诸多有差异又能相通的结构群和结构思维方法,才有可能使学生在身处陌生和复杂的新环境中能用综合的眼光去发现和解决问题。因此,我们可以采用长程两段教学策略来整体规划整个单元的教学行为。

首先,引导学生研究一个自然数的倍数特征和因数特征。即以一个自然数的倍数特征的教学为教学结构阶段,教学生掌握一个自然数倍数特征研究的学习方法结构,即按照确定研究目的、研究路径选择、研究材料罗列、研究工具运用的方法步骤来进行特征研究;以一个自然数的因数特征为运用结构阶段,引导学生运用学习方法结构主动迁移到一个自然数的因数特征的学习之中。

其次,引导学生研究两个甚至两个以上自然数的因数关系和倍数关系。即以两个自然数的因数关系研究的学习为教学结构阶段,教学生掌握两个自然数的因数关系研究的学习方法结构和教学过程结构;以两个自然数的倍数关系研究的学习为运用结构阶段,引导学生运用学习方法结构和教学过程结构主动迁移到倍数关系研究的学习之中。

责任编辑罗峰

9.3的倍数的特征教学设计 篇九

1、复习旧知

(1)谁能说一说,什么样的数是2的倍数?什么样的数是5的倍数?并举两个例子。

(2)下面这些数是2或5的倍数吗?

324,153,345,2460,986

[温故而知新]

2、悬念激趣

为迅速提高美术兴趣小组的绘画水平,须加强训练。现有美术纸534张,不通过计算,你能立即说出这些纸能平均分赠给三位同学吗?(如果能判断出这个数是是3的倍数,就能知道这些纸能不能平均分给三个同学了。)这节课,我们就一起来研究3的倍数的特征。(板书:3的倍数的特征)

[兴趣是最好的老师,举这个贴近学生生活的例子,激发学生学习本课知识和技能的兴趣。]

二、观察分析,探究规律

1、引导观察,调整思路

(1)下面各数中,哪些是3的倍数?

21 42 63 84 15 36 57 78 99

11 32 53 74 95 26 47 68 89

[这个例子是引来的他方之石,我觉得是最能打破前面寻找2、5倍数特征的一组数。激发学生继续探索新方法的积极性。]

(2)师问:你能从个位上找出一个数是3的倍数的特征吗?从十位上呢?

(3)前后桌四人一小组讨论。[课堂讨论的主要组织形式]

学生讨论发现:这两组数个位上分别为1-9(有的学生也发现:十位上也分别是1-9),但第一组的数均是3的倍数,第二组的数都不是3的位数,因此无法从个位或十位找出是3的倍数的特征。

通过讨论还发现:是不是3的倍数,已不再取决于个位或十位上的数字了。

(4)教师立即提出:为了找到更好的答案,必须探索新的解决办法。

[师不断伺机激发学生探究学习]

2、组织活动,探索规律

(1)插入讨论找3的倍数过程的动画。

出现课本中的数例:

3×1=3

3×2=6

3×3=9

3×4=12 12→1+2=3 (3是3的倍数)

3×5=15 15→1+5=6 (6是3的倍数)

3×6=18 18→1+8=9 (9是3的倍数)

3×7=21

……

(2)继续探究

请你从1、2、3、4、5、6六张数字卡片中挑出其中三张,排成是3的倍数的三位数,你能排出多少个?

可以是: 123,234,345,456,135,246

还可以是:126,156

引导学生讨论:从上面这些三位数中,你能发现3的倍数的特征吗?

讨论发现:一个数是不是3的倍数,只同所选的数字有关,而与数字的排列位置无关。而且这些3的倍数的数的各位数字和都是3的倍数。

(4)小结

一个数各位上的数和是3的倍数,这个数就是3的倍数。

10.《3的倍数的特征》教学设计 篇十

师:我们已经知道了2.和5的倍数的特征,同学们,你们知道3的倍数会有什么特征吗?谁能够猜测一下?

生1:个位上是3.6.9的数是3的倍数。

生2:不对,个位上是3.6.9的数不一定是3的倍数,如13,16,19都不是3的倍数。

生3:另外,像60,12,24,63,27,18等个位上不是3.6.9的数但都是3的倍数。

师:看来只通过观察个位是无法确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们将共同来学。(揭示课题:“3的倍数的特征”)

师:请同学们在老师出示的表中找出3的倍数,并做上记号。(教师出示100以内数表,组织学生交流,并呈现出学生已圈出的3的倍数的百以内数表)

二.自主探索,总结3的倍数的特征。

1.质疑引导学生探究3的倍数的特征。

师:刚才同学们已经在表中圈出了3的倍数,现在我们分组讨论一下3的倍数有什么特征。

2.引导观察,小组交流。

教学这部分内容时,要求学生认真观察图表,让学生把观察到的内容在小组说说,然后全班交流,教师巡视,认真倾听学生有什么发现,有什么不懂的地方。从交流中学生可能发现了3的倍数个位上的数1,2,3,4,5,6,7,8,9,0都有,没有什么特别规律,十位上数字也没有什么规律。

3.教师引领

(1)你在观察中发现了什么?

(2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上数与3有什么关系?将每个数的各个数字加起来看看会怎样?

(3)试着概括出3的倍数的特征。

4.总结3的倍数特征。

一个数各个数位上的数字之和如果是3的倍数,那么这个数一定是3的倍数。否则这个数就不是3的倍数。

5.检验结论。

(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数特征是否也相同呢?

(2)利用100以内数表来验证。

(3)延伸到三位甚至更大的数。如:573,753,999,1326,4242,3678……

(4)学生自己写数并验证,然后小组讨论,观察得出结论是否相同。

三.巩固应用。

1下列数中3的倍数有。

14 35 45 100 332 876 74 88 1045

2.既是2和5的倍数,又是3的倍数的最小三位数是多少?

3.教材第20页第4题。

四.课堂小结

师:这节课你有什么收获?

生:略

教学内容:人教版义务教育课程标准实验教科书,五年级下册第19页。

教学目标:1.让学生通过观察.猜测.操作.验证.交流等活动,认识3的倍数特征,会判断一个数是否是3的倍数。

2.培养学生的猜测验证,观察分析,逻辑思维等能力,形成一定的数学思想和方法。

3.使学生在探究活动中获得积极的情感,体验,激发学生学数学的兴趣,增强学信心。

教学重点:探索3的倍数特征,初步掌握研究问题的一般方法。

教学难点:探索3的倍数特征,对探索方法的理性认识。

11.因数与倍数教学体会 篇十一

《因数和倍数》是一节数学概念课,西师版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如a÷b=c(a、b、c都不等于0)表示a能被b整除,或 b能整除a,在此基础上再引出因数和倍数的概念。而现在的西师版教材中没有用数学语言给“整除”下定义,而是利用韩信点兵的故事,引导学生自己列乘法算式和除法算式,通过乘除法法算式中三个数的关系,直接给出因数和倍数的概念。这部分内容学生初次接触,是比较难掌握的内容。

根据本节课知识的特点和学生的认知规律,我采用了角色转换、数形结合、合作学习等发展性教学手段进行教学,在教学中注重体现以学生为主体的理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:

一、贴近生活,理解因数倍数相互依存的关系。

因数和倍数是揭示两个整数之间的一种相互依存关系,这种依存关系,学生理解有些可能有些困难。我通过班级中的师生关系,向大家讲明有了学生才有老师,同时有了老师才有学生,通过这种关系,迁移到数学中的数和数之间的关系,这样教学自然贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。

二、亲身体验,理解数和数之间的联系。

因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。在教学中,我让每个孩子记住自己的学号,在学习了因数和倍数后,我让每个学生根据老师的提问,满足要求的同学起立。如:请20的因数的同学起立,3的倍数的同学起立等。通过这种方式,让全体学生参与到教学过程中来,动脑、动手、动口,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。

三、数形结合,学习因数与倍数。

“數形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。充分利用数与形的结合,变抽象为直观,有助于学生对知识的理解。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,直接影响学生空间想象,对于终身学习,形成自己独特的思维方式有很大的帮助。

四、依据学情,探究找因数倍数的方法。

教材在教学因数、倍数的概念后,还继续用韩信点兵的主题图,通过填空的方式,寻找36的所有因数,并由此引出最小因数和最大因数的概念。教学中,我觉得这部分的例题比较少,不利于学生巩固知识点。根据学生的实际情况,我先让学生根据乘法算式“一对对”地找出21的因数,在此基础上再让学生探究36的因数。在学生完成探究任务的同时,“质疑”:有什么办法能保证不重复又不遗漏地找出一个数的所有因数呢?让学生思考并发现:按照一定的顺序一对对的找因数,能不重复又不遗漏。进而分组练习,让学生写出20、18、40、33和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。通过学生的自主探索,发现:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

12.3的倍数教学案例分析 篇十二

朱冬梅

教学目标:

1、经历探索3的倍数的特征的过程,理解3的倍数的特征。

2、能判断一个数是不是3的倍数。

3、提高分析、比较、猜想、验证的能力。教学重点:探索3的倍数的特征的过程。教学难点:归纳验证3 的倍数的特征。教学准备:

师:多媒体课件。生:计算器,计数器

设计理念:

《数学课程标准》告诉我们,数学学习过程应该是充满探索与挑战性的活动。因此,教师要引导学生投入到自主探索与合作交流的学习中去。本节课“3的倍数的特征”有规律可循,但容易上成机械刻板、枯燥无味的课,学社死套规律判断,智力得不到开发,能力得不到培养。本课设计旨在点拨学生大胆思考,引导探索发现、归纳验证。提升小学生数学综合能力。

具体来说,一是师生竞赛,巧妙导入,自然过渡,激发兴趣。二是尊重学生,相信学生,让学生通过观察、猜测、验证、自主探索、合作交流,使学生真正成为学习的主人,使课堂变为学堂。三是梯度练习,分层优化,给学生搭建广阔的思维空间,在练习中探索,在练习中发现,在练习中发展。

教学过程:

一、以旧引新,竞赛导入

1、判断下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数,并说出你是如何进行判断的? 35 158 200 87 65 162 4122

2、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

3、好,现在我们来个竞赛怎么样?请学生任意报数,你们用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!(师生竞赛)

4、评价:你们想知道其中的奥秘吗?我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

(设计意图:先复习2、5的倍数的特征,再通过师生竞赛来判断一个数是不是3的倍数创设情境,巧妙引入,自然过渡,可谓一举多得。)

二、猜想探索,归纳验证

(一)大胆猜想:猜一猜3的倍数有什么特征?

(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

师:看来只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?我们共同来研究。(设计意图:任何结论都是从猜想开始的,有了猜想,就有了探索,就有了分析,就有了否定,就有了归纳,就有了验证。这里猜想,学生很快进入了问题情境,为下面观察探索做了很好的铺垫。)

(二)观察探索

1、看P6的表,找出3的倍数,并将这些数圈起来做上记号。

2、观察这表,你有什么发现?把你的发现与同桌交流一下。(学生交流)

3、全班交流。个位上的数字没有什么规律,十位上的数字有规律吗?大家还有什么发现?

4、教师引领:

①大家再仔细看一看,3的倍数在表中排列有什么规律? ②从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)③个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

④每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

5、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?(生回答、归纳、同桌小组互相说一说。)

6、验证结论

师:大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。(生写数,然后判断、交流、得出结论。)

①教师说一个数。如342,学生先用特征判断,再用计算器检验。

②一个更大的数。教师家的电话号码4870599,学生先用特征判断,再用计算器检验。

(设计意图:探索、归纳、验证是本节课的重点,也是难点。因此教师要注意突出学生的主体地位,组织师生之间、生生之间的交流、讨论。逐步发现,归纳规律,验证结论,从而培养学生探索意识和分析、概括、验证、判断等能力。)

三、梯度练习,内化新知 师:我们已经理解了3的倍数的特征,下面请运用特征来检验我们的实践能力吧!

1、在下面的数中圈出3的倍数 28

2、在下面各数的□里填上一个数字,使这个数是3的倍数,各有几种填法? □7、4□

2、□44、56□

3、用数字1、3、5、能组成几个三位数?哪些三位数是3的倍数?你有什么发现?

4、将下面这些数进行分类。548、15、2707、820、118、452、507、210、462、450 2的倍数:

3的倍数:

5的倍数:

同时是2和5的倍数:

同时是2和3的倍数:

同时是2、3、5的倍数:

(设计意图:练习设计依照循序渐进,由浅入深的原则,在巩固新知的同时,给学生一个广阔的思维空间,让学生从中寻求规律性。第3题注重“说”的训练,有助于培养学生思维的灵活性。)5.拓展提高。

探索9的倍数的特征。学生阅读课本,按照课本上几个问题分层次展开研究。(设计意图:设计这道题目的出发点是满足那些“吃不饱”的学生,启发他们活学活用知识,用学到的方法“猜想、探索、归纳、验证”研究9的倍数的特征。这个环节可能在课内完成不了,可以延伸到课外。)

四、全课总结

同学们,四十分钟的探索活动已经结束了,但我们的研究不能因此而终止。这节课我们运用了数学上很重要的研究方法“猜想、探索、归纳、验证”研究3的倍数的特征。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征?老师坚信:只要这样长期坚持下去,大家的头脑会越来越聪明,思维会越来越灵活,未来的科学家一定会在我们班诞生。

“3的倍数的特征”教学反思:

在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“

2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“

13.3的倍数教学案例分析 篇十三

《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。

这节课结束后,我感觉以下方面做得不好。

1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;

14.《倍数和因数》教学设计及评析 篇十四

苏教版数学四年级下册教材70-72页内容和 “想想做做”第1-3题。

【教学目标】

1.让学生理解倍数和因数的意义,探索求—个数的倍数和因数的方法,比较、归纳、发现一个数倍数和因数的某些特征。

2.在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。

3.通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。

【教学重点】

1.理解倍数和因数的意义;

2.探索求—个数的倍数和因数的方法。

【教学难点】

1.探索求一个数的倍数和因数的方法;

2.在理解概念的基础上,能有序找出一个数的所有因数。

【课前准备】

制作的多媒体课件。

【教学过程】(省略)

【教后反思】

本节课是自己执教的一节区级公开课,课堂的导入是由一个脑筋急转弯开始的。很显然,学生对于这样的形式很感兴趣。俗话说的好:良好的开端是成功的一半,所以本节课在师生的共同努力下,轻松而愉快,学生能积极参与,取得了令人满意的效果。

教材中首先呈现的是找一个数的倍数,在教学过程中我改变了呈现的方式。根据学生列出的乘法算式,先练习说一说谁是谁的倍数,谁是谁的因数,让学生初步感知倍数和因数关系的存在,从而为下面学习如何找一个数的倍数和因数奠定了良好的基础。使学生很容易感悟到不管是根据乘法还是除法算式都可以找到一个数的因数和倍数。从三道乘法算式来找12的因数会比较容易,所以,我在安排上稍做调整。首先一起来探究找一个数的因数的方法,在此基础上让学生体会有序找一个数因数的办法。这样的设计由易到难,由浅入深,学生比较容易接受,我觉得起到了巩固新知,发展思维的效果。

探究一个数因数的过程,我给予学生高度的评价,接着借助这个学习热情让学生自己学习找一个数的倍数。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数,而且发现了倍数的特点。这一环节教学的成功,也使我深刻认识到适时放手会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

上一篇:描写月亮古诗句下一篇:小学生读书的乐趣议论文300字