塑料齿轮加工工艺及材料简介

2024-06-29

塑料齿轮加工工艺及材料简介(共2篇)

1.塑料齿轮加工工艺及材料简介 篇一

第一节 概述

一、 齿轮的功用与结构特点

齿轮传动在现代机器和仪器中的应用极为广泛,其功用是按规定的速比传递运动和动力,

齿轮的结构由于使用要求不同而具有各种不同的形状,但从工艺角度可将齿轮看成是由齿圈和轮体两部分构成。按照齿圈上轮齿的分布形式,可分为直齿、斜齿、人字齿等;按照轮体的结构特点,齿轮大致分为盘形齿轮、套筒齿轮、轴齿轮、扇形齿轮和齿条等等,如图9-1所示。

在上述各种齿轮中,以盘形齿轮应用最广。盘形齿轮的内孔多为精度较高的圆柱孔和花键孔。其轮缘具有一个或几个齿圈。单齿圈齿轮的结构工艺性最好,可采用任何一种齿形加工方法加工轮齿;双联或三联等多齿圈齿轮(图9-1b、c)。当其轮缘间的轴向距离较小时,小齿圈齿形的加工方法的选择就受到限制,通常只能选用插齿。如果小齿圈精度要求高,需要精滚或磨齿加工,而轴向距离在设计上又不允许加大时,可将此多齿圈齿轮做成单齿圈齿轮的组合结构,以改善加工的工艺性。

二、齿轮的技术要求

齿轮本身的制造精度,对整个机器的工作性能、承载能力及使用寿命都有很大的影响。根据其使用条件,齿轮传动应满足以下几个方面的要求。

(一)传递运动准确性

要求齿轮较准确地传递运动,传动比恒定。即要求齿轮在一转中的转角误差不超过一定范围。

(二)传递运动平稳性

要求齿轮传递运动平稳,以减小冲击、振动和噪声。即要求限制齿轮转动时瞬时速比的变化。

(三)载荷分布均匀性

要求齿轮工作时,齿面接触要均匀,以使齿轮在传递动力时不致因载荷分布不匀而使接触应力过大,引起齿面过早磨损。接触精度除了包括齿面接触均匀性以外,还包括接触面积和接触位置。

(四)传动侧隙的合理性

要求齿轮工作时,非工作齿面间留有一定的间隙,以贮存润滑油,补偿因温度、弹性变形所引起的尺寸变化和加工、装配时的一些误差。

齿轮的制造精度和齿侧间隙主要根据齿轮的用途和工作条件而定。对于分度传动用的齿轮,主要要求齿轮的运动精度较高;对于高速动力传动用齿轮,为了减少冲击和噪声,对工作平稳性精度有较高要求;对于重载低速传动用的齿轮,则要求齿面有较高的接触精度,以保证齿轮不致过早磨损;对于换向传动和读数机构用的齿轮,则应严格控制齿侧间隙,必要时,须消除间隙。

B10095?88中对齿轮及齿轮副规定了12个精度等级,从1~12顺次降低。其中1~2级是有待发展的精度等级,3~5级为高精度等级,6~8级为中等精度等级,9级以下为低精度等级。每个精度等级都有三个公差组,分别规定出各项公差和偏差项目,见表9?1。

表9—1齿轮公差组

公差组

公差及偏差项目

对传动性能的影响

F’i、△Fp(△Fpk)、△F”i、△Fr、△Fw

传递运动准确性

f’I、△ff、△fpt、△fpb、△f”I、△fpb

传动平稳性、噪声、振动

△Fβ、△Fpx

承载均匀性

第一节 概述

一、 齿轮的功用与结构特点

齿轮传动在现代机器和仪器中的应用极为广泛,其功用是按规定的速比传递运动和动力。

齿轮的结构由于使用要求不同而具有各种不同的形状,但从工艺角度可将齿轮看成是由齿圈和轮体两部分构成。按照齿圈上轮齿的分布形式,可分为直齿、斜齿、人字齿等;按照轮体的结构特点,齿轮大致分为盘形齿轮、套筒齿轮、轴齿轮、扇形齿轮和齿条等等,如图9-1所示。

在上述各种齿轮中,以盘形齿轮应用最广。盘形齿轮的内孔多为精度较高的圆柱孔和花键孔。其轮缘具有一个或几个齿圈。单齿圈齿轮的结构工艺性最好,可采用任何一种齿形加工方法加工轮齿;双联或三联等多齿圈齿轮(图9-1b、c)。当其轮缘间的轴向距离较小时,小齿圈齿形的加工方法的选择就受到限制,通常只能选用插齿。如果小齿圈精度要求高,需要精滚或磨齿加工,而轴向距离在设计上又不允许加大时,可将此多齿圈齿轮做成单齿圈齿轮的组合结构,以改善加工的工艺性。

二、齿轮的技术要求

齿轮本身的制造精度,对整个机器的工作性能、承载能力及使用寿命都有很大的影响。根据其使用条件,齿轮传动应满足以下几个方面的要求。

(一)传递运动准确性

要求齿轮较准确地传递运动,传动比恒定。即要求齿轮在一转中的转角误差不超过一定范围。

(二)传递运动平稳性

要求齿轮传递运动平稳,以减小冲击、振动和噪声。即要求限制齿轮转动时瞬时速比的变化。

(三)载荷分布均匀性

要求齿轮工作时,齿面接触要均匀,以使齿轮在传递动力时不致因载荷分布不匀而使接触应力过大,引起齿面过早磨损。接触精度除了包括齿面接触均匀性以外,还包括接触面积和接触位置。

(四)传动侧隙的合理性

要求齿轮工作时,非工作齿面间留有一定的间隙,以贮存润滑油,补偿因温度、弹性变形所引起的尺寸变化和加工、装配时的一些误差。

齿轮的制造精度和齿侧间隙主要根据齿轮的用途和工作条件而定。对于分度传动用的齿轮,主要要求齿轮的运动精度较高;对于高速动力传动用齿轮,为了减少冲击和噪声,对工作平稳性精度有较高要求;对于重载低速传动用的齿轮,则要求齿面有较高的接触精度,以保证齿轮不致过早磨损;对于换向传动和读数机构用的齿轮,则应严格控制齿侧间隙,必要时,须消除间隙。

B10095?88中对齿轮及齿轮副规定了12个精度等级,从1~12顺次降低。其中1~2级是有待发展的精度等级,3~5级为高精度等级,6~8级为中等精度等级,9级以下为低精度等级。每个精度等级都有三个公差组,分别规定出各项公差和偏差项目,见表9?1。

表9—1齿轮公差组

公差组

公差及偏差项目

对传动性能的影响

F’i、△Fp(△Fpk)、△F”i、△Fr、△Fw

传递运动准确性

f’I、△ff、△fpt、△fpb、△f”I、△fpb

传动平稳性、噪声、振动

△Fβ、△Fpx

承载均匀性

三、齿轮的材料、热处理和毛坯

(一)齿轮的材料与热处理

1.材料的选择

齿轮应按照使用时的工作条件选用合适的材料。齿轮材料的合适与否对齿轮的加工性能和使用寿命都有直接的影响。

一般来说,对于低速重载的传力齿轮,齿面受压产生塑性变形和磨损,且轮齿易折断。应选用机械强度、硬度等综合力学性能较好的材料,如18CrMnTi;线速度高的传力齿轮,齿面容易产生疲劳点蚀,所以齿面应有较高的硬度,可用38CrMoAlA氮化钢;承受冲击载荷的传力齿轮,应选用韧性好的材料,如低碳合金钢18CrMnTi;非传力齿轮可以选用不淬火钢,铸铁、夹布胶木、尼龙等非金属材料。一般用途的齿轮均用45钢等中碳结构钢和低碳结构钢如20Cr、40Cr、20CrMnTi等制成。

2.齿轮的热处理

齿轮加工中根据不同的目的,安排两类热处理工序。

(1)毛坯热处理在齿坯加工前后安排预备热处理—正火或调质。其主要目的是消除锻造及粗加工所引起的残余应力,改善材料的切削性能和提高综合力学性能。

(2)齿面热处理齿形加工完毕后,为提高齿面的硬度和耐磨性,常进行渗碳淬火,高频淬火,碳氮共渗和氮化处理等热处理工序。

(二)齿轮毛坯

齿轮毛坯形式主要有棒料、锻件和铸件。棒料用于小尺寸、结构简单且对强度要求不太高的齿轮。当齿轮强度要求高,并要求耐磨损、耐冲击时,多用锻件毛坯。当齿轮的直径大于Φ400~Φ600时,常用铸造齿坯。为了减少机械加工量,对大尺寸、低精度的齿轮,可以直接铸出轮齿;对于小尺寸,形状复杂的齿轮,可以采用精密铸造、压力铸造、精密锻造、粉末冶金、热轧和冷挤等新工艺制造出具有轮齿的齿坯,以提高劳动生产率,节约原材料。

四、齿坯加工

齿形加工之前的齿轮加工称为齿坯加工,齿坯的内孔(或轴颈)、端面或外圆经常是齿轮加工、测量和装配的基准,齿坯的精度对齿轮的加工精度有着重要的影响。因此,齿坯加工在整个齿轮加工中占有重要的地位。

(一)齿坯加工精度

齿坯加工中,主要要求保证的是基准孔(或轴颈)的尺寸精度和形状精度、基准端面相对于基准孔(或轴颈)的位置精度。不同精度的孔(或轴颈)的齿坯公差以及表面粗糙度等要求分别列于表9—2、表9—3和表9—4中。

表9—2齿坯公差

齿轮精度等级①

5

6

7

8

9

孔尺寸公差

形状公差

IT5

IT6

IT7

IT8

轴尺寸公差

形状公差

IT5

IT6

IT7

顶圆直径②

IT7

IT8

IT8

①当三个公差组的精度等级不同时,按最高精度等级确定公差值。

②当顶圆不作为测量齿厚基准时,尺寸公差按IT11给定,但应小于0.1mm。

表9—3齿轮基准面径向和端面圆跳动公差(μm)

分度圆直径(mm)

精度等级

大于

1和2

3 和4

5 和6

7 和8

9 和12

0

125

2.8

7

11

18

28

125

400

3.6

9

14

22

36

400

800

5.0

12

20

32

50

表9—4齿坯基准面的表面粗糙度参数Ra(μm)

精度等级

3

4

5

6

7

8

9

10

颈端

端面

顶圆

≤0.2

≤0.1

0.2~0.1

≤0.2

0.2~0.1

0.4~0.2

0.4~0.2

≤0.2

0.6~0.4

≤0.8

≤0.4

0.6~0.3

1.6~0.8

≤0.8

1.6~0.8

≤1.6

≤1.6

3.2~1.6

≤3.2

≤1.6

≤3.2

≤3.2

≤1.6

≤3.2

(二)齿坯加工方案

齿坯加工方案的选择主要与齿轮的轮体结构、技术要求和生产批量等因素有关。对轴、套筒类齿轮的齿坯,其加工工艺与一般轴、套筒零件的加工工艺相类同。下面主要对盘齿轮的齿坯加工方案作一介绍。

1.中、小批生产的齿坯加工

中小批生产尽量采用通用机床加工。对于圆柱孔齿坯,可采用粗车—精车的加工方案:

(1)在卧式车床上粗车齿轮各部分;

(2)在一次安装中精车内孔和基准端面,以保证基准端面对内孔的跳动要求;

(3)以内孔在心轴上定位,精车外圆、端面及其它部分。

对于花键孔齿坯,采用粗车—拉—精车的加工方案。

2.大批量生产的齿坯加工

大批量生产中,无论花键孔或圆柱孔,均采用高生产率的机床(如拉床、多轴自动或多刀半自动车床等),其加工方案如下:

(1)以外圆定位加工端面和孔(留拉削余量);

(2)以端面支承拉孔;

(3)以孔在芯轴上定位,在多刀半自动车床上粗车外圆、端面和切槽;

(4)不卸下芯轴,在另一台车床上续精车外圆、端面、切槽和倒角,如图9—2所示。

第二节 圆柱齿轮齿形加工方法和加工方案

一个齿轮的加工过程是由若干工序组成的。为了获得符合精度要求的齿轮,整个加工过程都是围绕着齿形加工工序服务的。齿形加工方法很多,按加工中有无切削,可分为无切削加工和有切削加工两大类。

无切削加工包括热轧齿轮、冷轧齿轮、精锻、粉末冶金等新工艺。无切削加工具有生产率高,材料消耗少、成本低等一系列的优点,目前已推广使用。但因其加工精度较低,工艺不够稳定,特别是生产批量小时难以采用,这些缺点限制了它的使用。

齿形的有切削加工,具有良好的加工精度,目前仍是齿形的主要加工方法。按其加工原理可分为成形法和展成法两种。

成形法的特点是所用刀具的切削刃形状与被切齿轮轮槽的形状相同,如图9-3所示。用成形原理加工齿形的方法有:用齿轮铣刀在铣床上铣齿、用成形砂轮磨齿、用齿轮拉刀拉齿等方法。这些方法由于存在分度误差及刀具的安装误差,所以加工精度较低,一般只能加工出9~10级精度的齿轮。此外,加工过程中需作多次不连续分齿,生产率也很低。因此,主要用于单件小批量生产和修配工作中加工精度不高的齿轮。

展成法是应用齿轮啮合的原理来进行加工的,用这种方法加工出来的齿形轮廓是刀具切削刃运动轨迹的包络线。齿数不同的齿轮,只要模数和齿形角相同,都可以用同一把刀具来加工。用展成原理加工齿形的方法有:滚齿、插齿、剃齿、珩齿和磨齿等方法。其中剃齿、珩齿和磨齿属于齿形的精加工方法。展成法的加工精度和生产率都较高,刀具通用性好,所以在生产中应用十分广泛。

一、滚齿

(一)滚齿的原理及工艺特点

滚齿是齿形加工方法中生产率较高、应用最广的一种加工方法。在滚齿机上用齿轮滚刀加工齿轮的原理,相当于一对螺旋齿轮作无侧隙强制性的啮合,见图9-24所示。滚齿加工的通用性较好,既可加工圆柱齿轮,又能加工蜗轮;既可加工渐开线齿形,又可加工圆弧、摆线等齿形;既可加工大模数齿轮,大直径齿轮。

滚齿可直接加工8~9级精度齿轮,也可用作7 级以上齿轮的粗加工及半精加工。滚齿可以获得较高的运动精度,但因滚齿时齿面是由滚刀的刀齿包络而成,参加切削的刀齿数有限,因而齿面的表面粗糙度较粗。为了提高滚齿的加工精度和齿面质量,宜将粗精滚齿分开。

(二)滚齿加工质量分析

1.影响传动精度的加工误差分析

影响齿轮传动精度的主要原因是在加工中滚刀和被切齿轮的相对位置和相对运动发生了变化。相对位置的变化(几何偏心)产生齿轮的径向误差;相对运动的变化(运动偏心)产生齿轮的切向误差。

(1)齿轮的径向误差齿轮径向误差是指滚齿时,由于齿坯的实际回转中心与其基准孔中心不重合,使所切齿轮的轮齿发生径向位移而引起的周节累积公差,如图9—4所示。

齿轮的径向误差一般可通过测量齿圈径向跳动△Fr反映出来。切齿时产生齿轮径向误差的主要原因如下:

①调整夹具时,心轴和机床工作台回转中心不重合。

②齿坯基准孔与心轴间有间隙,装夹时偏向一边。

③基准端面定位不好,夹紧后内孔相对工作台回转中心产生偏心。

(2)齿轮的切向误差齿轮的切向误差是指滚齿时,实际齿廓相对理论位置沿圆周方向(切向)发生位移,如图9-5所示。当齿轮出现切向位移时,可通过测量公法线长度变动公差△Fw来反映。

切齿时产生齿轮切向误差的主要原因是传动链的传动误差造成的。在分齿传动链的各传动元件中,对传动误差影响最大的是工作台下的分度蜗轮。分度蜗轮在制造和安装中与工作台回转中心不重合(运动偏心),使工作台回转中发生转角误差,并复映给齿轮。其次,影响传动误差的另一重要因素是分齿挂轮的制造和安装误差,这些误差也以较大的比例传递到工作台上。

2.影响齿轮工作平稳性的加工误差分析

影响齿轮传动工作平稳性的主要因素是齿轮的齿形误差△ff和基节偏差△fpb。齿形误差会引起每对齿轮啮合过程中传动比的瞬时变化;基节偏差会引起一对齿过渡到另一对齿啮合时传动比的突变。齿轮传动由于传动比瞬时变化和突变而产生噪声和振动,从而影响工作平稳性精度。 滚齿时,产生齿轮的基节偏差较小,而齿形误差通常较大。下面分别进行讨论。

(1)齿形误差

齿形误差主要是由于齿轮滚刀的制造刃磨误差及滚刀的安装误差等原因造成的,因此在滚刀的每一转中都会反映到齿面上。常见的齿形误差有如图9-6所示的各种形式。图a为齿面出棱、图b为齿形不对称、图c为齿形角误差、图d为齿面上的周期性误差、图e为齿轮根切。

由于齿轮的齿面偏离了正确的渐开线,使齿轮传动中瞬时传动比不稳定,影响齿轮的工作平稳性。

(2)基节极限偏差滚齿时,齿轮的基节极限偏差主要受滚刀基节偏差的影响。滚刀基节的计算式为:

pb0=pn0cosα0=pt0cosλ0cosα0≈pt0cosα0

式中:pb0DD滚刀基节;

pn0DD滚刀法向齿距;

pt0DD滚刀轴向齿距;

α0DD滚刀法向齿形角;

λ0DD滚刀分度圆螺旋升角,一般很小,因此cosλ0≈1。

由上式可见,为减少基节偏差,滚刀制造时应严格控制轴向齿距及齿形角误差,同时对影响齿形角误差和轴向齿距误差的刀齿前刀面的非径向性误差也

要加以控制。

3.影响齿轮接触精度的加工误差分析

齿轮齿面的接触状况直接影响齿轮传动中载荷分布的均匀性。滚齿时,影响齿高方向的接触精度的主要原因是齿形公差△ff和基节极限偏差△fpb。影响齿宽方向的接触精度的主要原因是齿向公差△Fβ。产生齿向公差的主要原因:

(1)滚齿机刀架导轨相对于工作台回转轴线存在平行度误差,如9D7所示。

(2)齿坯装夹歪斜 由于心轴、齿坯基准端面跳动及垫圈两端面不平行等引起的齿坯安装歪斜,会产生齿向误差,如图9-8所示。

(3)滚切斜齿轮时,除上述影响因素外,机床差动挂轮计算的误差,也会影响齿轮的齿向误差。

4.提高滚齿生产率的途径

(1)高速滚齿

近年来,我国已开始设计和制造高速滚齿机,同时生产出铝高速钢(MO5Al)滚刀。滚齿速度由一般v=30m/min提高到v=100m/min以上,轴向进给量 f=1.38mm/r~2.6mm/r,使生产率提高25%。

国外用高速钢滚刀滚齿速度已提高到100 m/min~150 m/min;硬质合金滚刀已试验到400 m/min以上。总之,高速滚齿具有一定的发展前途。

(2)采用多头滚刀可明显提高生产率,但加工精度较低,齿面粗糙,因而多用于粗加工中。当齿轮加工精度要求较高时,可采用大直径滚刀,使参加展成运动的刀齿数增加,加工齿面粗糙度较细。

(3)改进滚齿加工方法

a.多件加工 将几个齿坯串装在心轴上加工,可以减少滚刀对每个齿坯的切入切出时间及装卸时间。

b.采用径向切入 滚齿时滚刀切入齿坯的方法有两种:径向切入和轴向切入。径向切入比轴向切入行程短,可节省切入时间,对大直径滚刀滚齿时尤为突出。

c.采用轴向窜刀和对角滚齿 滚刀参与切削的刀齿负荷不等,磨损不均,当负荷最重的刀齿磨损到一定程度时,应将滚刀沿其轴向移动一段距离(即轴向窜刀)后继续切削,以提高刀具的使用寿命。

对角滚齿是滚刀在沿齿坯轴向进给的同时,还沿滚刀刀杆轴向连续移动,两种运动的合成,使齿面形成对角线刀痕,不仅降低了齿面粗糙度,而且使刀齿磨损均匀,提高了刀具的使用寿命和耐用度,如图9-9所示。

二、插齿

(一)插齿原理及运动

1.插齿原理

从插齿过程的原理上分析,如图9-10所示,插齿刀相当于一对轴线相互平行的圆柱齿轮相啮合。插齿刀实质上就是一个磨有前后角并具有切削刃的齿轮

2.插齿的主要运动有:

(1)切削运动:插齿刀的上、下往复运动。

(2)分齿展成运动:插齿刀与工件之间应保持正确的啮合关系。插齿刀往复一次,工件相对刀具在分度圆上转过的弧长为加工时的圆周进给量,故刀具与工件的啮合过程也就是圆周进给过程。

(3)径向进给运动:插齿时,为逐步切至全齿深,插齿刀应有径向进给量fr。

(4)让刀运动:插齿刀作上下往复运动时,向下是切削行程。为了避免刀具擦伤已加工的齿面并减少刀齿的磨损,在插齿刀向上运动时,工作台带动工件退出切削区一段距离(径向)。插齿刀工作行程时,工作台再恢复原位。

(二)插齿的工艺特点

插齿和滚齿相比,在加工质量,生产率和应用范围等方面都有其特点。

1.插齿的加工质量

(1)插齿的齿形精度比滚齿高 滚齿时,形成齿形包络线的切线数量只与滚刀容屑槽的数目和基本蜗杆的头数有关,它不能通过改变加工条件而增减;但插齿时,形成齿形包络线的切线数量由圆周进给量的大小决定,并可以选择。此外,制造齿轮滚刀时是近似造型的蜗杆来替代渐开线基本蜗杆,这就有造形误差。而插齿刀的齿形比较简单,可通过高精度磨齿获得精确的渐开线齿形。所以插齿可以得到较高的齿形精度。

(2)插齿后齿面的粗糙度比滚齿细 这是因为滚齿时,滚刀在齿向方向上作间断切削,形成如图9-11a所示的鱼鳞状波纹;而插齿时插齿刀沿齿向方向的切削是连续的,如图9-11b所示。所以插齿时齿面粗糙度较细。

(3)插齿的运动精度比滚齿差 这是因为插齿机的传动链比滚齿机多了一个刀具蜗轮副,即多了一部分传动误差。另外,插齿刀的一个刀齿相应切削工件的一个齿槽,因此,插齿刀本身的周节累积误差必然会反映到工件上。而滚齿时,因为工件的每一个齿槽都是由滚刀相同的2~3圈刀齿加工出来,故滚刀的齿距累积误差不影响被加工齿轮的齿距精度,所以滚齿的运动精度比插齿高。

(4)插齿的齿向误差比滚齿大 插齿时的齿向误差主要决定于插齿机主轴回转轴线与工作台回转轴线的平行度误差。由于插齿刀工作时往复运动的频率高,使得主轴与套筒之间的磨损大,因此插齿的齿向误差比滚齿大。所以就加工精度来说,对运动精度要求不高的齿轮,可直接用插齿来进行齿形精加工,而对于运动精度要求较高的齿轮和剃前齿轮(剃齿不能提高运动精度),则用滚齿较为有利。

2.插齿的生产率 切制模数较大的齿轮时,插齿速度要受到插齿刀主轴往复运动惯性和机床刚性的制约;切削过程又有空程的时间损失,故生产率不如滚齿高。只有在加工小模数、多齿数并且齿宽较窄的齿轮时,插齿的生产率才比滚齿高。.

3.滚插齿的应用范围:

(1)加工带有台肩的齿轮以及空刀槽很窄的双联或多联齿轮,只能用插齿。这是因为:插齿刀“切出”时只需要很小的空间,而滚齿则滚刀会与大直径部位发生干涉。

(2)加工无空刀槽的人字齿轮,只能用插齿;

(3)加工内齿轮,只能用插齿。

(4)加工蜗轮,只能用滚齿。

(5)加工斜齿圆柱齿轮,两者都可用。但滚齿比较方便。插制斜齿轮时,插齿机的刀具主轴上须设有螺旋导轨,来提供插齿刀的螺旋运动,并且要使用专门的斜齿插齿刀,所以很不方便。

(三)提高插齿生产率的途径

1.提高圆周进给量可减少机动时间,但圆周进给量和空行程时的让刀量成正比,因此,必须解决好刀具的让刀问题。

2.挖掘机床潜力增加往复行程次数,采用高速插齿。

有的插齿机每分钟往复行程次数可达1200~1500次/min,最高的可达到2500次/min。比常用的提高了3~4倍,使切削速度大大提高,同时也能减少插齿所需的机动时间。

3.改进刀具参数,提高插齿刀的耐用度,充分发挥插齿刀的切削性能。如采用W18Cr4V插齿刀,切削速度可达到60m/min;加大前角至15°,后角至9°,可提高耐用度3倍;在前刀面磨出1~1.5 mm宽的平台,也可提高耐用度30%左右。

三、剃齿

(一)剃齿原理

剃齿加工是根据一对螺旋角不等的螺旋齿轮啮合的原理,剃齿刀与被切齿轮的轴线空间交叉一个角度,如图9-12a所示,剃齿刀为主动轮1,被切齿轮为从动轮2,它们的啮合为无侧隙双面啮合的自由展成运动。在啮合传动中,由于轴线交叉角“φ”的存在,齿面间沿齿向产生相对滑移,此滑移速度v切=(vt2-vt1)即为剃齿加工的切削速度。剃齿刀的齿面开槽而形成刀刃,通过滑移速度将齿轮齿面上的加工余量切除。由于是双面啮合,剃齿刀的两侧面都能进行切削加工,但由于两侧面的切削角度不同,一侧为锐角,切削能力强;另一侧为钝角,切削能力弱,以挤压擦光为主,故对剃齿质量有较大影响。为使齿轮两侧获得同样的剃削条件,则在剃削过程中,剃齿刀做交替正反转运动。

剃齿加工需要有以下几种运动:

1.剃齿刀带动工件的高速正、反转运动D基本运动。

2.工件沿轴向往复运动-使齿轮全齿宽均能剃出

3.工件每往复一次做径向进给运动-以切除全部余量。

综上所述,剃齿加工的过程是剃齿刀与被切齿轮在轮齿双面紧密啮合的自由展成运动中,实现微细切削过程,而实现剃齿的基本条件是轴线存在一个交叉角,当交叉角为零时,切削速度为零,剃齿刀对工件没有切削作用。

(二)剃齿特点

1.剃齿加工精度一般为6~7级,表面粗糙度Ra为0.8~0.4μm,用于未淬火齿轮的精加工。

2.剃齿加工的生产率高,加工一个中等尺寸的齿轮一般只需2~4 min,与磨齿相比较,可提高生产率10倍以上。

3.由于剃齿加工是自由啮合,机床无展成运动传动链,故机床结构简单,机床调整容易。

(三)保证剃齿质量应注意的几个问题

1. 对剃前齿轮的加工要求

(1)剃前齿轮材料 要求材料密度均匀,无局部缺陷,韧性不得过大,以免出现滑刀和啃切现象,影响表面粗糙度。剃前齿轮硬度在22 ~32HRC范围内较合适。

(2)剃前齿轮精度 由于剃齿是“自由啮合”,无强制的分齿运动,故分齿均匀性无法控制。由于剃前齿圈有径向误差,在开始剃齿时,剃齿刀只能与工件上距旋转中心较远的齿廓做无侧隙啮合的剃削,而与其它齿则变成有齿侧间隙,但此时无剃削作用。连续径向进给,其它齿逐渐与刀齿作无侧隙啮合。结果齿圈原有的径向跳动减少了,但齿廓的位置沿切向发生了新的变化,公法线长度变动量增加。故剃齿加工不能修正公法线长度变动量。虽对齿圈径向跳动有较强的修正能力,但为了避免由于径向跳动过大而在剃削过程中导致公法线长度的进一步变动,从而要求剃前齿轮的径向误差不能过大。除此以外,剃齿对齿轮其它各项误差均有较强的修正能力。

分析得知,剃齿对第一公差组的误差修正能力较弱,因此要求齿轮的运动精度在剃前不能低于剃后要求,特别是公法线长度变动量应在剃前保证;其它各项精度可比剃后低一级。

(3)剃齿余量 剃齿余量的大小,对加工质量及生产率均有一定影响。余量不足,剃前误差和齿面缺陷不能全部除去;余量过大,刀具磨损快,剃齿质量反而变坏。表9—5可供选择余量时参考。

表9-5剃齿余量(mm)

模数

剃齿余量

1~1.75

0.07

2~3

0.08

3.25~4

0.09

4~5

0.10

5.5~6

0.11

2.剃齿刀的选用

剃齿刀的精度分A、B、C三级,分别加工6、7、8级精度的齿轮,

剃齿刀分度圆直径随模数大小有三种:85 mm、180 mm、240 mm,其中240 mm 应用最普遍。分度圆螺旋角有5°、10°、15°三种,其中5°和10°两种应用最广。15°多用于加工直齿圆柱齿轮;5°多用于加工斜齿轮和多联齿轮中的小齿轮。在剃削斜齿轮时,轴交叉φ不宜超过10°~20°,不然剃削效果不好。

3.剃后的齿形误差与剃齿刀齿廓修形

剃齿后的齿轮齿形有时出现节圆附近凹入,如图9-13所示,一般在0.03 mm左右。被剃齿轮齿数越少,中凹现象严重。

为消除剃后齿面中凹现象,可将剃齿刀齿廓修形,需要通过大量实验才能最后确定。也可采用专门的剃前滚刀滚齿后,再进行剃齿。

四、珩齿

淬火后的齿轮轮齿表面有氧化皮,影响齿面粗糙度,热处理的变形也影响齿轮的精度。由于工件已淬硬,除可用磨削加工外,但也可以采用珩齿进行精加工。

珩齿原理与剃齿相似,珩轮与工件类似于一对螺旋齿轮呈无侧隙啮合,利用啮合处的相对滑动,并在齿面间施加一定的压力来进行珩齿。

珩齿时的运动和剃齿相同。即珩轮带动工件高速正、反向转动,工件沿轴向往复运动及工件径向进给运动。与剃齿不同的是开车后一次径向进给到预定位置,故开始时齿面压力较大,随后逐渐减小,直到压力消失时珩齿便结束。

珩轮由磨料(通常80#~180#粒度的电刚玉)和环氧树脂等原料混合后在铁芯浇铸而成。珩齿是齿轮热处理后的一种精加工方法。

与剃齿相比较,珩齿具有以下工艺特点:

(1)珩轮结构和磨轮相似,但珩齿速度甚低(通常为1~3m/s),加之磨粒粒度较细,珩轮弹性较大,故珩齿过程实际上是一种低速磨削、研磨和抛光的综合过程。

(2)珩齿时,齿面间隙沿齿向有相对滑动外,沿齿形方向也存在滑动,因而齿面形成复杂的网纹,提高了齿面质量,其粗糙度可从Ra1.6μm降到Ra0.8~0.4μm。

(3)珩轮弹性较大,对珩前齿轮的各项误差修正作用不强。因此,对珩轮本身的精度要求不高,珩轮误差一般不会反映到被珩齿轮上。

(4)珩轮主要用于去除热处理后齿面上的氧化皮和毛刺。珩齿余量一般不超过0.025mm,珩轮转速达到1000 r/min以上,纵向进给量为0.05 ~0.065mm/r。

(5)珩轮生产率甚高,一般一分钟珩一个,通过3~5次往复即可完成。

五、磨齿

磨齿是目前齿形加工中精度最高的一种方法。它既可磨削未淬硬齿轮,也可磨削淬硬的齿轮。磨齿精度4~6级,齿面粗糙度为Ra0.8 ~0.2μm。对齿轮误差及热处理变形有较强的修正能力。多用于硬齿面高精度齿轮及插齿刀、剃齿刀等齿轮刀具的精加工。其缺点是生产率低,加工成本高,故适用于单件小批生产。

(一)磨齿原理及方法

根据齿面渐开线的形成原理,磨齿方法分为仿形法和展成法两类。仿形法磨齿是用成形砂轮直接磨出渐开线齿形,目前应用甚少;展成法磨齿是将砂轮工作面制成假想齿条的两侧面,通过与工件的啮合运动包络出齿轮的渐开线齿面。

下面介绍几种常用的磨齿方法:

1.锥面砂轮磨齿

采用这类磨齿方法的有Y7131 和Y7132型磨齿机。它们是利用假想齿条与齿轮的强制啮合关系进行展成加工,如图9-14所示

由于齿轮有一定的宽度,为了磨出全部齿面,砂轮还必须沿齿轮轴向作往复运动。轴向往复运动和展成运动结合起来使磨粒在齿面上的磨削轨迹,如图9-15所示。

2.双片蝶形砂轮磨齿

图9-16所示双片蝶形砂轮磨齿。

两片蝶形砂轮磨齿构成假想齿条的两个侧面。磨齿时砂轮只在原位回转(n0);工件作相应的正反转动(n)和往复移动(v),形成展成运动。为了磨出工件全齿宽,工件还必须沿其轴线方向作慢速进给运动(f)。当一个齿槽的两侧面磨完后,工件快速退出砂轮,经分度后再进入下一个齿槽位置的齿面加工。

上述展成运动可通过图9-16b所示的机构实现。通过图中滑座7和框架2、滚圆盘3及钢带4所组成的滚圆盘钢带机构,以实现工件正反转动(n)与往复移动(v)的配合运动。工件慢速进给(f)由工作台1的移动完成。

这种磨齿方法由于产生展成运动的传动环节少、传动链误差小(砂轮磨损后有自动补偿装置予以补偿)和分齿精度高,故加工精度可达4级。但由于碟形砂轮刚性差,切削深度较小,生产率低,故加工成本较高,适用于单件小批生产中外啮合直齿和斜齿轮的高精度加工。

(二)提高磨齿精度和磨齿效率的措施

1.提高磨齿精度的措施

(1)合理选择砂轮

砂轮材料选用白刚玉(WA),硬度以软、中软为宜。粒度则根据所用砂轮外形和表面粗糙度要求而定,一般在46#~80#的范围内选取。对蜗杆型砂轮,粒度应选得细一些。因为其展成速度较快,为保证齿面较低的粗糙度,粒度不宜较粗。此外,为保证磨齿精度,砂轮必须经过精确平衡。

(2)提高机床精度

主要是提高工件主轴的回转精度,如采用高精度轴承,提高分度盘的齿距精度,并减少其安装误差等。

(3)采用合理的工艺措施

主要有:按工艺规程进行操作;齿轮进行反复的定性处理和回火处理,以消除因残余应力和机械加工而产生的内应力;提高工艺基准的精度,减少孔和轴的配合间隙对工件的偏心影响;隔离振动源,防止外来干扰;磨齿时室温保持稳定,每磨一批齿轮,其温差不大于1°C;精细修整砂轮,所用的金刚石必须锋利,等等。

2.提高磨齿效率的措施

磨齿效率的提高主要是减少走刀次数,缩短行程长度及提高磨削用量等。常用措施如下:

(1)磨齿余量要均匀,以便有效地减少走刀次数;

(2)缩短展成长度,以便缩短磨齿时间。粗加工时可用无展成磨削;

(3)采用大气孔砂轮,以增大磨削用量。

六、齿轮加工方案选择

齿轮加工方案的选择,主要取决于齿轮的精度等级、生产批量和热处理方法等。下面提出齿轮加工方案选择时的几条原则,以供参考:

1.对于8级及8级以下精度的不淬硬齿轮,可用铣齿、滚齿或插齿直接达到加工精度要求。

2.对于8级及8级以下精度的淬硬齿轮,需在淬火前将精度提高一级,其加工方案可采用:滚(插)齿-齿端加工-齿面淬硬-修正内孔。

3.对于6 ~7级精度的不淬硬齿轮,其齿轮加工方案:滚齿-剃齿。

4.对于6 ~7级精度的淬硬齿轮,其齿形加工一般有两种方案:

(1)剃-珩磨方案

滚(插)齿-齿端加工-剃齿-

齿面淬硬-修正内孔-珩齿。

(2)磨齿方案

滚(插)齿-齿端加工-齿面淬硬-修正内孔-磨齿。

剃-珩方案生产率高,广泛用于7级精度齿轮的成批生产中。磨齿方案生产率低,一般用于6级精度以上的齿轮。

5.对于5级及5级精度以上的齿轮,一般采用磨齿方案。

6.对于大批量生产,用滚(插)齿-冷挤齿的加工方案,可稳定地获得7级精度齿轮。

第三节 典型齿轮零件加工工艺分析

圆柱齿轮加工工艺过程常因齿轮的结构形状、精度等级、生产批量及生产条件不同而采用不同的工艺方案。下面列出两个精度要求不同的齿轮典型工艺过程供分析比较。

一、普通精度齿轮加工工艺分析

(一)工艺过程分析

图9-17所示为一双联齿轮,材料为40Cr,精度为7-6-6级,其加工工艺过程见表9-6。

从表中可见,齿轮加工工艺过程大致要经过如下几个阶段:毛坯热处理、齿坯加工、齿形加工、齿端加工、齿面热处理、精基准修正及齿形精加工等。

齿号

齿号

模数

2

2

基节偏差

±0.016

±0.016

齿数

28

42

齿形公差

0.017

0.018

精度等级

7GK

7JL

齿向公差

0.017

0.017

公法线长度变动量

0.039

0.024

公法线平均长度

21.36 0-0.05

27.6 0-0.05

齿圈径向跳动

0.050

0.042

跨齿数

4

5

表9-6双联齿轮加工工艺过程

序号

工序内容

定位基准

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

毛坯锻造

正火

粗车外圆及端面,留余量1.5~2mm,钻镗花键底孔至尺寸φ30H12

拉花键孔

钳工去毛刺

上芯轴,精车外圆,端面及槽至要求

检验

滚齿(z=42),留剃余量0.07~0.10 mm

插齿(z=28),留剃余量0.0,4~0.06 mm

倒角(Ⅰ、Ⅱ齿12°牙角)

钳工去毛刺

剃齿(z=42),公法线长度至尺寸上限

剃齿(z=28),采用螺旋角度为5°的剃齿刀,剃齿后公法线长度至尺寸上限

齿部高频淬火:G52

推孔

珩齿

总检入库

外圆及端面

φ30H12孔及A面

花键孔及A面

花键孔及B面

花键孔及A面

花键孔及端面

花键孔及A面

花键孔及A面

花键孔及A面

花键孔及A面

加工的第一阶段是齿坯最初进入机械加工的阶段。由于齿轮的传动精度主要决定于齿形精度和齿距分布均匀性,而这与切齿时采用的定位基准(孔和端面)的精度有着直接的关系,所以,这个阶段主要是为下一阶段加工齿形准备精基准,使齿的内孔和端面的精度基本达到规定的技术要求。在这个阶段中除了加工出基准外,对于齿形以外的次要表面的加工,也应尽量在这一阶段的后期加以完成。

第二阶段是齿形的加工。对于不需要淬火的齿轮,一般来说这个阶段也就是齿轮的最后加工阶段,经过这个阶段就应当加工出完全符合图样要求的齿轮来。对于需要淬硬的齿轮,必须在这个阶段中加工出能满足齿形的最后精加工所要求的齿形精度,所以这个阶段的加工是保证齿轮加工精度的关键阶段。应予以特别注意。

加工的第三阶段是热处理阶段。在这个阶段中主要对齿面的淬火处理,使齿面达到规定的硬度要求。

加工的最后阶段是齿形的精加工阶段。这个阶段的目的,在于修正齿轮经过淬火后所引起的齿形变形,进一步提高齿形精度和降低表面粗糙度,使之达到最终的精度要求。在这个阶段中首先应对定位基准面(孔和端面)进行修整,因淬火以后齿轮的内孔和端面均会产生变形,如果在淬火后直接采用这样的孔和端面作为基准进行齿形精加工,是很难达到齿轮精度的要求的。以修整过的基准面定位进行齿形精加工,可以使定位准确可靠,余量分布也比较均匀,以便达到精加工的目的。

(二)定位基准的确定

定位基准的精度对齿形加工精度有直接的影响。轴类齿轮的齿形加工一般选择顶尖孔定位,某些大模数的轴类齿轮多选择齿轮轴颈和一端面定位。盘套类齿轮的齿形加工常采用两种定位基准。

1)内孔和端面定位 选择既是设计基准又是测量和装配基准的内孔作为定位基准,既符合“基准重合”原则,又能使齿形加工等工序基准统一,只要严格控制内孔精度,在专用芯轴上定位时不需要找正。故生产率高,广泛用于成批生产中。

2)外圆和端面定位 齿坯内孔在通用芯轴上安装,用找正外圆来决定孔中心位置,故要求齿坯外圆对内孔的径向跳动要小。因找正效率低,一般用于单件小批生产。

(三)齿端加工

如图9-18所示,齿轮的齿端加工有倒圆、倒尖、倒棱,和去毛刺等。倒圆、倒尖后的齿轮,沿轴向滑动时容易进入啮合。倒棱可去除齿端的锐边,这些锐边经渗碳淬火后很脆,在齿轮传动中易崩裂。

用铣刀进行齿端倒圆,如图9-19所示。倒圆时,铣刀在高速旋转的同时沿圆弧作往复摆动(每加工一齿往复摆动一次)。加工完一个齿后工件沿径向退出,分度后再送进加工下一个齿端。

齿端加工必须安排在齿轮淬火之前,通常多在滚(插)齿之后。

(四)精基准修正

齿轮淬火后基准孔产生变形,为保证齿形精加工质量,对基准孔必须给予修正。

对外径定心的花键孔齿轮,通常用花键推刀修正。推孔时要防止歪斜,有的工厂采用加长推刀前引导来防止歪斜,已取得较好效果。

对圆柱孔齿轮的修正,可采用推孔或磨孔,推孔生产率高,常用于未淬硬齿轮;磨孔精度高,但生产率低,对于整体淬火后内孔变形大硬度高的齿轮,或内孔较大、厚度较薄的齿轮,则以磨孔为宜。

磨孔时一般以齿轮分度圆定心,如图9-20所示,这样可使磨孔后的齿圈径向跳动较小,对以后磨齿或珩齿有利。为提高生产率,有的工厂以金刚镗代替磨孔也取得了较好的效果。

二、高精度齿轮加工工艺特点

(一)高精度齿轮加工工艺路线

图9-21所示为一高精度齿轮,材料为40Cr,精度为6-5-5级,其工艺路线见表9-7。

模数

3.5

基节累积误差

0.045

齿向公差

0.007

齿数

63

基节极限偏差

±0.0065

公法线平均长度

70.130-0.05

精度等级

655KM

齿形公差

0.007

跨齿数

7

(二)高精度齿轮加工工艺特点

(1)定位基准的精度要求较高 由图9-21可见,作为定位基准的内孔其尺寸精度标注为φ85H5,基准端面的粗糙度较细,为Ra1.6μm,它对基准孔的跳动为0.014mm,这几项均比一般精度的齿轮要求为高,因此,在齿坯加工中,除了要注意控制端面与内孔的垂直度外,尚需留一定的余量进行精加工。精加工孔和端面采用磨削,先以齿轮分度圆和端面作为定位基准磨孔,再以孔为定位基准磨端面,控制端面跳动要求,以确保齿形精加工用的精基准的精确度。

表9-7 高精度齿轮加工工艺过程

序号

工序内容

定位基准

1

2

3

4

5

6

7

8

9

10

11

12

13

毛坯锻造

正火

粗车各部分,留余量1.5~2mm

精车各部分,内孔至φ84.8H7,总长留加工余量0.2 mm,其余至尺寸

检验

滚齿(齿厚留磨加工余量0.10~0.15 mm)

倒角

钳工去毛刺

齿部高频淬火:G52

插键槽

磨内孔至φ85H5

靠磨大端A面

平面磨B面至总长度尺寸

磨齿

总检入库

外圆及端面

外圆及端面

内孔及A面

内孔及A面

内孔(找正用)及A面

分度圆和A面(找正用)

内孔

A面

内孔及A面

(2)齿形精度要求高 图上标注6-5-5级。为满足齿形精度要求,其加工方案应选择磨齿方案,即滚(插)齿-齿端加工-高频淬火-修正基准-磨齿。磨齿精度可达4级,但生产率低。本例齿面热处理采用高频淬火,变形较小,故留磨余量可缩小到0.1 mm左右,以提高磨齿效率。

第四节 齿轮刀具简介

用切削加工方法制造齿轮,可以分为成形法和展成法。展成法使用的是齿轮形和齿条形刀具,如插齿刀、齿轮滚刀、剃齿刀等。成形法使用的是成形齿轮刀具,如模数盘铣刀和指状铣刀,如图9-22所示。

一、盘形齿轮铣刀

用模数盘形齿轮铣刀铣削直齿圆柱齿轮时,刀具廓形应与工件端剖面内的齿槽的渐开线廓形相同,如图9-22所示。

当被铣削齿轮的模数、压力角相等,而齿数不同时,其基圆直径也不同,因而渐开线的形状(弯曲程度)也不同。因此铣削不同的齿数,应采用不同齿形的铣刀,即不能用一把铣刀铣制同一模数中所有齿数的齿轮齿形,如图9-23所示。但为了避免制造数量过多的盘形铣刀,生产上采用刀号的办法,如表9-8所示。即

用某一刀号的铣刀铣制模数和压力角相同而齿数不同的一组齿轮。每号铣刀的齿形均按所铣制齿轮范围中最小齿数的齿形设计的。

用盘形铣刀铣制斜齿轮时,铣刀是在齿轮法剖面中进行成形铣削的。选择刀号时,铣刀模数应依照被切齿轮的法向模数mn和法剖面中的当量齿轮的当量齿数Zv选择。

Zv=Z/(cos3β)

式中β-斜齿轮螺旋角(°);

Zv-当量齿数;

Z-斜齿轮齿数。

二、齿轮滚刀

(一)齿轮滚刀的形成

齿轮滚刀是依照螺旋齿轮副啮合原理,用展成法切削齿轮的刀具,齿轮滚刀相当于小齿轮,被切齿轮相当于一个大齿轮,如图9-24所示。齿轮滚刀是一个螺旋角β0很大而螺纹头数很少(1~3个齿),齿很长,并能绕滚刀分度圆柱很多圈的螺旋齿轮,这样就象螺旋升角γz很小的蜗杆了。为了形成刀刃,在蜗杆端面沿着轴线铣出几条容屑槽,以形成前面及前角;经铲齿和铲磨,形成后刀面及后角,如图9-25所示。

(二)齿轮滚刀的基本蜗杆

齿轮滚刀的两侧刀刃是前面与侧铲表面的交线,它应当分布在蜗杆螺旋表面上,这个蜗杆称为滚刀的基本蜗杆。基本蜗杆有以下三种:

1.渐开线蜗杆 渐开线蜗杆的螺纹齿侧面是渐开螺旋面,在与基圆柱相切的任意平面和渐开螺旋面的交线是一条直线,其端剖面是渐开线。渐开线蜗杆轴向剖面与渐开螺旋面的交线是曲线。用这种基本螺杆制造的滚刀,没有齿形设计误差,切削的齿轮精度高。然而制造滚刀困难。

2.阿基米德蜗杆 阿基米德蜗杆的螺旋齿侧面是阿基米德螺旋面。通过蜗杆轴线剖面与阿基米德蜗螺旋面的交线是直线,其它剖面都是曲线,其端剖面是阿基米德螺旋线。用这种基本蜗杆制成的滚刀,制造与检验滚刀齿形均比渐开线蜗杆简单和方便。但有微量的齿形误差。不过这种误差是在允许的范围之内,为此,生产中大多数精加工滚刀的基本蜗杆均用阿基米德蜗杆代替渐开线蜗杆。

3.法向直廓蜗杆 法向直廓蜗杆法剖面内的齿形是直线,端剖面为延长渐开线。用这种基本蜗杆代替渐开线基本蜗杆作滚刀,其齿形设计误差大,故一般作为大模数、多头和粗加工滚刀用。

(三)滚刀的齿形误差

用阿基米德蜗杆代替渐开线基本蜗杆作滚刀,切制的齿轮齿形存在着一定误差,这种误差称为齿形误差。由基本蜗杆的性质可知,渐开线基本蜗杆轴向剖面是曲线齿形,而阿基米德基本蜗杆轴向剖面是直线齿形。为了减少造型误差,应使基本蜗杆的轴向剖面直线齿形与渐开线基本蜗杆轴向剖面的理论齿形在分度圆处相切。阿基米德滚刀基本蜗杆轴向剖面齿形角αx0,应等于渐开线蜗杆轴向剖面齿形的分度圆压力角,如图9-26所示。由斜齿轮法向剖面与轴向剖面齿形角换算关系可得

αx0=αn/cosγz

式中 αx0-轴向剖面齿形角

αn-渐开线蜗杆法向剖面分度圆压力角;

γz-滚刀基本蜗杆分度圆上螺旋升角。

由图9-27可知,造型误差随着螺旋升角γz的减小而减小。此外造型误差还随着滚刀分度圆直径的增加以及滚刀头数的减少而减小。一般造型误差的误差值很小

,不会影响滚齿的加工精度。例如m=15mm的零前角齿轮滚刀,当γz=3°时,造型误差约为7μm,而且误差方向是正,会使被切齿轮的齿顶和齿根多切去一些,相当于对齿轮起了修缘的作用,如图9-26所示。

四、齿轮滚刀的合理使用

1.合理使用

按国家标准《高精度齿轮滚刀通用技术条件》的规定,Ⅰ型适用于JB3327-83规定的AAA级滚刀、GB6084-85规定的AA级滚刀;Ⅱ型适用于GB6084-85所规定的AA、A、B、C级四种精度的滚刀。一般情况下,AA级滚刀可加工6~7级齿轮,A 级可加工7~8级齿轮,B级可加工8~9级齿轮,C 级可加工9~10齿轮。

2.正确安装

滚刀安装在滚齿机的心轴上,需要用千分表检验滚刀两端凸台的径向圆跳动不大于0.005 mm。如图9-28所示。

3.适时窜位

滚刀在滚切齿轮时,通常情况下只有中间几个刀齿切削工件,因此这几个刀齿容易磨损。为使各刀齿磨损均匀,延长滚刀耐用度,可采取当滚刀切削一定数量的齿轮后,用手动或机动方法沿滚刀轴线移动一个或几个齿距,以提高滚刀寿命。

4.及时重磨

滚齿时,当发现齿面粗糙度大于Ra3.2μm以上,或有光斑、声音不正常,或在精切齿时滚刀刀齿后刀面磨损超过0.2~0.5mm,粗切齿超过0.8~1.0 mm时,就应重磨滚刀。对滚刀的重磨必须予以重视,使切削刃仍处于基本蜗杆螺旋面上,如果滚刀重磨不正确,会使滚刀失去原有的精度。

滚刀的刃磨应在专用滚刀刃磨机床上进行。若没有专用刃磨机床时,可在万能工具磨床上装一专用夹具来重磨滚刀。专用夹具使滚刀作螺旋运动,并精密分度。注意不能徒手刃磨。

三、插齿刀

(一)插齿刀的产生齿轮

插齿刀的形状很像齿轮,它的模数和名义齿形角等于被加工齿轮的模数和齿形角,不同的是插齿刀有切削刃和前后角。图9-10所示为直齿插齿刀加工直齿圆柱齿轮的情形。用螺母紧固在机床主轴上的插齿刀随主轴一起往复运动,它的切削刃便在空间形成一个假想齿轮,称为产生齿轮,如图9-29a所示。加工斜齿圆柱齿轮时用的是斜齿插齿刀,如图9-29b所示,除了它的模数和齿形角应和被加工齿轮的相等外,其螺旋角还应和被加工齿轮的螺旋角大小相等,旋向相反。插齿时,插齿刀作主运动和展成运动的同时,还有一个附加的转动,使切削刃在空间形成一个假想的斜齿圆柱齿轮,此时好像一对轴线平行的斜齿圆柱齿轮啮合。

(二)直齿插齿刀的结构特点

1.插齿刀不同的端剖面是一个连续的变位齿轮。

插齿刀的每一个刀齿都有三个刀刃,一个顶刃和两个侧刃。由图9-29可知,由于插齿刀要有后角,所以仅切削刃处在产生齿轮表面上,顶刃后刀面和侧刃后刀面均缩在铲形齿轮以内。随着插齿刀沿前刀面重磨,直径逐渐缩小,齿厚也逐渐变薄。但要求齿形仍为同一基圆上的渐开线,这样才可以保证通过调节插齿刀与齿轮中心距后,仍能切出正确的渐开线齿形。为了满足这一要求,插齿刀各端剖面中的齿轮,应为同一基圆具有不同变位系数的齿轮齿形。由图9-30所示,若0-0剖面中具有标准齿形,该剖面称为原始剖面,其变位系数χ=0。在原始剖面前端各剖面中,变位系数为正值。新插齿刀端剖面内(即Ⅰ-Ⅰ剖面),χ值最大。在原始剖面的后端剖面中,变位系数为负值。使用到最后的插齿刀端剖面内(Ⅱ-Ⅱ),χ值最小。

2.插齿刀的齿侧面是渐开螺旋面

为了使插齿刀的每个端剖面齿形成为变位系数不同的齿轮,将齿顶齿根按后角αpa做成圆锥体,并按分度圆柱上螺旋角β0值,将齿左侧磨成右旋渐开螺旋面,将齿右侧磨成左旋渐开螺旋面。这样一来,由渐开螺旋面的性质可知,齿侧表面在端剖面的截形仍是渐开线,并获得相等的两侧刃后角。

3.插齿刀的前角和齿形误差

为了减少齿轮误差,标准插齿刀规定γpa=5°,αpa=6°。在制造插齿刀时,将分度圆压力角做得比标准齿形角略大些,以保证插齿刀加工出的齿轮在分度处的压力角为标准值。经过修正后的插齿刀在端面投影的曲线分度圆处的压力角为标准值,齿顶和齿根处略微增大,这样会使被切齿轮在齿顶和齿根处产生微量根切,有利于减少啮合时的噪声。如图9-31所示。

(三)插齿刀的分类及选用

插齿刀的类型及应用范围如表9-9所示。

选用插齿刀时,除了根据被切齿轮的种类选定插齿刀的类型,使插齿刀的模数、齿形角和被切齿轮的模数、齿形角相等外,还需根据被切齿轮参数进行必要的校验,以防切齿时发生根切、顶切和过渡曲线干涉等。

插齿刀制成AA、A、B三级精度,分别加工6、7、8级精度的齿轮。

表9—9插齿刀主要类型与规格、用途

序号

类型

简图

应用范围

规格

D或莫氏锥

精度等级

d0

m

1

盘形直齿插齿刀

加工普通直齿外齿轮和大直径内齿轮

φ63

0.3~1

31.743

AA、A、B

φ75

1~4

φ100

1~6

φ125

4~8

φ160

6~10

88.90

φ200

8~12

101.60

2

碗形直齿插齿刀

加工塔形、双联直齿轮

φ50

1~3.5

20

AA、A、B

φ75

1~4

31.743

φ100

1~6

φ125

4~8

3

锥柄直齿插齿刀

加工直内齿轮

φ25

0.3~1

莫氏2 号

A、B

φ25

1~2.75

φ38

1~3.75

莫氏3 号

 

2.金属材料及加工工艺. 篇二

ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。金属加工工艺 金属加工工艺

第一篇 变形加工 第二篇 切削加工 第三篇 磨削加工 第四篇 焊接 第五篇 热处理 第六篇 表面处理 第一篇 变形加工

一、塑性成型

二、固体成型

三、压力加工

四、粉末冶金

一、塑性成型加工

塑性(成型)塑性(成型)加工是指高温加热下利用模具使金 属在应力下塑性变形。分类: 分类: 锻造: 锻造: 在冷加工或者高温作业的条件下用捶打和挤压的 方式给金属造型,是最简单最古老的金属造型工 方式给金属造型,艺之一。艺之一。扎制: 扎制: 高温金属坯段经过了若干连续的圆柱型辊子,高温金属坯段经过了若干连续的圆柱型辊子,辊 子将金属扎入型模中以获得预设的造型。子将金属扎入型模中以获得预设的造型。

挤压:用于连续加工的,挤压:用于连续加工的,具有相同横截面形 状的实心或者空心金属造型的工艺,状的实心或者空心金属造型的工艺,既可以 高温作业又可以进行冷加工。高温作业又可以进行冷加工。冲击挤压:用于加工没有烟囱锥度要求的小 冲击挤压: 型到中型规格的零件的工艺。生产快捷,型到中型规格的零件的工艺。生产快捷,可 以加工各种壁厚的零件,加工成本低。以加工各种壁厚的零件,加工成本低。拉制钢丝: 拉制钢丝:利用一系列规格逐渐变小的拉丝 模将金属条拉制成细丝状的工艺。模将金属条拉制成细丝状的工艺。

二、固体成型加工

固体成型加工:是指所使用的 固体成型加工: 原料是一些在常温条件下可以进行 造型的金属条、造型的金属条、片以及其他固体形 态。加工成本投入可以相对低廉一 些。

固体成型加工分类: 固体成型加工分类: 旋压: 旋压:一种非常常见的用于生产圆形对 称部件的加工方法。加工时,称部件的加工方法。加工时,将高速旋转的 金属板推近同样告诉旋转的,金属板推近同样告诉旋转的,固定的车床上 的模型,以获得预先设定好的造型。的模型,以获得预先设定好的造型。该工艺 适合各种批量形式的生产。适合各种批量形式的生产。弯曲:一种用于加工任何形式的片状,弯曲:一种用于加工任何形式的片状,杆 状以及管状材料的经济型生产工艺。状以及管状材料的经济型生产工艺。

冲压成型: 冲压成型:金属片置于阳模与阴模之间经过 压制成型,用于加工中空造型,深度可深可浅。压制成型,用于加工中空造型,深度可深可浅。冲孔: 冲孔:利用特殊工具在金属片上冲剪出一定 造型的工艺,小批量生产都可以适用。造型的工艺,大,小批量生产都可以适用。冲切:与冲孔工艺基本类似,不同之处在于 冲切:与冲孔工艺基本类似,前者利用冲下部分,前者利用冲下部分,而后者利用冲切之后金属 片剩余部分。片剩余部分。切屑成型: 切屑成型:当对金属进行切割的时候有切 屑生产的切割方式统称为切屑成型,屑生产的切割方式统称为切屑成型,包括铣 钻孔,车床加工以及磨,锯等工艺。磨,钻孔,车床加工以及磨,锯等工艺。无切屑成型: 无切屑成型:利用现有的金属条或者金属 片等进行造型。没有切屑产生。片等进行造型。没有切屑产生。这类工艺包 括化学加工,腐蚀,放电加工,喷砂加工,括化学加工,腐蚀,放电加工,喷砂加工,激光切割,喷水切割以及热切割等。激光切割,喷水切割以及热切割等。

三、压力加工

利用金属在外力作用下所产生的 塑性变形,来获得具有一定形状、塑性变形,来获得具有一定形状、尺 寸和机械性能的原材料、寸和机械性能的原材料、毛坯或零件 的生产方法,称为压力加工。的生产方法,称为压力加工。压力加工的基本方式:锻造、压力加工的基本方式:锻造、板 料冲压、轧制、挤压、料冲压、轧制、挤压、拉拔。锻造

锻造是利用锻锤的往复冲击力 或压力机的压力是坯料改变成我 们所需要的形状和尺寸的一种压 力加工方法。力加工方法。一般分为自由锻和模锻。一般分为自由锻和模锻。常用于生产大型材、开坯等。常用于生产大型材、开坯等。

一、自由锻

利用冲击力或压力使金属在上下两个 抵铁之间产生变形,抵铁之间产生变形,从而得到所需形状 及尺寸的锻件。分手工锻造、及尺寸的锻件。分手工锻造、机械锻造 两种。两种。工具简单,通用性强,应用广泛。工具简单,通用性强,应用广泛。

二、模锻

按设备不同分为: 按设备不同分为: 锤上模端、胎膜锻、压力机上模锻 锤上模端、胎膜锻、锤上模锻设备有: 锤上模锻设备有: 蒸汽空气锤、五砧座锤、蒸汽空气锤、五砧座锤、高速锤 板料冲压

板料冲压是利用冲模使板料产生 分离或变形的加工方法。分离或变形的加工方法。这种方法 通常是在冷态下进行的,所以又叫冷 通常是在冷态下进行的 所以又叫冷 冲压。只有在板料超过8-10mm时,冲压。只有在板料超过 时 才采用热冲压。才采用热冲压。特点

可以冲压出形状复杂的零件,废料较少。可以冲压出形状复杂的零件,废料较少。产品具有足够高的精度和较低的表面粗糙度,产品具有足够高的精度和较低的表面粗糙度,互换性能较好。互换性能较好。能获得质量轻、材料消耗少、能获得质量轻、材料消耗少、强度和刚度较 高的零件。高的零件。冲压操作简单,冲压操作简单,工艺过程便于机械化和自动 生产效率高,故零件成本低。化,生产效率高,故零件成本低。

板料冲压常用金属材料: 低碳钢、铜合金、铝合金、镁 合金、及塑性高的合金钢。从形状分:板料、条料、带料。基本工序: 常用设备:剪床和冲床。常用设备:剪床和冲床。

剪床用来把板料剪切成一定宽度的条料,剪床用来把板料剪切成一定宽度的条料,以供下一步的冲压程序用。以供下一步的冲压程序用。冲床用来实现冲压工序,冲床用来实现冲压工序,制成所需形状和 尺寸的成品零件。尺寸的成品零件。

冲压生产基本工序: 冲压生产基本工序: 分离工序:落料、冲孔、切断、修整等。分离工序:落料、冲孔、切断、修整等。变形工序:拉深、弯曲、翻边、成型等。变形工序:拉深、弯曲、翻边、成型等。

四、粉末冶金

粉末冶金一种可以加工黑色金属元件也 可以加工有色金属元件的工艺。可以加工有色金属元件的工艺。包括将合 金粉末混合以及将混合物,金粉末混合以及将混合物,压入模具两项 基本工序。基本工序。金属颗粒经过高温加热烧结成 这种工艺不需要机器加工,型。这种工艺不需要机器加工,原材料利 用率可以达到97% 97%。用率可以达到97%。不同的金属粉末可以 用于填充模具的不同部分。用于填充模具的不同部分。第二篇 切削加工 切削加工

制造尺寸、形状、制造尺寸、形状、位置精度要求较 表面粗糙度较细的零件,高,表面粗糙度较细的零件,通常采 用切削加工方法。用切削加工方法。金属切削机床就是利用刀具对金 属毛坯进行切削加工的设备,属毛坯进行切削加工的设备,通常简 称为机床。称为机床。分类

车床 铣床 钻床 镗床 电火花线切割加工 车 床

车床主要用于加工各 种回转表面(种回转表面(内外圆 柱面、圆锥面、柱面、圆锥面、成型 回转面等)回转面等)以及回转 体的端面。体的端面。车床主要使用的刀具 为各种车刀,为各种车刀,也可用 钻头、扩孔钻、钻头、扩孔钻、绞刀 进行孔加工,用丝锥、进行孔加工,用丝锥、板牙加工内外螺纹表 面。铣

铣床可以加工水平面、铣床可以加工水平面、垂直面、形槽 键槽、形槽、垂直面、T形槽、键槽、燕尾槽、螺纹、螺旋槽、燕尾槽、螺纹、螺旋槽、分齿零件(齿轮、链轮、分齿零件(齿轮、链轮、棘轮、花键轴)棘轮、花键轴)以及成 形面等。此外,形面等。此外,铣床还 可以使用锯刀铣片进行 切断工作。切断工作。种类:卧式升降台铣床、种类:卧式升降台铣床、立式升降台铣床、立式升降台铣床、工具 铣床、龙门铣床、铣床、龙门铣床、成形 铣床等。铣床等。床 钻

钻床可以用钻头直接 加工出精度不太高的 孔,也可以通过钻 扩孔—铰孔的工 孔—扩孔 铰孔的工 扩孔 艺手段加工精细度要 求较高的孔,求较高的孔,利用夹 具还可加工要求一定 位置精度的孔系。位置精度的孔系。另 外,钻床还可进行攻 螺纹。螺纹。钻床的主要类型有: 钻床的主要类型有: 台式钻床、台式钻床、立式钻 摇臂钻床、床、摇臂钻床、铣钻 中心孔钻床等。床、中心孔钻床等。床 镗 床

镗床主要用于加工尺寸 较大、较大、精度要求较高的 孔,特别适用于加工分 布在不同位置上,布在不同位置上,孔距 精度、精度、相互位置精度要 求很严格的孔系。求很严格的孔系。除镗 孔外,孔外,镗床还可以完成 钻孔、扩孔、钻孔、扩孔、铰孔等工 作,大部分镗床还具有 铣削的功能。铣削的功能。镗床的主要类型有: 镗床的主要类型有: 立式镗床、卧式镗床、立式镗床、卧式镗床、坐标镗床、精镗床等。坐标镗床、精镗床等。电火花线切割加工

电火花加工是一种利用电火花放 电时产生的腐蚀现象对材料进行加 工的方法。工的方法。电火花线切割加工是指在工具电 电极丝)和工件间施加脉冲电压, 极(电极丝)和工件间施加脉冲电压, 使电压击穿间隙产生火花放电的一 种加工方式。种加工方式。电火花线切割机床加工

电火花线切割机床加工是在电火花 成形加工的基础上发展起来的,最初的 成形加工的基础上发展起来的,最初的 名称为线状电极电火花切割机床加工,名称为线状电极电火花切割机床加工,是一种不用事先制备专用工具电极而 采用通用电极的电火花加工方法。采用通用电极的电火花加工方法。

电火花线切割机机床 有多种分类方法,有多种分类方法,一 般可以按 机床的控制方式、机床的控制方式、脉冲电源的形式、脉冲电源的形式、工件台尺寸与行程、工件台尺寸与行程、走丝速度、走丝速度、加工精度及 工作液方式 进行分类。进行分类。

数控电火花线切割加工的 用途广泛,随着它的发展和普及,用途广泛,随着它的发展和普及,电火花线切割机床已经逐渐从单 一的冲裁模具加工向各种类模具 及复杂精密模具甚至零件加工方 向转移,譬如: 向转移,譬如: 1.最早的模具加工 2.新产品试制的零件加工制 作 3.难加工零件 4.贵重金属下料 第三篇 磨削加工 磨削加工

磨削加工是利用磨料去除材料的加工方 法。通常按工具类型进行分类,通常按工具类型进行分类,可分为使用 固定磨粒加工及使用自由磨粒加工两大 类。通常所说磨削主要指用砂轮或砂带进行 去除材料加工的工艺方法,去除材料加工的工艺方法,它是应用广 泛的高效精密的终加工方法。泛的高效精密的终加工方法。分类

一般砂轮磨削根据加工对象、一般砂轮磨削根据加工对象、表面生成方法 不同,可分为外圆、内圆、不同,可分为外圆、内圆、平面及成型磨削 方法。方法。对旋转表面按工件夹紧和驱动方法,对旋转表面按工件夹紧和驱动方法,可分为 定心磨削与无心磨削。定心磨削与无心磨削。按砂轮进给方法相对于表面加工的关系,按砂轮进给方法相对于表面加工的关系,可 分为纵向进给与切入进给磨削。分为纵向进给与切入进给磨削。按磨削行程分为通磨与定程磨。按磨削行程分为通磨与定程磨。按砂轮表面工作类型分为周边磨削、端面磨 按砂轮表面工作类型分为周边磨削、以及周边-端面磨削 端面磨削。削、以及周边 端面磨削。

从磨削区的基本情况来看,从磨削区的基本情况来看,大致分为两 类:(1)恒压力磨削)所谓恒压力磨削是指控制切入压力 为定值的磨削,即通过控制磨头重量、为定值的磨削,即通过控制磨头重量、杠 人力、液压、杆、人力、液压、气动及电器系统来控制 砂轮对工件的压力。如砂轮架、砂轮对工件的压力。如砂轮架、砂轮切割 钢锭粗磨机等均采用这种形式。机、钢锭粗磨机等均采用这种形式。(2)定进给磨削)所谓定进给磨削是指控制切入进给 速度为恒值的磨削。加工时,速度为恒值的磨削。加工时,砂轮以选定 的进给率垂直于磨削表面作切入进给。的进给率垂直于磨削表面作切入进给。现 在使用的磨床大多使用这种方式。在使用的磨床大多使用这种方式。第四篇 焊接

焊接是一种永久性连接金属材料 的工艺方法。的工艺方法。焊接过程的实质是用 加热或加压力等手段,加热或加压力等手段,借助于金属 原子的结合与扩散作用,原子的结合与扩散作用,是分离的 金属材料牢固地连接起来。金属材料牢固地连接起来。按焊接过程的特点分: 熔化焊、压力焊、钎焊三大 类

一、熔化焊通过加热,使被焊金属自身熔 熔化焊通过加热,通过加热 化而相互连接,化而相互连接,也称为自身焊 压力焊在加热的同时加压 加热的同时加压,二、压力焊在加热的同时加压,使被焊金 属相互连接 焊料焊通过加热 通过加热,三、焊料焊通过加热,利用焊接材料将被 焊金属相互连接

熔化焊中的电弧焊应用极为普遍,包括: 手工电弧焊、埋弧自动焊、气体 保护焊

其他常用焊接方法: 其他常用焊接方法: 电渣焊、电渣焊、等离子弧焊接与切 真空电子束焊接、割、真空电子束焊接、激光焊 电阻焊、接、电阻焊、摩擦焊

埋弧自动焊(也称溶剂层下自 动焊)

特点: 特点: 生产率高、焊接质量高且稳定、生产率高、焊接质量高且稳定、节 省金属材料、劳动条件改善。省金属材料、劳动条件改善。但设备费用高,工艺准备复杂,但设备费用高,工艺准备复杂,对 接头加工与装配要求严格,接头加工与装配要求严格,仅适用于批 量生产长直线焊缝与圆筒形工件的纵、量生产长直线焊缝与圆筒形工件的纵、环焊缝。环焊缝。气体保护焊

一、氩弧焊 氩弧焊是以氩气为保护气体 的电弧焊,氩气是惰性气体,的电弧焊,氩气是惰性气体,可保护电极和熔化金属不受空 气的有害作用。高温情况下,气的有害作用。高温情况下,氩气不和金属起化学反应,氩气不和金属起化学反应,也 不溶于金属,不溶于金属,因此氩弧焊的质 量较高。量较高。二、二氧化碳气体保护焊 CO2保护焊是以 保护焊是以CO2作 保护焊是以 作 为保护气体的电弧焊。为保护气体的电弧焊。它用 焊丝做电极,焊丝做电极,靠焊丝和焊件 之间产生的电弧熔化工件金 属与焊丝,属与焊丝,以自动或半自动 方式进行焊接。方式进行焊接。

优点: 成本低,可用价廉易得的 CO2代替焊剂,焊接成本仅是埋弧 自动焊和手弧焊的40%左右。生产 效率高、操作性好、质量较好。缺点: CO2的氧化作用使溶滴飞溅 较为严重,因此焊缝成型不够光滑,另外焊接烟雾较大,弧光强烈,如 果控制或操作不当,容易产生气孔。特点(1)焊料熔化: 焊料焊接法 焊接时只有焊料熔化,而被焊金属处于固态,对材料性能影响小。(2)焊料与焊件的成分不同形成接头(3)金属的连接 可以连接异质金属,包括金属与非金属的连 接。炉内焊接法

特点(1)炉内焊接具有真空密闭的焊接条件,(1)炉内焊接具有真空密闭的焊接条件,金属不易氧化。(2)焊件整体加热均匀,温度控制准确。(2)焊件整体加热均匀,温度控制准确。(3)主要应用于金属一烤瓷基底桥的焊接。(3)主要应用于金属一烤瓷基底桥的焊接。激光焊接法

某些物质原子中的粒子受光或电刺激,使 低能级的原子变成高能级原子,辐射出相位、频率、方向完全相同的光,具有颜色单纯、能 量高度集中、光束方向性好的特点。

特点:(1)焊接速度快,加工时间短暂(1)焊接速度快,加工时间短暂(2)准确性高,被焊金属无需包埋固定,无变形(2)准确性高,被焊金属无需包埋固定,无变形(3)不受电磁于扰,可直接在大气中进行焊接,(3)不受电磁于扰,可直接在大气中进行焊接,操作方便(4)热影响区小,激光焊接加热区域小、热量集(4)热影响区小,激光焊接加热区域小、热量集 中、受热及冷却快,对焊件影响小(5)无噪声、污染小(5)无噪声、污染小 激 光 点 焊 机 点焊法

特点:(1)属于电阻焊接法。(1)属于电阻焊接法。(2)利用电流通过焊件时产生的电阻(2)利用电流通过焊件时产生的电阻 热作为热源,加热熔化焊件(热作为热源,加热熔化焊件(不加焊 料)进行焊接。第五篇 热处理

热处理是在一定的条件下,热处理是在一定的条件下,给金属一定 的加热与冷却,的加热与冷却,使金属获得一定的机械 性能或化学性能的工艺方法。性能或化学性能的工艺方法。金属零件进行热处理的主要目的是: 金属零件进行热处理的主要目的是: 提高硬度、提高硬度、强度及增加耐磨性 降低硬度,降低硬度,便于机械加工 消除加工过程中所引起的内应力 提高表面耐磨、提高表面耐磨、耐蚀性能 普通热处理

分类: 分类:

一、退火

二、正火

三、淬火

四、回火

一、退火

把工件加热到一定温度(把工件加热到一定温度(稍高于临界温),经过一定时间保温后 经过一定时间保温后,度),经过一定时间保温后,缓慢冷却 下来(一般随炉冷却)的过程叫退火 的过程叫退火。下来(一般随炉冷却 的过程叫退火。由于加热温度和冷却速度不同,由于加热温度和冷却速度不同,退火处 理对改变金属组织和性能的作用也不同。理对改变金属组织和性能的作用也不同。常用退火方法

一、完全退火,主要是细化颗粒、消除或减 完全退火,主要是细化颗粒、少组织的不均匀性、降低温度、少组织的不均匀性、降低温度、改善切削加 工性、提高韧性和塑性、消除内应力。工性、提高韧性和塑性、消除内应力。球化退火,二、球化退火,主要用于刀具和冷却模具的 锻造毛坯,效果同上,锻造毛坯,效果同上,为淬火处理作组织准 备。消除加工硬化的退火,三、消除加工硬化的退火,主要用于消除工 件经冷拔、冷弯灯产生的硬化现象。件经冷拔、冷弯灯产生的硬化现象。去应力退火,主要用于消除铸件、四、去应力退火,主要用于消除铸件、焊接 件在加工过程中产生的内应力,以及精密零 件在加工过程中产生的内应力,件表面加工时留下的加工应力。件表面加工时留下的加工应力。

二、正火

正火是退火的一种变态,正火是退火的一种变态,正火与完全退火的 区别是:正火是使工件在空气中冷却,区别是:正火是使工件在空气中冷却,完全 退火是工件随炉冷却。退火是工件随炉冷却。正火的目的主要是细化晶粒、、、、改善切削加 正火的目的主要是细化晶粒、、改善切削加 工性、提高韧性和强度、工性、提高韧性和强度、为最后的热处理做 好准备。好准备。对于不重要或不适于淬火处理的零件,正火 对于不重要或不适于淬火处理的零件,后可不必做其他处理。后可不必做其他处理。

三、淬火

把工件加热到一定温度(临界温度以上),把工件加热到一定温度(临界温度以上),经过一定时间保温后,在水、经过一定时间保温后,在水、油或盐水中急 速冷却的操作过程叫淬火。速冷却的操作过程叫淬火。按加热程度不同分为: 按加热程度不同分为: 整体淬火和表面淬火。整体淬火和表面淬火。整体淬火

按照冷却方法不同分为: 按照冷却方法不同分为: 单液淬火 双液淬火 分级淬火 等温淬火 表面淬火

表面淬火时把工件表面加热到淬火温度后,表面淬火时把工件表面加热到淬火温度后,随即用水或其他冷却剂进行急速冷却,随即用水或其他冷却剂进行急速冷却,以此 时工件的表面得到很高的硬度,时工件的表面得到很高的硬度,内部却保持 原来的韧性。原来的韧性。按加热方法不同分为: 按加热方法不同分为: 浸液淬火 乙炔—氧气或煤气 氧气或煤气—氧气 火焰淬火 乙炔 氧气或煤气 氧气 高频淬火 高频感应电流

四、回火

把淬火的零件加热到723摄氏度以下某一温 摄氏度以下某一温 把淬火的零件加热到 经过一定时间保温后,在油、度,经过一定时间保温后,在油、水或空 气中冷却的操作过程叫回火。气中冷却的操作过程叫回火。回火的目的是: 回火的目的是:消除或减少淬火零件的内 应力、降低脆性、硬度、增加韧性、应力、降低脆性、硬度、增加韧性、稳定 淬火后的工件尺寸、防止使用中变形。淬火后的工件尺寸、防止使用中变形。分类

一、低温回火 150-150摄氏度 摄氏度 可用于各种工具、滚动轴承及渗碳零件的 可用于各种工具、处理

二、中温回火 350-500摄氏度 摄氏度 用于对弹簧、用于对弹簧、锻模和冲击工具的处理

三、高温回火 500-650摄氏度 摄氏度 用于各种齿轮、连杆等零件的处理。用于各种齿轮、轴、连杆等零件的处理。化学热处理

一、渗碳

1、固体渗碳法、2、液体渗碳法、3、气体渗碳法、二、氮化

三、氰化

二、氮化处理

氮化是把放在含氮原子的介质中,氮化是把放在含氮原子的介质中,加热到 500-600摄氏度,使工件表面增氮的一种化 摄氏度,摄氏度 学热处理。学热处理。目的在于: 目的在于: 提高硬度和耐磨性 提高疲劳强度 提高抗腐蚀能力 分为:液体氮化、气体氮化、分为:液体氮化、气体氮化、离子氮化

三、氰化

又叫碳氮共渗。又叫碳氮共渗。特点:时间短、效率高、但是所用氰盐(特点:时间短、效率高、但是所用氰盐(氰 化钾、氰化钠有剧毒)成本高。化钾、氰化钠有剧毒)成本高。分为气体和液体两种: 分为气体和液体两种: 有可按温度分为: 有可按温度分为: 高温氰化 900-940摄氏度 深度氰化 摄氏度 中温氰化 820-880摄氏度 摄氏度 低温氰化 520-580摄氏度 摄氏度 第六篇 表面加工 表面处理

一、黑色金属的氧化处理 将工件放入含苛性钠、硝酸钠溶液中,将工件放入含苛性钠、硝酸钠溶液中,使工 件表面生成一层很薄的黑色氧化膜的过程,件表面生成一层很薄的黑色氧化膜的过程,简称发黑。简称发黑。

二、黑色金属的磷化处理 将工件浸如磷酸盐溶液中,将工件浸如磷酸盐溶液中,使表面生成一层 磷酸盐薄膜的过程,叫磷化处理。磷酸盐薄膜的过程,叫磷化处理。一般不改 变金属的机械性能、磁性和零件外形尺寸。变金属的机械性能、磁性和零件外形尺寸。分为:冷磷化、高温磷化、中温磷化。分为:冷磷化、高温磷化、中温磷化。碳钢表面处理 电镀 热镀 发黑 喷漆 电镀

利用电解的方法是金属或合金沉积在工件表 以形成均匀、致密、面,以形成均匀、致密、结合力良好的金属 层的过程叫电镀。层的过程叫电镀。

热镀 电镀与热镀比较

1.电镀层均匀,厚度很薄;热镀层较厚,电镀层均匀,厚度很薄;热镀层较厚,电镀层均匀 厚度不均匀。厚度不均匀。2.电镀外观光亮,热镀颜色较暗。电镀外观光亮,电镀外观光亮 热镀颜色较暗。3.电镀层较薄,耐蚀性较差。热镀层较厚,电镀层较薄,电镀层较薄 耐蚀性较差。热镀层较厚,而且与基体金属形成渗入层,耐蚀性好。而且与基体金属形成渗入层,耐蚀性好。热镀锌

热镀锌是使熔融金属与铁基体反应而产生 合金层,从而使基体和镀层二者相结合。合金层,从而使基体和镀层二者相结合。热镀锌是先将工件进行酸洗,热镀锌是先将工件进行酸洗,去除工件表 面的氧化铁。酸洗后,面的氧化铁。酸洗后,通过氯化铵或氯化 锌水溶液或氯化铵和氯化锌混合水溶液槽 中进行清洗,最后送入热浸镀槽中。中进行清洗,最后送入热浸镀槽中。热镀锌具有镀层均匀,附着力强,热镀锌具有镀层均匀,附着力强,使用寿 命长等优点。命长等优点。发黑

黑色金属的氧化处理 将工件放入含苛性钠、硝酸钠溶液中,将工件放入含苛性钠、硝酸钠溶液中,使 工件表面生成一层很薄的黑色氧化膜的过 简称发黑。程,简称发黑。氧化膜的厚度约为0.5 1.5微米 0.5微米。氧化膜的厚度约为0.5-1.5微米。氧化处理后的工件外表美观,氧化处理后的工件外表美观,同时具有一 定的抗腐蚀能力,常用于各中武器、定的抗腐蚀能力,常用于各中武器、精密 仪器零件的装饰防护处理,以及细钢丝、仪器零件的装饰防护处理,以及细钢丝、薄钢片制零件的防护处理。薄钢片制零件的防护处理。不锈钢表面处理

拉丝 手工抛光 机器抛光 串光 震动研磨机 塑料电镀

上一篇:成功的初一学生的作文下一篇:课间操展示评比方案

相关推荐