垂直平分线同步练习题(共7篇)
1.垂直平分线同步练习题 篇一
例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练
已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥
AC.例2如图9,在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.变式训练
如图10,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.图10
例3如图11(1),在直四已知AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,A1BD,并说明理由.棱柱ABCD—A1B1C1D1中,DC=DD1=2AD=2AB,AD⊥DC,试确定E的位置,使D1E∥平面
变式训练
如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面
GBD.图121、如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点
.求证:
(1)AB⊥MN;(2)MN的长是定值.2、如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;
2.垂直平分线同步练习题 篇二
关键词:永磁直线同步电动机,建模,控制,数学模型,仿真模型
0 引言
永磁直线同步电动机 (PMLSM) 具有永磁电动机高效、节能的特点, 同时具有直线电动机的直线运动以及结构简单、控制方便、无污染、噪声低等优点, 并且动态性能好、可靠性高。垂直运动的永磁直线同步电动机在高层建筑电梯和矿井提升系统具有广阔的应用前景, 越来越受到人们的重视。目前, 在对垂直运动的PMLSM进行建模仿真时通常采用Matlab/Simulink仿真软件, 但Matlab/Simulink仿真软件并没有提供现成的各种直线电动机的模型, 在进行PMLSM仿真时大多是对电动机的数学模型进行简化和线性化, 利用基础元件或是转换成传递函数和状态方程来构建电动机模型。该方法建立起的模型忽略了很多因素, 不能完全反映实际的运行情况, 所以, 本文运用电动机统一理论, 参照旋转电动机的数学建模方法、结合PMLSM的特点, 建立PMLSM的数学模型, 并通过对Matlab/Simulink下旋转同步电动机模型的分析, 建立基于Matlab/Simulink的通用仿真模型, 进而利用它进行垂直运动的PMLSM控制系统的仿真和分析, 为研制实际的控制系统奠定基础[1,2]。
1 PMLSM数学模型
PMLSM的初级为定子 (相当于旋转电动机的定子) , 采用Y型三相对称绕组, 次级为动子 (相当于旋转电动机的转子) , 采用稀土永磁材料且无阻尼绕组。
当三相电枢绕组通入三相对称电流时, 有
式中:Is为相电压的幅值;γ=ωt+γ0, ω为电流角速度, γ0为初相角。
如果将时间轴与三相绕组的轴线重合, 电流合成矢量与合成磁势可与d-q轴表示在同一个图上, 如图1所示[3]。
三相合成磁势的幅值为每相绕组磁势幅值的3/2倍, 故在abc坐标系中, 有
在d-q坐标系中, 有
式中:N3、N2为每相等效串联匝数。
根据平移磁场的等效原则, 由式 (2) 和式 (3) 得N2/N3=3/2, 也就是说, 矢量从abc坐标系变换到d-q坐标系时, 为保证平移磁场相等, 两相坐标系绕组的匝数必须为三相坐标系绕组的等效匝数的3/2倍。所以, 从三相坐标到d-q坐标轴电流平移磁场等效变换为
式中:idq0=[idiqi0]T, id, iq为在d-q坐标系下的d、q电流分量, i0=0;iabc=[iaibic]T, ia、ib、ic在abc坐标系下的a、b、c轴的电流分量。
矩阵P是非奇异的, 其逆矩阵为
同理, 电压坐标变换关系为
udq0=[uduqu0]T=Puabc (7)
uabc=[uaubuc]T=P-1udq0 (8)
三相电动机的功率为
因为
所以
因电枢绕组通入的是三相对称电流, 所以i0=0。
由式 (11) 可知, 根据坐标变换前后功率不变的原则, 在d-q坐标系中进行电磁功率计算时, 应乘以系数3/2。据电动机统一理论知, 所有的电动机都可以等效成两绕组电动机[4]。在两绕组电动机中, 有
式中:p=d/dt。
空间矢量i=i0ejq, ψ=ψ0ejq, 将其代入式 (12) 得
在d-q坐标系中:
将式 (14) 代入式 (13) 得
假设电动机是线性的, 参数不随温度等变化, 忽略磁滞及涡流损耗, 动子无阻尼绕组, 那么基于d-q坐标系的PMLSM初级磁链方程为
式中:ψf为次级在初级电枢绕组上的耦合磁链;Ld, Lq为直、交轴主电感。
由式 (11) 、 (15) 、 (16) 可得电动机的总功率为
式中:第一项为电动机电枢绕组的热损耗;第二项为无功功率;第三项为电磁功率, 用Pe表示。
根据能量守恒可得
其中:
就PMLSM而言, Ld=Lq, 极对数为p, 总推力Fe为
因PMLSM垂直运动, 设定垂直向上为正方向, 其机械运动方程为
式中:M动子的质量;Fl负载阻力;Bv机械阻尼系数。
2 PMLSM在Matlab/Simulink下的实现
由式 (4) 、式 (7) 可得abc坐标系到d-q坐标系的变换模型, 如图2所示。
由式 (8) 可得d-q到abc坐标系的变换模型, 如图3所示。
由式 (15) 、式 (16) 可得
其仿真模型如图4所示。
由式 (19) 可建立推力模型, 如图5所示。由式 (21) 可建立机械运动模型, 如图6所示。综上模型可得垂直运动的PMLSM的模型, 如图7所示。
3 PMLSM控制系统的建模与仿真
由式 (21) 可知, PMLSM的电磁推力取决于电枢绕组的交轴分量且次级磁链恒定不变, 所以, 可采用次级磁链定向的方式来进行电动机控制。将磁链与直轴重合, 绕组电流矢量位于q轴, 无d轴分量, 如图8[5]所示。
电压空间矢量控制 (SVPWM) 调制方法是将逆变器和电动机视为一个整体考虑, 使电动机获得幅值恒定的旋转磁场。与其它调制方法相比, SVPWM具有概念清晰, 算法简单等优点, 是一种行之有效的调制方法, 越来越广泛地应用于交流电动机的控制系统。本控制系统即采用SVPWM调制方法。
PMLSM控制系统的矢量控制原理如图9所示[6]。
将PMLSM进行封装, SVPWM仿真模块与其它电动机控制系统中的模块搭建方法相同, 仅直流电压、调制周期等可变参数就具体系统要求而有所差异。整体控制仿真模型如图10所示。
4 仿真结果分析
参考笔者所在实验室的PMLSM样机, 该垂直运动的PMLSM的矢量控制仿真模型中的电动机参数给定:电枢电阻r=1.7 Ω, d轴和q轴电感Ld=Lq=2.7 mH, 主磁链ψf=0.3 Wb, 极距τ=45 mm, 动子质量M=5 kg, 粘滞摩擦系数Bv=0 N·m/s, 极对数p=4。考虑到电动机参数与电动机的长度, 电动机为低速运行, 同时为考察电动机工作时突变负载的抗干扰性, 所以仿真设置:空载启动, 速度给定为0.4 m/s, 仿真时间为1 s, 在0.5 s时突然加入100 N的负载。
图11为垂直运动的PMLSM的矢量控制仿真曲线。由图11可知, PMLSM的动态性较好, 能够很快稳定在给定速度, 并且在突加负载时速度波动也较小。三相电枢电流与d、q轴电流的波形比较理想, 启动时没有过大的冲击电流。电磁推力动态性较好, 对负载变化的响应很快。
5 结语
通过建立垂直运动的PMLSM数学模型, 在Matlab/Simulink下搭建了电动机的本体模型, 并建立基于次级磁链定向的电动机控制方式的电动机控制仿真模型。仿真结果证明, 电动机模型能够较好地反映实际电动机的工作运行特性, 对于实际的控制系统的设计制造具有很好的参考价值。
参考文献
[1]朱晓东, 曾庆山, 王茜, 等.永磁直线同步电动机矢量控制模型及仿真的研究[J].煤矿机械, 2006, 27 (3) :417-419.
[2]WANG Xudong, GAO Yan, WANG Fuzhong.Simulation Research on Characteristics of a PermanentMagnet Linear Synchronous Motor[J].Journal of CoalScience&Engineering (China) , 2000, 6 (2) :60-63.
[3]陈伯时.电力拖动自动控制系统——运动控制系统[M].北京:机械工业出版社, 2006.
[4]叶云岳.直线电动机原理与应用[M].北京:机械工业出版社, 2000.
[5]李志民, 张遇杰.同步电动机调速系统[M].北京:机械工业出版社, 1996.
3.同步阅读练习 篇三
He believes that physical appearance is often culturally programmed. In other words, we learn outlooks—we are not born with them. A baby has generally formed face features. A baby, according to Birdwhistell, learns where to set the eyebrows by looking at those around—family and friends. This helps explain why the people of some areas’ of the US look so much alike. New Englanders or Southerners have certain common face features that cannot be explained by genetics (遗传学). The exact shape of the mouth is not set at birth; it is learned after. In fact, the final mouth shape is not formed until well after new teeth are set. For many, this can be well into grown-ups. A husband and wife together for a long time often come to look somewhat alike. We learn our looks from those around us. This is perhaps why in single country there are areas where people smile most frequently. In New England they smile less, and in the western part of New York State still less. Many Southerners find cities such as New York cold and unfriendly, partly because people on Madison Vence smile less than people on Peachtree Street in Atlanta, Georgia. People in largely populated areas also smile and greet each other in public less than people in small towns do.
1. Ray Birdwhistell believes that physical appearance ____.
A. has little to do with culture
B. has much to do with culture
C. is ever changing
D. is different from place to place
2. According to the passage, the final mouth shape is formed ____.
A. before birth
B. as soon as one’s teeth are newly set
C. sometime after new teeth are set
D. around 15 years old
3. Ray Birdwhistell can tell what area of the United States a person is
from by ____.
A. how much he or she laughs
B. how he or she raises his or her eyebrows
C. what he or she likes best
D. the way he or she talks
4. This passage might have been taken out of a book dealing with ____.
A. physicsB. chemistry
C. biologyD. none of the above
4.垂直平分线同步练习题 篇四
一、选择题
1.两异面直线在平面α内的射影()A.相交直线B.平行直线
C.一条直线—个点D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有—个B.可能存在也可能不存在 C.有无数多个D.—定不存在3.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()
A.必相交B.必为异面直线C.垂直D无法确定 4.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是().
A.互相垂直 B.互相平行 C.一定相交 D.平行或相交 5.已知平面,直线l,直线m,lm,则l与的位置关系是(). A.l B.l// C.l
D.以上都有可能
6.过平面外一点P:①存在无数个平面与平面平行;②存在无数个平面与平面垂直;③存在无数条直线与平面垂直;④只存在一条直线与平面平行.其中正确的是()
A.1个B.2个C.3个D.4个 7.在二面角-l-的一个面内有一条直线AB,若
AB与棱l的夹角为45,AB与平面所成的角为30,则此二面角的大小是().
A.30
B.30
或150C.45D.45或135
8下列命题
①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;
③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.
其中,正确的命题有()
A.1个B.2个C.3个D.4个
二、填空题
9.正方体ABCDA1B1C1D1中,二面角DA1C1B的大小是________.
10.在空间四面体的四个面中,为直角三角形的最多有____________个.
11.已知二面角ABCD、ACDB、ABDC都相等,则A点在平面BCD上的射影是BCD的___心. 12.、、是相交于点O,且两两垂直的三个平面,点P到、、的距离分别为4cm,6cm,12cm,则PO=________.
三、解答题
13.在四面体SABC中,ASC90,ASBBSC60,SASBSC,求证:平面ASC平面ABC
14如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过Bl作B1E⊥BC1交CC1于E,交BC1于Q,求证:AC1⊥平面EBlD1
5.线面垂直习题精选精讲 篇五
通过计算,运用勾股定理寻求线线垂直
M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A平面A1ACC1 ∴DB⊥AO1ACC1,而AO1.1
2设正方体棱长为a,则A1O2AM在Rt△AC中,M111323a,MO2a2. 2492222a.∵AO,∴AOOM. ∵MOAM111
4OM∩DB=O,∴ AO1⊥平面MBD.
评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.
利用面面垂直寻求线面垂直
2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求
证:BC⊥平面PAC.
证明:在平面PAC内作AD⊥PC交PC于D.
因为平面PAC⊥平面PBC,且两平面交于PC,AD平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵BC
平面PBC,∴AD⊥BC.
∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.
∵AD∩PA=A,∴BC⊥平面PAC.
评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一
条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图
形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线
面垂直线线垂直.
判定
性质判定性质线面垂直面一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直
面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.
3如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AESB,AGSD.
证明:∵SA平面ABCD,∴SABC.∵ABBC,∴BC平面SAB.又∵AE平面SAB,∴BCAE.∵SC平面AEFG,∴SCAE.∴AE平面SBC.∴AESB.同理可证AGSD.
评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.
证明:取AB的中点F,连结CF,DF.
∵ACBC,∴CFAB.
∵ADBD,∴DFAB.
又CFDFF,∴AB平面CDF.
∵CD平面CDF,∴CDAB.
又CDBE,BEABB,∴CD平面ABE,CDAH.
∵AHCD,AHBE,CDBEE,∴ AH平面BCD.
评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.
5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.
证明:∵AB是圆O的直径,∴ACBC.
∵PA平面ABC,BC平面ABC,∴PABC.∴BC平面APC.
∵BC平面PBC,∴平面APC⊥平面PBC.
∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.
∵AE平面AEF,∴平面AEF⊥平面PBC.
评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.
10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC于M。求证: ①ANBC;②SC平面ANM 分析:
①要证ANBC, 转证, BC平面SAB。
②要证SC平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SCAM, SCAN。要证SCAN, 转证AN平面SBC, 就可以了。
证明:
①∵SA平面ABC
∴SABC
又∵BCAB, 且ABSA = A
∴BC平面SAB
∵AN平面SAB
∴ANBC
②∵ANBC, ANSB, 且SBBC = B
∴AN平面SBC
∵SCC平面SBC
∴ANSC
又∵AMSC, 且AMAN = A
∴SC平面ANM
[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
图9—40
(1)求证:AB⊥BC;
(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.
[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.
(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD
(1)【解】PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,∴∠PDA=45°
(2)【证明】取PD中点E,连结EN,EA,则
EN AM,∴四边形ENMA是平行四边形,∴EA∥MN.
∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.
【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.
[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.
2CD 图9—
42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.
(1)【证明】∵M、N、E是中点,∴EB1B1NNC1C1M∴ENB1MNC145
∴MNE90即MN⊥EN,又NF⊥平面A1C1,MN平面A1C1∴MN⊥NF,从而MN⊥平面ENF.∵MN 平面MNF,∴平面MNF⊥平面ENF.
(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,2
3∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=2a,NH=3a,MN662,即二面角M—EF—N的平面角的正切值为2. ∴tan∠MHN=NH
4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.
图9—4
5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.
(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则
GF 12CD又
AE 12CD,∴
GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,∴平面PEC⊥平面PCD.
(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC
∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,FHPFPC,设AD=2,∴PF=2,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CD
PC=PDCD423,2
226623∴A到平面PEC的距离为3. ∴FH=2
【拓展练习】
一、备选题
1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.
(1)求证:平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.
(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径
∴BC⊥AC;
又PA⊥平面ABC,BC平面ABC,∴BC⊥PA,从而BC⊥平面PAC.
∵BC 平面PBC,∴平面PAC⊥平面PBC.
(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.
2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=2a,EC=a.
(1)求证:平面ADE⊥平面ACC′A′;
(2)求截面△ADE的面积.
(1)【证明】分别取A′C′、AC的中点M、N,连结MN,则MN∥A′A∥B′B,∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′
∴B′M⊥平面A′ACC′.
设MN交AE于P,a
∵CE=AC,∴PN=NA=2.
又DB=2a,∴PN=BD.
∵PN∥BD,∴PNBD是矩形,于是PD∥BN,BN∥B′M,∴PD∥B′M.
∵B′M⊥平面ACC′A′,∴PD⊥平面ACC′A′,而PD平面ADE,∴平面ADE⊥平面ACC′A′.
(2)【解】∵PD⊥平面ACC′A′,∴PD⊥AE,而PD=B′M=2a,AE=2a.
6.垂直平分线同步练习题 篇六
1、点线面位置关系判定问题
解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都是点集,所以在考虑线面关系时从集合与集合的包含关系或者集合与集合的交、并、补关系来判定;(2)几何:把集合与几何关系结合来判定线线,线面,面面关系
例1、设是三个不重合的平面,l是直线,给出下列命题
①若,则;
②若l上两点到的距离相等,则;
③若
④若
其中正确的命题是
()
A.①②
B.②③
C.②④
D.③④
解析:
①由面面垂直关系已知不成立,可能垂直也可能相交平行。错误;②由点到面距离易知直线还可能和平面相交;③因为所以在平面β内一定有一直线垂直α所以正确④根据平行关系易知正确
答案选D
练习1、设,是两条不同的直线,是一个平面,则下列命题正确的是()
(A)若,则
(B)若,则
(C)若,则
(D)若,则
练习2、给定下列四个命题:
()
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是
A.①和②
B.②和③
C.③和④
D.②和④
练习3.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是()
A.若,则
B.若,则
C.若,则
D.若,则
练习4.顺次连接空间四边形各边中点所成的四边形必定是()
A、平行四边形
B、菱形
C、正方形
D、梯形
练习题答案:练习1:B;练习2:
D;练习3:
C;练习4:
A;
2、空间中线面的平行垂直证明
例1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面
解析:
证明PC平行于面EBD,只需在面EBD内找一条直线和已知直线平行即可
E为中点,首先考虑构造等腰三角形中位线,取AC中点O连接EO即可
证明:取AC的中点O,连接EO,例2:三棱柱—中,为的中点,为的中点,为的中点,证明:平面∥平面
解析:面面平行的证明定理,证明两平面内两组相交直线平行,即把面面
平行问题转化为线线平行问题,按解决线线平行的思路即可解决问题
证明:连接BC1,EF
分别为BC、B1C1、BB1、CC1的中点,例3:如图:四棱锥—中,⊥平面,底面是矩形,为的中点,⊥,证明:⊥
解析:线线垂直的证明分同平面直线垂直证明和异平面垂直证明,在处理异平面垂直证
明问题时,优先考虑证明一直线垂直于另一直线所在平面,转化为线面垂直证明问题
即证明PD垂直于面BEF即可
证明:点
例4:如图:四棱锥—中,⊥平面,底面是矩形,证明:平面⊥平面
练习1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面
练习2:如图:三棱柱—中,为的中点,证明:∥平面
练习3:如图:三棱柱—中,为的中点,证明:∥平面
练习4:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面
练习5:如图:三棱柱—中,、分别为、的中点,证明:∥平面
练习6:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面
练习7:如图:三棱柱—中,为的中点,为的中点,证明:∥平面
练习8:如图:四棱锥—中,⊥平面,底面是梯形,∥,,为的中点,证明:⊥
练习9:如图:直三棱柱—中,,、分别为、的中点,为的中点,证明:⊥
练习10:如图:四棱锥—中,⊥平面,⊥,,⊥,⊥,为的中点,证明:⊥
练习11:如图:四棱锥—中,底面是矩形,平面⊥平面,证明:平面⊥平面
练习12:如图:五面体中,是正方形,⊥平面,∥,证明:平面⊥平面
练习13:如图:四棱锥—中,⊥平面,是菱形,为的中点,证明:平面⊥平面
7.垂直平分线同步练习题 篇七
1. I doubt whether your c ___________ that vegetables have feelings is right.
2. Some international c___________ are held in our country every year.
3. He t ___________ to kill me if I refused to give him my handbag.
4. On the Double Ninth Festival, we Chinese often h ___________ our ancestors (祖先).
5. This new model is of high q ___________ but it is not expensive.
6. If you drive a car, you must f ___________ your safety belt.
7. Don’t be so mean. Be g ___________ when you try to help your friend.
8. The man a ___________Napoleon so much that he wanted to join his army.
9. People now use paper instead of a h ___________to clean their faces.
10. Some people become v ___________because they believe it is healthier not to eat meat.
二、用括号内所给单词的正确形式填空。
1. A live wire is one that ___________ (charge) withelectricity.
2. We___________ it yet, but I think our ___________will be heated.(discuss)
3. If the factory keeps ___________(send) wasteinto the river, the pollution will become more and more serious.
4. The woman wanted her husband ___________(examine) at once.
5. Yesterday he got his wallet___________(steal).
6. Traditional Chinese New Year Festival___________(celebrate) in capitals all around Europe.
7. The director and the actors were rehearsing the play again and again because they___________ (perform) it the next evening.
8. Einstein’s theory ___________ (prove) to be trueat last.
9. The girl was so angry that she ___________ (tear)the letter into pieces.
10. I ___________ (inspire) to work harder thanever before.
三、根据句意,用适当的介词或副词填空。
1. We offer a wide range of holidays to choose___________.
2. Young people are compared ___________ the rising sun.
3. What I said about Smith goes ___________ you, too.
4. This novel is based ___________ historical facts.
5.Taking an umbrella will protect you___________the sun.
6. Will you please spare me some ink? I have run___________of it.
7.We don’t want to buy a piano, for it takes___________ too much room.
8. I’m sure I can pay ___________all my debts in a year.
9. Can you explain the text ___________ your ownwords?
10. The slaves worked hard to fight___________ their rights.
四、根据句意,选择适当的短语填入下列句子(有多余的短语,每个短语限用一次)。
1. The Smiths borrowed a lot of money and they haven’t ___________ their debts yet.
2. The old photographs ___________ the memories of his happy childhood.
3. Well, the story is too much for Lucy. Shecan’t understand. ___________ , she’s only two.
4. The boy couldn’t ___________ an excuse when his teacher asked him why he was late.
5. The idea sounds wonderful but we need to___________ it ___________in practice.
6. It is a custom to ___________each other onApril Fool’s Day.
7. The customs in eastern countries___________ not ___________ those in western countries.
8. ___________ , they won the contest through their own efforts.
9. They said that they didn’t think I would be fit for the job; ___________ , I was turned down by the company.
10. She is too ready to believe others, so she is very easy to___________.
五、 单项填空。
1. It was suggested that the sports meet___________until the next week.
A. was put offB. would be put off
C. be put offD. ought to put off
2. It took Mary a long time to___________ a new dress at the store.
A. pick upB. pick out
C. take upD. take out
3. The newly-built bridge ___________the beauty of the city.
A. is added toB. adds up to
C. adds toD. adds up
4. Did you leave the doors and windows___________ ? You know there are many burglarsthese days.
A. to fastenB. to be fastened
C. fastenedD. fastening
5. On Saturday afternoon, Mr. Wangwent to the market, ___________some bananas and visited her cousin.
A. buyingB. buy
C. boughtD. to buy
6. When and where we are going to hold themeeting ___________ . So we’d better wait until we___________.
A. is not announced; are informed
B. isn’t announced; inform
C. are not announced; have been informed
D. aren’t announced; have informed
7. What a pity! I missed meeting my boss at the airport because my car was___________ in the traffic jam.
A. broken upB. kept back
C. held upD. kept up
8. I thought of him as my trustworthy frienduntil, to my ___________ , he gave me away tothe boss.
A. honourB. faith
C. doubtD. shock
9. The best use___________ our present machine.
A. must be made ofB. must be made
C. must make ofD. must take
10. The National Day ceremony is a great ___________.
A. occasionB. situation
C. locationD. position
六、 完形填空。
根据短文意思和首字母提示,写出空缺处各单词的完全形式,使短文语义完整。
A house in Clarktown caught fire on Christmas Eve, 1982. The woman who lived in the house was already in her eighties. Being in poor health, she had t ___________ (1) in walking even when things were fine. W ___________ (2) her house burning down around here, she was not able to go anywhere. The smoke made her choke(窒息). The fire was very hot. Without quick help she would have d ___________ (3).
Fire f ___________(4) got to the house. They started to put the fire out. They did not know the old woman was still inside. The people heard her crying for help. The fire was still very hot and there was lots of smoke.
A man d___________(5) like Santa Claus(圣诞老人)was passing by. He was on his way to give gifts to poor families. H ___________ (6) had he heard the old woman’s cry when he ran into the burning house. After a while he r ___________(7) out with the old woman on his back to safety. Then, as quickly as he had done that, the man left. No one knew the real name of the hero who had s ___________ (8) the old woman’s life.
The man went on and took the g ___________ (9) to the poor children. He did not return home until it was dark. He told his wife what had happened. She decided that she did not need to keep the story a s ___________ (10). She told people that Santa Claus was really David Rodriguez, her husband. Mr. Rodriguez is a music teacher when he is not playing Santa Claus.
七、阅读下面短文,回答问题。
阅读下列短文,用尽量简短的英语(可以是句子,也可以是单词或短语)回答所提的问题或补足不完整的句子。
A new study has found no evidence that sunscreen, commonly used to reduce the risk of skin cancer, actually increases the risk.
Researchers from the University of Lous based their findings on a review of 18 earlier studies that looked at the association between sunscreen use and melanoma(黑素瘤). They said that they found flaws in studies that had reported associations between sunscreen use and higher risk of melanoma.
Most health experts believe that by protecting the skin from the harmful effects of the sun, sunscreen helps prevent skin cancer, which is increasing in incidence (发生率) faster than any other cancer in the United States.
But questions have been raised about sunscreen and whether it may have the opposite effect, perhaps by allowing people to remain exposed to the sun longer without burning.
The researchers said that among the problems with some earlier studies is that they often failed to take into account that those people most at risk for skin cancer—people with fair skin and freckles(雀斑), for example are more likely to use sunscreen. As a result, it may appear that sunscreen users get cancer more often.
The studies, which generally relied on volunteers to recall their sunscreen use, were also unable to prove how well the products had been applied, said the new study.
1. Does the sunscreen increase the risk of skin cancer?
___________
2. What may happen to people with fair skin and freckles?
___________
3. Is the number of skin cancer patients increasing in America?
___________
4. What does the word “flaws” in the 2nd paragraph most probably mean?
___________
参考答案:
一、 1. conclusion2. conferences3. threatened4. honour5. quality6. fasten7. generous8. admired9. handkerchief10. vegetarians
二、1. is charged2. haven’t discussed; discussion3. sending4. examined5. stolen6. is celebrated7. would perform8.proved9. tore10. was inspired
三、 1. from2. to3. for4. on / upon5. from6. out7. up8. off9. in10. for
四、 1. paid off2. brought back3. After all4. come up with5. try; out6. play tricks on7. are; similar to 8. To their joy9. in other words10. be taken in
五、 1-5 CBCCC6-10 ACDAA
六、 1. trouble2. With3. died4. fighters5. dressed6. Hardly7. rushed8. saved9. gifts10. secret
【垂直平分线同步练习题】推荐阅读:
线段的垂直平分线知识08-30
线段的垂直平分线教案一11-04
平分生命教学设计doc10-01
关于角平分线的证明题06-26
角平分线的教师教学反思07-09
《认识垂直》教学例谈07-29
垂直和平行说课稿09-01
高考立体几何证明垂直09-14
面面垂直的判定课09-21
脚手架及垂直运输方案07-12