第二章 整式的加减全章教案

2024-09-04

第二章 整式的加减全章教案(共10篇)

1.第二章 整式的加减全章教案 篇一

第3课时:整式(3)

教学内容:补充内容,课本64页提到这个内容

教学目的和要求:

1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。

3.初步体验排列组合思想与数学美感,培养学生的审美观。

教学重点和难点:

重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

请运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?

(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。)

由讨论发现任意交换多项式x2+x+1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x2+x+1与1+x+x2这样的排列比较整齐。

二、讲授新课:

1.升幂排列与降幂排列:

这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。我们把这种排列叫做升幂排列与降幂排列。(板书课题:升幂排列与降幂排列。)

例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列,可以写成-2x3+5x2+3x-1,这叫做这个多项式按字母x的降幂排列。

若按x的指数从小到大的顺序排列,则写成-1+3x+5x2-2x3,这叫做这个多项式按字母x的升幂排列。

板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式3x2x5有三项,它们是3x,-2x,5。其中5是常数项。2

2一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式3x22x5是一个二次三项式。注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号。

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)

2.例题:

例1:游戏:

规则:五个学生上前自己选一张卡片,根据教师要求排成一列,下面同学把排列正确的式子写下来。

按x

式子:-11x7y

-35x+3x

y2-7xy+2y

(可激发学生的学习兴趣,活跃课堂气氛,帮助学生进一步理解新知,从活动中巩固新学知识。)

例2:把多项式

2πr-1+3πr3-π2r2按r升幂排列。

243解:按r的升幂排列为:12rr3r。

说明:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π、3π。

例3:把多项式a3-b3-3a2b+3ab2重新排列。

(1)按a升幂排列;(2)按a降幂排列。

解:(1)按a的升幂排列为:b33ab23a2ba3。(2)按a的降幂排列为:a33a2b3ab2b3。想一想:

观察上面两个排列,从字母b的角度看,它们又有何特点?(由学生参照例题自己解答。)例4: 把多项式-1+2πx2-x-x3y用适当的方式排列。

分析:题中含有2个字母x和y,而各项中关于x的指数层次较全,因此,选择关于x的升(降)幂排列较为合理。

23解:按x的升幂排列为:1x2xyx。

2例5:把多项式x4-y4+3x3y-2xy2-5x2y3用适当的方式排列。

(1)按字母x的升幂排列得:

(2)按字母y的升幂排列得:

注意:

(1)重新排列多项式时,每一项一定要连同它的符号一起移动;

(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。

三、课堂小结:

对一个多项式进行排列,这样的写法除了美观之外,还会为今后的计算带来方便。在排列时我们要注意:

①重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“+”号交换到后面时要添上;

②含有两个或两个以上字母的多项式,常常按照其中某一字母升(降)幂排列。

板书设计:

教学后记:

本节教学建立在学生掌握了整式的基础上,可先让学生运用已有知识任意排列多项式2x+x+1,为学生提供开放性的问题,使学生产生好奇心和求知欲,体会到升(降)幂排列的可行性和必要性,新知便一呼而出。通过游戏,激发学生学习的兴趣,帮助学生进一步理解新知。通过练习了解学生掌握和运用知识的情况,培养学生独立思考,锻炼克服困难的意志,建立自信心,初步体验排列组合思想,培养审美观。

2.整式的加减教案 篇二

整式的加减(2)教案

〖教学目的:〗

〖知识与技能目标:〗

会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。

〖过程与方法:〗

通过探索 规律的问 题,进一步体会符号表示的意义,通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.〖教学重点、难点:〗

重点:整式加减的运算。

难点:探索规律的猜想。

〖授课时间:〗

〖教学过程:〗

Ⅰ.创设现实情景,引入新课

摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。

按照这样的方式继续摆下去。

(1)摆第10个这样的“小屋子”需要 枚棋子(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。

Ⅱ.根据现实情景,讲授新课

例题讲解:

练习:

1、计算:

(1)(11x3-2x2)+2(x3-x2)(2)(3a2+2a-6)-3(a2-1)(3)x-(1-2x+x2)+(-1-x2)(4)(8x y-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A(2)A-3B Ⅲ.做一做 P11 随堂练习

Ⅳ.课时小结

要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

Ⅴ.课后作业

P12习题1.3:1(2)、(3)、(6),2。

〖板书设计:〗

第二节 整式的加减(2)

一、旅游中发现的几何体

二、生活中常见的几何体 VI.教学后记

具有相反意义的量学案

有理数的加法与减法3

3.七年级《整式的加减》 教案 篇三

知识目标:

(1)使学生在掌握合并同类项的基础上,掌握去括号法则。

(2)正确地进行简单的整式加减运算。

能力目标:培养学生基本的运算技巧和能力。

情感目标:使学生逐渐形成事物变化、相互联系和相互转化的`观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

教学重点、难点:

重点 去括号法则。 教学

难点 正确运用去括号法则,减少运算中的符号错误。

教学用具:多媒体

教 学 过 程 :

(一)、情景引入

1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133

你出生于8月份,你家有3口人

2、猜数游戏的数学原理常常与代数式的运算有关

3、知识梳理

-2x+3y-4z 共有 项,其中第三项是: 。

1、写出 2a2b 的一个同类项:

2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.

(二)实践应用, 拓展延

如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。

2、用分配律计算:

(1) +(a-b+c)

(2) -(a-b+c)

3、代数式运算的去括号法则:

括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号

4、顺口溜

去括号,看符号

是+号,不变号

是-号,全变号

5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.

(1) a-(b-c+d) = a-b+c+d

(2) -(a-b)+(-c+d)= a+b-c-d

(3) a-3(b-2c)=a-3b+2c

(4) x-2(-y-3z+1)=x-2y+6z

6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.

(2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号

(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.

7:练一练

4.整式的加减题型总结教案 篇四

专题

一、单项式,多项式的区别以及单项式的系数、多项式的最高次项与多项式的次数.例题:指出下列各式中,哪些是整式,哪些是单项式,哪些是多项式,并指出单项式以及多项式的次数.11xb1x22xy,xy,,,,1,2x2y

22xa3分析:本题考查单项式、多项式的定义及次数问题.解:单项式:2xy,1x,, 211x2多项式:xy,231x21x1整式:2xy,,,xy,2231x11x2其中:2xy,的次数为2;,的次数为0;,xy的次数为1.223定义:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.单项式中所有字母的指数的和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数,包括前面的符号.几个单项式的和为多项式.(多项式的每一项一定是单项式,像bb111,2x2y都不是多项式,因为,2x2y2x2,而不是单项式.).在多项式里次数aayy最高项的次数,叫做这个多项式的次数.单项式与多项式统称为整式.有关单项式与多项式的理解判断

1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式

B.四次多项式或单项式 C.七次多项式 D.四次七项式 解析:B

2、若A是一个四次多项式,B是一个二次多项式,则“A-B”()A.可能是六次多项式 B.可能是二次多项式 C.一定是四次多项式或单项式 D.可能是0 解析:C

专题

二、多项式的排列

排列是指按某一个字母的指数的大小排列.降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来.多项式的排列升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来.例题:将多项式aabab4a分别按照a的升幂、降幂进行排列.解:按a的升幂排列为:aabab4a 按a的降幂排列为:4aababa 注:这里ab与a的次数一样.专题

三、有关系数为0型的题

此类型的题多会出现“……式中不含某次项,或者……式的取值与某一字母无关”的字眼,遇到这种题,假如说不含三次项,那么三次项的系数为0,若一个多项式的取值与某一字母无关,则含有这个字母的项的系数(不管几次)都为0.例题:已知关于x,y的多项式(3a2)x2(9a10b)xyx2y7中不含二次项,求3a5b的值.分析: 本题主要考查多项式的相关概念,该多项式中二次项有x2,xy项,依题意可知这两项的系数为0.23222232232a3a203解:依题意得

解得

39a10b0b5将其带入3a5b得:3a5b=3()5解题策略: 某一项不存在,则其系数为0.相关链接:

233=5 5 若多项式2xax3ybbx2x6y5的值与字母x无关,试求多项式

22226(a22abb2)(2a23ab4b2)的值.

解: 2xax3ybbx2x6y

5(2b)x(2a)x(36)yb5

∵多项式2xax3ybbx2x6y5的值与字母x无关,222ab0b2 解得: 2a0a26(a22abb2)(2a23ab4b2)

6a212ab6b22a23ab4b24a29ab10b24292(2)10(2)12

试一试,练一练

1、如果式子(2x2axy6)(2bx23x5y1)的值与字母x所取的值无关,试求式子a2b(a3b)的值.专题

4、去括号与添括号 去括号法则:

(1)括号前面是“+”号,把括号连同它前面的“+”号去掉,括号各项不变符号.(2)括号前面是“-”号,把括号连同它前面的“-”号去掉,括号内各项都改变符号.添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项都不改变符号.(2)所添括号前面是“-”号,括到括号里的各项都要改变符号.例题:有理数a,b,c在数轴上的对应点分别为A,B,C其位置如图FX2-1所示,化简22

13221422ccbacba.解:由图知c0,bc0,ac0,ba0.原式=c(bc)(ac)(ba)c 专题

5、多项式的求值

1.如果整式7xx6的值为9,则整式21x3x5的值是()A.10 B.20 C.40 D.50 解析:此类题型关键是看所求多项式与已知多项式的结构关系(通常看次数最高的项),通过观察我们知道21x是7x的3倍,由题可知7xx69,则我们在等式两边同乘以3,步骤如下:3(7x2x6)93,21x3x1827,21x3x45,222222221x23x545550,即选D.亦可以先算出7x2x的值,然后再乘以3带入所要求解的多项式.这题隐约用到下一章要学的等式的性质1.2.已知a与1-2b互为相反数,则整式2a-4b-3的值是 ________.

专题6、探究规律题

1、有一列单项式:x,2x2,3x3,...,19x19,20x20,...(1)你能说出他们排列的规律吗?

(2)根据你发现的规律,写出第100个和第101个单项式;(3)你能进一步写出第n个和第n1个单项式?

分析:在寻找规律时,首先看系数的规律,其次看字母的规律.解:(1)每一项的系数正负相间,奇数项的系数为负,偶数项的系数为正,系数的绝对值等于项数;字母部分是x的幂,其指数等于项数。

(2)第100项是100x100;第101项是101xnn101

n1(3)第n个单项式是(1)nx;第n1个单项式是(1)

2、已知(a1)xy2(n1)xn1

3a1是关于x,y的六次单项式,试求下列代数式的值.(1)a2a1(2)(a1)

由(1)(2)小题的结果,你有什么想法?

3、若多项式6xn2x2n2是三次三项式,求代数式n22n1的值.分析:本题考查了多项式的相关概念与代数式求值的综合运用.本题多项式是三次三项式,说明多项式有三项,而且最高次项的次数为3,关键是确定那一项是最高次项,此题次数最高项可能是6xn2,也可能是x2n项,所以有两种情况.解:

规律方法:本题充分运用了分类讨论的数学思想解题.4、将杨辉三角中的每一个数都换成分数,得到一个如图2—1所示的分数三角形,称为莱布尼茨三角形.若用有序数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数那么(9,2)表示的分数是()

1,121

第一行 111,第二行

22111, 第三行

3631111,,第四行

412124

图2—1......111,从左到右第二个数是,mm1m111因为(9,2)表示第九行,从左到右第2个数,所以表示的分数是=

5.整式的加减(合并同类项)教案 篇五

教学目的:

在具体情境中了解合并同类项的法则,并能合并同类项;经历合并同类项的过程,体验探求规律的思想方法。

重点:理解同类项的概念,并能正确进行同类项的合并。难点:找准同类项,能熟练地进行同类项的合并。教学方法与步骤:

一、创设情境,引入新课

教师利用求代数式(-4x+7x+3x-4x+x)的值,让学生任意说出一个一至两位数,教师和学生比赛,看谁算得快。

二、讲解新课

1、举例观察,探索概念

请学生观察课本P90图3-8,用分割法和整体法分别列出表示长方形面积的代数式。可以得到:8n+5n和(5+8)n从而知8n+5n=(5+8)n;同样利用乘法分配律可以得到:-7a2b+2a2b=(-7+2)a2b,观察上面两个等式,每个等式中两个单项式的特点,归纳总结出同类项的定义。思考:判断同类项需要注意哪些条件呢?

①各项中所含字母相同 ②相同字母的指数也相同;板书同类项定义。

根据同类项需要注意的条件完成课本“议一议”。

2、设计游戏(找朋友游戏),游戏步骤:①把10张卡片分发给学生,②教师随意叫一个同学,这位同学高举自己手中的卡片,③其他同学观察自己手中的卡片和站起来这位同学卡片的单项式,若认为它们是同类项,也站起来,④所有同学当裁判,看看有没有找错朋友。

3、让学生根据乘法分配律归纳合并同类项的方法(系数相加,字母及其指数不变);讲解课本例

1、例2

三、巩固应用

1、完成课本P91中做一做

2、请四位同学到黑板上完成P91随堂练习第1题,然后教师和学生一起讲评;请两位同学口答第2题,之后引导学生归纳合并同类项应注意哪些方面:

①合并同类项后,只要不再有同类项,就是最后结果;②每一项中字母的次序,一般按照英文之母的顺序写;③合并同类项时,字母及其指数不改变,也不能丢掉字母及指数;④各项中的项交换时,符号一起移动;⑤合并同类项系数相加时,要注意不要丢掉符号民,特别是“-”。

四、总结

判断同类项的两条标准(①各项中所含字母相同 ②相同字母的指数也相同);提醒学生注意:同类项与系数无关,与字母的顺序无关。同类项的合并方法:系数相加,字母及其指数不变。

五、布置作业:课本P91习题3.5、作业本中相关作业

6.第二章 整式的加减全章教案 篇六

建立平等合作,互相尊重的师生关系,创设一种师生交流的互动、互学的学习氛围。重视学生的学习进程,关注个体差异,让不同的人在数学学习中得到不同的发挥,利用课件,帮助学生理解和学习数学。通过观察、分析、动手、动脑等活动,让学生在“做中学”、“学中做”进而达到“我要学”。

教学内容

本节课是沪科版义务教育课程实验教科书七年级数学上册第二章第三节《2.3整式的加减——1.合并同类项》(第71~73页).

学情分析

七年级年龄段的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。

学生主要通过对教学中生活情景的分析,感受数学与生活的密切联系,通过对几个问题的分析、探讨、相互交流,用类比、迁移的方法,提高对课本知识的运用能力,从而认识归纳合并同类项的法则,在练习中巩固和熟悉合并同类项的技能。最后,通过回顾与反思以及谈感受谈收获,把所学知识升华成理性认识。

教材分析

合并同类项是一堂探究活动课,是在结合学生已有的生活经验,引入字母表示数、继而介绍了代数式,以及代数式求值的基础上对同类项的定义,同类项如何进行合并的探索、研究。合并同类项是本章的一个知识重点,其法则的应用,是以后学习解方程、整式的运算、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

教学目标:

1.基础知识目标:

(1)在具体的情景中理解同类项的定义,并能识别同类项.

(2)在具体情景中探索合并同类项的法则,并能熟练进行合并同类项的运算.

(3)知道在求多项式的值时,一般先合并同类项再代入数值进行计算.

2.能力训练目标:

(1)通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习.

(2)通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题.

(3)通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力.

3.创新素质目标:

(1)通过由数的加减推广到同类项的合并,培养学生由特殊到一般的思维认知规律.

(2)引导学生从日常生活中发现数学问题,培养学生的发现意识和能力;探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识.

4.个性品质目标:

(1)培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质.

(2)通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是美的享受,爱学、乐学数学.

教学重点:

熟练地进行合并同类项,化简代数式.

教学难点;

如何判断同类项,正确合并同类项.

教学用具:多媒体或小黑板、

教学过程:

?一、创设情景

问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分刷油漆,请根据图中的尺寸,算出:(1)甲乙油漆面积的和.(2)甲比乙油漆面积大多少.

(处理方式:①学生思考片刻 ②找学生代表交流自己的解答 ③教师汇总学生的解答)

板书:

(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )

(2) (2ab-πr2)-(ab-πr2)

(此时提问学生:这3个式子都是什么式子?在学生回答的基础上引出课题—从本节课开始来学习:2.3整式的加减.并板书)

二、探求新知

教师自问:如何计算(1)和(2)两个式子呢?

接着解答:本节课来学习2.3.1合并同类项(此时板书课题——1.合并同类项)

1、同类项的概念

观察多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点.

学生交流、讨论.

③ 师生总结:(这就是我们今天所要介绍的同类项,此时板书:1.同类项的概念)

所含字母相同并且相同字母的指数也相同的项叫做同类项.

几个常数项也是同类项.

7.第二章 整式的加减全章教案 篇七

减去单项式4x2y,5x2,2x2y的和,列算式为,化简后的结果是_________。

2、当x2时,代数式-x2

2x1=____,x2

2x1=_____。

3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为_______(答案不唯一)。

4、已知:x

1x

1,则代数式(x1x)2010x1

x5的值是。

5、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入____元。

6、计算:3x35x7(5a3b)(9ab)=。

7、计算:(m3m5m2009m)(2m4m6m2008m)=。

8、-a2bc的相反数是____,3=____,最大的负整数是___。

9、若多项式2x2

3x7的值为10,则多项式6x2

9x7。

10、若(m2)2x3y

n2

是关于x,y的六次单项式,则m___,n=___。

11、已知a22ab8,b22ab14,则a24abb2

__;a2b2___。

12、多项式3x22x7x3

1是__次__项式,最高次项是___,常数项是_。

13、下列等式中正确的是()

A、2x5(52x)B、7a37(a3)C、-ab(ab)D、2x5(2x5)

14、下面的叙述错误的是()

A、(a2b)2的意义是a与b的2倍的和的平方。

B、a2b2的意义是a与b2的2倍的和C、(a32b)的意义是a的立方除以2b的商D、2(ab)2的意义是a与b的和的平方的2倍

15、下列代数式书写正确的是()

A、a48B、xyC、a(xy)D、112

abc16、-(abc)变形后的结果是()A、-abcB、-abcC、-abcD、-abc17、下列说法正确的是()A、0不是单项式B、x没有系数C、7x

x3是多项式D、xy5是单项式

18、下列各式中,去括号或添括号正确的是()

A、a2

(2abc)a2

2abcB、a3x2y1a(3x2y1)

C、3x[5x(2x1)]3x5x2x1D、-2xya1(2xy)(a1)

19、代数式a

12a, 4xy,ab3,a,2009,12a2bc,3mn

中单项式的个数是()A、3B、4C、5D、620、若A和B都是4次多项式,则A+B一定是()

A、8次多项式B、4次多项式

C、次数不高于4次的整式D、次数不低于4次的整式

21、已知2m6n与5xm2xny

是同类项,则()A、x2,y1B、x3,y1 C、x

3,y1D、x3,y0

22、下列计算中正确的是()

A、6a5a1 B、5x6x11x C、m2mmD、x36x37x323、56(2a

a1

3)

24、2a(5ba)b25、-3(2xy)2(4x

2

y)2009

26、-2m3(mn1)2127、3(x2

y2)(y2

z2)4(z2

y2)

28、x2

{x2

[x2

(x2

1)1]1}129、2x2[x22(x23x1)3(x2

12x)]其中:x30、2(ab22a2b)3(ab2a2b)(2ab22a2b)其中:a2,b131、已知:m,x,y满足(1)23(x5)25m0;

(2)2a2by1与7b3a

2是同类项,求式:2x26y2m(xy9y2)(3x23xy7y2)

32、已知:A=4x24xyy2,B=x2xy5y2,求(3A-2B)-(2A+B)的值。

8.七年级整式的加减教案及教学设计 篇八

1.学生经过观察、合作交流、讨论总结出去括号的法则,并能正确且熟练地运用去括号法则化简代数式。

2.让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。

重点难点

重点:去括号法则

难点:括号前面是“―”号,去括号时应如何处理。

教学过程

一. 创设情境,导入新课

问题1:周三下午,校图书馆起初有a名同学,后来某年级组织同学来阅读,第一批来了b位同学,c,则馆内一共有多少位同学?

a+(b+c)=a+b+c

二. 类比学习、探索新知

提问: 上述问题中得到的等式你熟悉吗?从左至右有什么变化?

法则1:括号前面是“+”号,去掉括号及其前面的“+”号,括号内各项不变号。

问题2:若图书馆内原有a位同学,后来有些同不因上课要离开,第一批走了b位同学,第二批又走了c位同学。请用两种方式表示图书馆内还剩下多少位同学?

a-(b+c)=a-b-c

提问: 上述问题中得到的等式你熟悉吗?从左至右有什么变化?

法则2:括号前面是“―”号,去掉括号及其前面的“―”号,括号内各项都变号。

三. 变式练习,熟练技能

练习1:去括号

①a+(b+c) ②a-(b-c) ③a-(-b+c) ④a-(-b-c)

例1:先去括号,再合并同类项

①(x-y-z)+(x-y+z)-(x-y-z)

②(a2+2ab+b2)-(a2-2ab+b2)

③3(2x2-y2)-2(3y2-2x2)

练习2:化简下列各式:

⑴8a+2b+(5a-b)

⑵(5a-3b)-3(a2-2b)

四.应用知识,深化提高

例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。

(1) 2小时后两船相距多远?

(2) 2小时后甲船比乙船多航行多少千米?

五. 总结反思,情意发展

1. 本节课你学习了什么?你有哪些收获?

2. 主要用到的思想方法是什么?

3. 要注意的问题有哪些?

六. 布置作业,强化技能

9.第二章 整式的加减全章教案 篇九

课本第66页至第68页.

教学目标 1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简. 2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力. 3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误. 3.关键:准确理解去括号法则.

教具准备

投影仪.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

10.第二章 整式的加减全章教案 篇十

教学过程:

(一)代数式:

1.本节重点共两部分,一是对给出的一个具体的代数式,能准确表达出它的数学意义,二是列代数式,即将基本数量关系的语言用代数式来表示。

本节是关于代数的初步知识,在复习中注意以下几点:

(1)代数式是什么,并注意和公式、等式区别开来。

(2)一个具体的代数式,能准确用语言表达其意义,并能把简单的与数量有关的词语化为代数式的形式。

(3)会用具体数值代替代数式中的字母,按其代数式指明的运算顺序进行计算。

(4)公式都是由代数式组成的。2.例题分析:

例1.说出下列各组代数式的意义有什么不同:

(1)2(a+b),2a+b,a+2b 2ab2b1222(2)a,(ab),()222 解:(1)2(a+b)是a与b的和的2倍。2a+b是a的2倍与b的和。a+2b是a与b的2倍的和。

22b22(2)a是a与b的一半的差。212(ab2)是a与b两数平方差的一半。2ab2()是a与b的差的一半的平方。注意:用语言表达一个代数式的意义,具体说法上没有统一的规定,只要能正确表达即可。比如2a+b,可以说是a的2倍与b的和,也可以说是2a与b的和。

例2.用代数式表示:

(1)甲数与乙数平方的和;

(2)甲、乙两数的平方差;

(3)甲数与乙数的差的平方。

解:设甲数为x,乙数为y(1)xy2(2)x2y2(3)(xy)2

例3.某校大礼堂第一排有座位x个,后面每排比前一排多2个座位,求第n排的座位数。若该礼堂一共有20排座位,且第一排的座位数也是20个,请您计算该礼堂共有多少座位?

分析:找到座位的规律:

第一排:x个第二排:x2个第三排:x4个 第四排:x6个

第五排:x8个第n排:x(n1)2个 解:由分析可得第n排的座位数:x+2(n-1)第一排有20个座位,共有20排,即a=20,n=20 所以,最后一排座位数:202(201)58(个)

求整个礼堂中的座位数即做加法: 202224……5658

(2058)(2256)……(3840)7810780

例4.某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用。若他支付的费用是19元,请你算出他乘坐的路程。

解:题目中给出他乘坐的路程是超过5千米的,因而前面5千米的费用是固定的,只要能算出后面的费用即可。

前面5km又分成两部分:3千米和2千米

前面3千米的费用是10元,紧接着的2千米是3.6元

所以前面5千米共花13.6元

5千米以后则就是每千米花2.7元,而后面的距离是(x-5)千米

因而总费用=13.6+(x-5)×2.7 已知支付的费用是19元,则

913.6(x5)2.7

1x7千米

注意:列代数式的关键是:一是抓住关键性的词语,如“增加”、“减少”等,或者是 2 规律性的内容,如“后面一排都比前面一排多2个座位”,二是要理清运算顺序,如“和的222积”与“积的和”运算顺序是不同的。如a+b与(a+b),前者是平方和,后者是和的平方。

11xxyy2 例5.若x=,y,求的值。

23xxyy211,y代入代数式中 231111211()262233 得:1111211()223326 解:将x19327918

19324918 注意:在求值过程中,代数式中的运算符号和顺序不能改变,在求值过程中,代数式中字母所代的值应是使代数式有意义的值,如速度、时间、体积、面积均为正值,而在形

aa如的式子中,b0,才能使有实际意义。bb

(二)整式的加减: 1.知识点简要回顾

(1)单项式指的是数与字母积的形式的代数式,即对字母来说只含有乘法运算,因aa1此的形式就不是单项式,但这种就是单项式,因为它的分母中不含有字母,只是b22它的系数。

注意:单独的一个数或单独的一个字母也叫单项式。

单项式中的数字因为叫做单项式的系数,而单项式中的所有字母的指数之和则称之为32单项式的次数。如-3xy中,-3是系数,其次数是5。

(2)多项式指的是几个单项式的和,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式含有几项,就叫几项式。多项式里,次数最高

1232项的次数,就是这个多项式的次数。如2x+3x-1是二次三项式,x3x2x32是三次四项式。

(3)单项式、多项式、整式、代数式之间的联系和区别:

几个单项式的和组成多项式,单项式和多项式统称为整式。

整式是代数式,但代数式不一定是整式,判断一个代数式是否是整式,就主要看代数式的分母中是否有字母。

(4)多项式的排列方式:

降幂排列:一个多项式中,按照一个字母的指数从大到小的顺序排列,叫做按照这个字母的降幂排列。

升幂排列:一个多项式中,按照一个字母的指数从小到大的顺序排列,叫做按照这个字母的升幂排列。

例1.指出下列多项式的次数与项数:

2xy1(1)3

(2)a22a2bab2b2 解:(1)是二次二项式。

(2)是三次四项式。

例2.将3x3yy25x24xy3重新排列。

(1)按x降幂排列。

(2)按y升幂排列。

3232 解:(1)按x降幂排列:3xyx54xyy(2)按y升幂排列:5x23x3yy24xy3

(5)同类项与合并同类项:

同类项与合并同类项是整式中非常重要的两个概念。同类项是指字母相同,并且相同字母的指数也分别相同的项叫同类项。同类项的定义规定判断同类项的两条标准:一是字母相同,二是相同字母的指数也分别相同,二者缺一不可。

合并同类项是指把同类项合并成一项,合并同类项的方法是把同类项的系数相加,而字母和相同字母的指数都不变。

23.合并同类项:11x-5+9x+1-3x3x 例

解:11x-5+9x+1-3x23x3x217x

4在多项式中只有同类项可合并,不是同类项不可合并。有人对合并的结果不是一个单项

225式感到不习惯,如犯的错误有:2a+3b=5ab,5ab-3ab=2,2x+3x=5x等,产生错误的根源就是没有掌握合并同类项的要点:“系数相加”、“字母和字母的指数不变”。

例4.将a、b看成常数,x、y看成字母,合并同类项:

(1)2ax3by4ax3by2ax

(2)3ax2by22ax23by2

解:这里将a、b看成常数,因而可合并如下:

(1)2ax3by4ax3by2ax

(2a4a2a)x(3b3b)y

4ax6by

(2)3ax2by22ax23by

2(3a2a)x2(b3b)y2

ax22by2

nn1n2n2nn1 例5.合并同类项:x2xx2x3xx

解:这里的指数全都是含有字母,但观察同类项只要指数相同即可,不论是数字还是字母都可以。

xn2xn1xn22xn23xnxn1 (13)xn(21)xn1(12)xn2

2xn(1)xn1xn2

(6)整式的加减:

整式的加减实际上是对整式实施两个重要的恒等变形:一是合并同类项;另一个是添括号和去括号,整式的恒等变形是整个教学中恒等变形的基础。

整式的加减应该注意以下几个问题:一是观察,就是把同类项看清楚,当项数较多时,可作上记号;二是运用交换律时把项的符号“带走”;三是运用分配律时,符号要分配到每一项,不能漏项,同时要注意项的系数的符号;四是对运算结果要作处理,应该以某一字母作降幂或升幂排列。

例6.化简15a2[4a2(7a8a2)]

解:15a2[4a27a8a2] 15a24a27a8a2

27a27a 例7.已知:A=x2x5,Bx23x1,当x时,求3(3AB)的值。

解:3(3AB)9A3B 9(x2x5)3(x23x1)3x29x453x29x3

18x48 当 x时,18x4818486484233

例 8.一个多项式减去xxy得2xyy,求这个多项式。41212 解:(xxy)(2xyy)x2xyy2

例 9.化简:|x1||x1| 解: |x-1|=0时,x=1 |x+1|=0时,x=-1 所以需分如下三种情况:

(1)当x1时,原式1xx12x

(2)当1x1时,原式1xx12

(3)当x1时,原式x1x12x 说 明:一般aaa……a123n | xa||xa||xa|……|xa|的化简,分别令|xa|0(i1,2,3…n)123ni然后分别讨论在这n+1个部分上的符号,从而将绝对值去掉,达到化简的目的。

例10.若代数式(2x2axy6)(2bx23x5y1)的值与字母x的取值无关,求代 把 x的取值范围分成:xa,axa,……axa,xa这n1部分,112n1nn数式3(a22abb2)(4a2abb2)的值。分析:若代数式(2x2axy6)(2bx23x5y1)的值与x无关,若将x看作字母,则含字母x的项的系数应该为0,以此为据,求得后面代数式的值。

解:(2x2axy6)(2bx23x5y1)

(22b)x2(a3)x6y

5要使其值与x无关,则

2-2b=0 b=1   a+3=0 a=-3 3(a22abb2)(4a2abb2)

a27ab4b2

(3)27(3)1412

921

48 本课小结:

1.本节课主要回忆了一些基本的概念,如同类项等。2.合并同类项是本次课的重点内容,须强化掌握。3.其间有一些特殊的解题方法需同学们认真掌握。

【模拟试题】 一.填空:

11xy与xy的差是____________。22 2.多项式4x25x2与多项式3x22x7的差是____________。3.若xmy3与x2yn是同类项,则m=________,n=________。1.单项式二.化简、求值:

1.x32x2x42x35x4,其中x=2 2.(4x25x)(52x2)(3x25x6),其中x 3.2x{3y[4y(3xy)]},其中x2 31,y0.2 5三.计算:

1.已知Ax35x2,Bx211x6。求:(1)A+B(2)A-B(3)B-A。

2.求证:不论x、y取任何有理数,多项式

(x33x2y2xy24y31)(y3xy2x2y2x32)(x34x2y3xy25y38)的值恒等于一个常数,并求出这个常数。

【试题答案】 一.1.xy 2.x27x9

3.m2,n3

二.1.化简后:x32x26x,代入x2得值为4 2.化简后:x21,代入x23得值为149 3.化简后:x2y,代入x15,y0.2得值为0.2 三.计算

1.(1)x34x211x6

(2)x36x211x6

(3)x36x211x6 2.化简多项式

上一篇:物流客户关系管理下一篇:冲锋枪教学反思