航空航天材料的发展

2024-09-05

航空航天材料的发展(共8篇)

1.航空航天材料的发展 篇一

先进复合材料在航空航天中的应用

及发展

胡军 材料08A-1 08108010205 2011年12月14

日 先进复合材料在在航空领域的应用

摘要:介绍了材料的发展史,并且介绍了材料的分类,主要介绍了复合材料的现状。复合材料在航空航天领域的应用。最后介绍了复合材料在航空航天的发展。航空领域应用的新进展,先进复合材料在航空航天领域的应用。关键词: 复合材料;航空航天;国防;先进复合材料

1.1 前言

材料是人们生活和生产必须的物质基础。也是人类进化的重要里程碑。材料科学主要研究材料的成分、分子或原子机构、微观及宏观组织以及加工制造工艺和性能之间的关系。它是一门边缘新科学,主要一固态物理和固态化学、晶体学、热力学等位基础,结合冶金化工及各种高新科技术来探讨材料内在规律和应用。材料是人类用来制造机器、构件、器件和其他产品的物质。但并不是所有物质都可称为材料,如燃料和化工原料、工业化学品、食物和药品等,一般都不算作材料。

1.2材料可按多种方法进行分类。

按物理化学属性分为金属材料、无机非金属材料、有机高分子材料和复合材料。按用途分为电子材料、宇航材料、建筑材料、能源材料、生物材料等。

实际应用中又常分为结构材料和功能材料。结构材料是以力学性质为基础,用以制造以受力为主的构件。结构材料也有物理性质或化学性质的要求,如光泽、热导率、抗辐照能力、抗氧化、抗腐蚀能力等,根据材料用途不同,对性能的要求也不一样。功能材料主要是利用物质的物理、化学性质或生物现象等对外界变化产生的不同反应而制成的一类材料。如半导体材料、超导材料、光电子材料、磁性材料等。

材料是人类赖以生存和发展的物质基础。20世纪70年代,人们把信息、材料和能源作为社会文明的支柱。80年代,随着高技术群的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。现代社会,材料已成为国民经济建设、国防建设和人民生活的重要组成部分。

1.3材料的发展简史

人类社会的发展历程,是以材料为主要标志的。100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。新石器时代后期,出现了利用粘土烧制的陶器。人类在寻找石器过程中认识了矿石,并在烧陶生产中发展了冶铜术,开创了冶金技术。公元前5000年,人类进入青铜器时代。公元前1200年,人类开始使用铸铁,从而进入了铁器时代。随着技术的进步,又发展了钢的制造技术。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。

20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用。先后出现尼龙、聚乙烯、聚丙烯、聚四氟乙烯等塑料,以及维尼纶、合成橡胶、新型工程塑料、高分子合金和功能高分子材料等。仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

结构材料的发展,推动了功能材料的进步。20世纪初,开始对半导体材料进行研究。50年代,制备出锗单晶,后又制备出硅单晶和化合物半导体等,使电子技术领域由电子管发展到晶体管、集成电路、大规模和超大规模集成电路。半导体材料的应用和发展,使人类社会进入了信息时代。

现代材料科学技术的发展,促进了金属、非金属无机材料和高分子材料之间的密切联系,从而出现了一个新的材料领域——复合材料。复合材料以一种材料为基体,另一种或几种材料为增强体,可获得比单一材料更优越的性能。复合材料作为高性能的结构材料和功能材料,不仅用于航空航天领域,而且在现代民用工业、能源技术和信息技术方面不断扩大应用。

1.4复合材料的发展和应用

复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

1.4.1先进复合材料在航空航天领域的应用

碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。2005 年世界碳纤维的耗用量已超过2 万吨,图1 为21 世纪前十年碳纤维需求量的统计预测情况。航空航天领域的碳纤维需求情况见表1 所示,约占总消耗量的20%左右。

图 1: 世界碳纤维需求量(单位:吨)可维的需求量有所减少,2002 年约减少20%,2003 年则减少约9 %。2003 年以后航空航天领域对碳纤维的需求出现快速增长,2006 年与2001 年相比将增长约40 %,2008 年将增长约76 %,到2010 年和2001 年相比预计增长超过100%。本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展[2]

表 1: 世界碳纤维按应用领域需求的统计和预测

1.4.2 航空领域应用的新进展

T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H纤维。军品碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标,结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材料。

图 2: 美国F-22 军用飞机

民品

在民用领域,555座的世界最大飞机A380由于CFRP的大量使用,创造了飞行史上的奇迹。飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP), 3%为首次用于民用飞机的GLARE纤维-金属板(铝合金和玻璃纤维超混杂复合材料的层状结构)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封框――复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战[3]。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为第一个每乘客每百公里耗油少于三升的远程客机。

图 3: 空中客车A-380 1.4.3 航天领域的新进展

火箭、导弹以高性能碳(石墨)纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化构件材料,在导弹、运载火箭和卫星飞行器上也发挥着不可替代的作用。其应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。碳纤维复合材料的发展推动了航天整体技术的发展。碳纤维复合材料主要应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在美国侏儒、民兵、三叉戟等战略导弹上均已成熟应用,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料,如美国三叉戟-2 导弹、战斧式巡航导弹、大力神一4 火箭、法国的阿里安一2 火箭改型、日本的M-5火箭等发动机壳体,其中使用量最大的是美国赫克里斯公司生产的抗拉强度为5.3GPa 的IM-7 碳纤维,性能最高的是东丽T-800 纤维,抗拉强度5.65Gpa、杨氏模量300GPa。由于粘胶基原丝的生产由于财经及环保危机的加剧,航天级粘胶碳丝原料的来源一

[4]直是美国及西欧的军火商们深感棘手的恼头问题。五年前,法国SAFRAN 公司与美国WaterburyFiberCote Industries 公司以有充分来源的非航天级粘胶原丝新原料开发成功名为RaycarbC2TM 的新型纤维素碳布,并经受了美军方包括加工、热/结构性质及火焰冲刷试验在内的全部资格测试,在固体发动机的全部静态试验中都证明该替代品合格,2004 年十一月,该碳布/酚醛复合材料已用于阿里安娜V Flight164上成功飞行。

图 4: 法国阿里安娜V 型导弹

卫星、航天飞机及载人飞船高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。

碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有8 种:低温重复使用表面绝热材料LRSI;高温重复使用表面绝热材料HRSI;柔性重复使用表面绝热材料FRSI;高级柔性重复使用表面绝热材料AFRI;高温耐熔纤维复合材料FRIC―HRSI;增强碳/碳材料RCC;金属;二氧化硅织物。其中增强碳/碳材料RCC,最为要的,它可以使航天飞机承受大气层所经受的最高温度1700℃。[5]

随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天中,为世界航空航天技术的发展作出更大的贡献。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

先进复合材料共固化技术在某型机上自90年代初得到应用以来,已生产了350余架次,实现了工程化的目标。通过原材料的开发、辅助材料的国产化研究、共固化工艺的优化、性能测试项目的优化和修补技术的研究,将一套完整共固化技术应用于批生产的同时,又获得了极大的经济效益,实现了低成本共固化技术的工程化应用。通过该材料的工程化应用,我们可得出以下的结论:

(1)金属-橡胶组合式芯模用于盒形结构受力部件的共固化成型,能够实现均压效果,并能有效降低制造成本;

(2)国产化辅助材料的应用,能够满足复合材料制造使用工艺要求,降低工程化制造成本;

(3)工程化生产的随炉试样(片)性能跟踪测试项目,可以进行优化选择,以降低生产成本;

(4)工程化生产的同时,开展有针对性的修补技术研究,既可解决生产过程中超差品的修补问题,也是产品使用过程的有效保障,技术经济及社会效果兼得;

(5)降低热压罐成型法制造成本的其他有益研究还有待不断开发。

结语

先进复合材料以其比强度比模量高 耐高温性能好、耐疲劳性能优越等独特优点获得广泛应用、和迅速发展.真空袋成型,热压罐成型技术的成熟发展更是极大的推动了先进复合材料的发展,目前较多的采用热压罐成型工艺设备,存在成本过高,制件尺寸受限制,真空袋成型工艺由于具灵活简便高效等特点得到了广泛的应用。通过对热压罐成型工艺原理研究,提出了几种降低成本及改进工艺性能的方案,先进复合材料共固化技术成型的产品,从材料开发、工艺优化、性能检测到售后服务等环节,以低成本为主导线,详细描述了一个热压罐共固化技术工程化的范例,达到了在热压罐成型方面明显降低制造成本的目的。

2.航空航天材料的发展 篇二

复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料, 用来承受载荷的相称为增强体, 将增强材料粘接在一起、在纤维之间传递载荷的相称为基体。复合材料在性能上不仅保留了组成它的各个组分的优点, 更为重要的是它的性能比构成它的单一的材料更为优异。

复合材料在航空中的应用也是近几十年的事, 但它的发展可以说并不是很慢, 自从各种复合材料被发现以来, 人们便发现了它所存在的各种优势, 因此把它运用到飞机行业也就势在必行, 尤其是在各种不同性质的复合材料出现以后, 如何灵活的应用各种复合材料到飞机的各个部分使其为整体的飞机服务便成为了设计师们研究的重点所在。

复合材料应用于航空之中主要经过了四个阶段, 这四个阶段中复合材料在飞机等航空运输机上的运用都是由承受力较小并且作用也不是很大的部分逐渐变得极为重要并且承受力也逐步增大, 直到现在的差不多能占到飞机整体的一半以上, 可见现在复合材料的应用是多么的广泛。作为评价飞机先进性和安全性、舒适性的重要指标, 复合材料的应用正在逐步得到越来越多的重视, 这也比将在今后的复合材料的应用中得到体现。

2 航空复合材料应用发展总体情况分析

2.1 层合结构

层合板亦称层压板、叠层板或实心层压板、整体层压板。层合板可制成多种结构形式, 并可采用多种工艺方法成形, 可设计性强, 因此在航空航天飞行器结构中应用十分普遍。层合板是层合结构的基本元素。层合结构系指经过适当的制造工艺, 如共固化、二次胶接、机械连接等, 主要由层合板形成的具有独立功能的较大的三维结构, 如翼面结构的梁、肋、壁板、盒段, 机身侧壁以及飞行器部件等。

2.2 蜂窝夹层胶接结构

蜂窝夹层结构通常是由比较薄的面板与比较厚的芯子胶接而成。一般面板采用强度和刚度比较高的材料, 芯子采用密度比较小的材料, 如蜂窝芯、泡沫芯、波纹板芯等。夹层结构具有重量轻, 弯曲刚度及强度大, 抗失稳能力强, 耐疲劳, 吸音, 隔热等优点, 因此在飞行器结构上得到了广泛应用。

2.3 金属复合层胶接结构

利用胶接技术将纤维复合材料与铝合金材料结合起来形成一种新型的结构材料—纤维铝合金复合层板胶接结构。目前这种结构件在飞机上的应用还不是很多。不久的将来, 铝基复合材料可能得到较广的应用。国外目前复合材料在军机、直升机、无人机上的用量早已达到或超过50%;现今在大型客机上的用量也超过了50%。在通用航空领域许多小飞机的复合材料用量更高, 甚至达到了结构重量的90%。可以看出复合材料的应用已经成为民用飞机实现其先进性、经济性和舒适性的重要技术途径之一。

在过去几十年内, 民机复合材料用量正显著增加。上世纪七十年代及八十年代初, 雷达罩、机身整流罩、内装饰结构、控制面板等应用了复合材料, 占飞机结构重量的1~3%。随着复合材料工业的成熟以及成本降低, 新一代A320、波音777等飞机复合材料用量占结构重量的10~15%。新研制出的A380约结构重量的1/4是复合材料, 单机复合材料有30吨。复合材料占结构重量50%的波音787飞机更加具有革命性, 其典型特征是全复合材料的机身, 并在机翼、短舱及内装饰应用了大量复合材料。受波音787的推动, A350XWB复合材料将增加到53%;A400M军用运输机复合材料约占结构件重量40%。

此外, 空客及波音公司都将在窄机身飞机上明显扩大复合材料的应用, 这些飞机将在几十年内最终取代目前广泛使用的波音737及A320飞机。因窄机身飞机目前占全球运输机队的70%, 这将急剧加速对航空供应链的冲击。

2复合材料的性能的优势

1) 比强度 (拉伸强度与密度之比) 高、比模量 (弹性模量与密度之比) 高。

例如, 高模量碳纤维复合材料的密度只有钢的1/5、铝的3/5, 其比强度则为钢的5倍、铝的4倍、钛合金的3.5倍以上;其比模量是钢、铝、钛的4倍或更高 (钢、铝、钛是目前飞机的主要金属材料) 。

2) 具有极好的抗疲劳性能

复合材料, 特别是纤维增强树脂基复合材料, 由于纤维对制件表面的裂纹或类裂纹缺陷起到了桥接的作用, 故阻止了裂纹的迅速扩展, 而且在拉伸时对疲劳裂纹的增长也几乎不敏感。例如, 碳纤维增强聚酯树脂复合材料疲劳极限可达抗拉强度的70%~80%, 而金属材料疲劳极限远远低于这个数值, 对于20~30年使用寿命的飞机, 该复合材料对疲劳几乎不敏感。

3) 断裂安全性好

纤维复合材料中大量独立存在的纤维通过具有韧性的基体把它们粘合成整体, 当构件中有少数纤维断裂时, 其它完好的纤维就会将承载接受下来并重新进行分配, 因而构件不至于在短时间内发生断裂, 故断裂安全性好。

4) 高温性能好

纤维增强的复合材料, 特别是金属基复合材料, 一般均具有较好的耐高温性能。例如, 石英玻璃纤维增强铝基复合材料在500℃下能保持室温强度的40%;涂复了Si C的硼纤维增强铝基复合材料可放心地在316℃温度下使用, 力学性能保持稳定。但一般铝合金在400℃时弹性模量大幅度下降 (接近于零) , 而且强度也显著下降。

5) 具有很好的减振性能

由于复合材料的比模量高, 其自振频率也高, 这是因为受力结构的自振频率与其结构材料比模量的平方根成正比, 高的自振频率决定了复合材料有很强的吸振能力, 可以避免构件在一般工作状态下发生共振, 不易造成振动破坏。同时, 复合材料中高韧性的基体材料也具有显著的震动阻尼特性。

6) 增加飞机防腐蚀能力

复合材料较之金属和非金属常规材料具有更为优异的抗腐蚀性, 能够为延长飞机的使用寿命、减少民航开支、提高经济效益。

4 结束语

飞机的绝大部分结构将采用复合材料的这一预言已经实现, 人们期待着复合材料在飞机上更广阔的应用前景, 甚至全复合材料飞机的出现。近年来, 我国的复合材料技术得到了迅速发展, 开始朝着实现复合材料构件设计、制造、检测一体化方向发展。借鉴国外的先进技术和经验, 对加速我国的复合材料技术的发展、扩大复合材料的应用具有重要意义。

摘要:近百年来航空工业与材料工业一直在相互推动下发展。继铝、钢、钛等金属材料后, 在新一代飞机中复合材料已成为四大航空材料之一。目前越来越多的飞机零部件开始采用复合材料, 从座椅、肋板、内部装饰、舷窗、引擎罩盖, 到机翼、机身和整流罩等, 复合材料成为现代飞机制造的重要材料。

关键词:航空,复合材料,发展

参考文献

[1]李映红, 赵智姝, 韩勐.复合材料在飞机结构上的广泛应用[J].装备制造技术, 2011, 4:138-140.

[2]陈绍杰.大型飞机与复合材料[J].航空制造技术, 2008, 15:31-37.

[3]邹田春, 冯振宇, 陈兆晨, 杨倩.民机复合材料结构适航审定现状[J].材料导报:期刊论文, 2010, 21:34-35.

3.航空材料研究的开山者 篇三

流动中的求学道路

颜鸣皋的籍贯为浙江宁波慈城镇,却出生于河北省定兴北河店,要知道其中的缘故,还得从他的身世说起。颜鸣皋的爷爷因病壮年早逝,家中只有几亩薄田,奶奶为了生存,带着年幼的儿子(即颜鸣皋的父亲颜余庆)到大户人家帮佣当“梳头娘”,由于聪明能干,很得主人赏识,这家主人的太太将颜余庆认作养子。十五岁时,主人家在京汉铁路工作的大儿子回家探亲,临走将颜余庆带出学手艺,从此他走上了一条闯荡世界的道路。颜余庆先进了一家铁路上兴办的法文学校,除了学习法文,主要教授铁路方面的有关知识。他在家乡只断断续续念过两年私塾,文化底子薄,听课如同听天书,磕磕绊绊两年后总算毕了业,被分配到长辛店做报务员。实际工作中的颜余庆脑子灵、来得快,再加上老实肯干,职务不断升迁,列车长、火车站副站长、站长、车务段副段长、调度室主任……有了稳定的工作,便成了家。媳妇也是宁波人,只是工作岗位是流动的,一般两三年就换个地方,这样随着孩子的出生,他们的出生地是沿着铁路线流动,定兴、石家庄、许昌、驻马店、武汉……颜鸣皋就是1920年6月1 2日在父亲当定兴北河店站站长时出生的。

颜余庆对家务和生活操心不多,对孩子们的学习却格外上心。从小没上过学的滋味使他铭心刻骨,他养了六男六女,在家给孩子们确定的目标是,男孩子要读完高中,女孩子要读到初中,积攒的钱首先用于孩子念书。

颜鸣皋从小随父亲在铁路上过着流动的生活,生性好动,秉性执着倔强,对未知的事物充满探求的欲望。流动的生活在颜鸣皋6岁那年发生了改变,他被父母送回老家慈城,在治孝中镇小学念书。这是设在孔庙偏房的一所半私塾性质的学堂,宁波人对教育的尊崇,使颜鸣皋启蒙阶段就在心中扎下了根。1928年,父亲调到武汉列车段,为了能使孩子们受到更好的教育,他托人将颜鸣皋兄弟三人和妹妹们接到武汉念书。1931年,还没念完五年级的颜鸣皋,凭着聪明和苦读考取了武汉博文中学实验班,跨级升入中学,和大哥二哥成了校友。这是一所英国基督教创办的教会学校,管理很严,初一就上英语课,任课老师是英国牧师。初中快毕业时,父亲对颜鸣皋的期待是:考国立高中,而且是名校。

为了实现父愿,颜鸣皋大胆选择到北平去上高中。北平当时是全国的文化中心,有清华、北大那样的名校,教育的发达超过其他都市。家里经济虽说拮据,但望子成龙的迫切愿望战胜了犹豫,父母最终支持了孩子的选择。1934年春,颜鸣皋独自远行,到北平考取了汇文中学。然而,他在汇文中学只读了一个学年,就因为学费和生活花销太高,担心父母承受不了而转学到通州的潞河中学上学。这时的北平正处在抗战前夕,日寇的铁蹄在华北平原步步紧逼,国民政府步步退让,政府当局和日本人签署了卖国求和的《塘沽协定》和《何梅协定》,中国军队撤出,平静的课堂时时传来战争的枪炮和屠夫磨刀的霍霍声,震惊历史的“一二·九”运动,更使颜鸣皋难以独善其身,他为汹涌的学生游行队伍所鼓舞,又为最终学生运动的被镇压感到悲愤。经过痛苦的思考,最终决定返回武汉,重新进入母校博文中学,插班读高二。不久,“卢沟桥事变”爆发,“武汉会战”日益临近。

在这个特殊时期,学校提前放了假,颜鸣皋在家中为高考认真准备功课。他报名的第一志愿是中央大学机械系,同时报考了成都华西大学。考试结束不久,他便接到了华西大学农业化学系的录取通知。战争即将袭来,武汉已是凶多吉少,父母迫切希望孩子到大后方去读书。就这样,颜鸣皋踏上入川的旅途。

就在宜昌等候搭乘轮船的当儿,发生了戏剧性的一幕。在码头围满人群的一张中央大学发榜海报上,颜鸣皋看到了自己被中央大学工学院机械系录取的名字。中央大学此时因南京危机已举校西迁重庆,喜极而泣,于是颜鸣皋在长江的炮火硝烟中从水路到达重庆。

苦涩大学和深造转机

颜鸣皋到中央大学报到不久,武汉就沦陷了。他得不到家乡的音讯,又无法和家人取得联系,只能将来时父母给的钱算计着花,可几个月后,就花的净光。他完全断绝了经济来源,可以说是贫穷学生中的赤贫生。幸好中大的生活全部是公费,吃住不花钱,还发被褥和服装。但是宿舍是搭建的竹棚,四面透风,几十个人住在一起,透过顶棚的缝隙可以遥望星空:饭菜里没油水,总感觉吃不饱;有钱的学生可以花钱补充营养,而他们这些穷学生,只能靠每月学校发给的6元钱,扣除4元伙食费后仅剩的2元钱勉强维持。最难熬的是冬天,住在阴冷山涧中透风的宿舍,单薄的被褥常常冻得使人难以入睡。一天深夜,他正沉浸在书海中,被子被灯泡烤糊了,浓烟弥漫了宿舍。事情平息后,他只能用旧衬衫塞堵在被子的破洞上,披着坐到天明。学习生活中,躲避日寇飞机的轰炸是头等大事。有时一天要往防空洞中跑三四次。连学校的试验设备都在防空洞中,机械材料和金相学课也由老师带着到坑道里做。

1942年7月,颜鸣皋终于以优异的成绩在中大取得了工学学士学位。毕业后,他接受分配在重庆到中央工业实验所任助理工程师。1944年春,在武汉的未婚妻倪莹和他的三妹逃离敌占区到达湘西。得此消息后,他马上请假赶往湘西辰溪与倪莹汇合,并在这个小县城成了家。婚后在辰溪水泥厂谋职做材料技师。

不久,他得到同学来信,说国民政府根据美国向反法西斯国家提供援助的租借法案,已和美国达成支援中国航空工业的协议,准备公开招考公费留美实习生。尽管甜蜜的小家庭难以割舍,颜鸣皋却不愿过庸碌沉寂的日子,经过商量,他携妻子回到重庆中央工业试验所复习迎考。1945年3月,在这项百里选一的考试中他脱颖而出,终于取得了留洋深造的名额。这年4月,他告别新婚不久的妻子,沿着“驼峰航线”飞跃喜马拉雅山脉到达印度,在加尔各达港乘船穿越印度洋、地中海、大西洋,于当年6月到达美国。

nlc202309010117

颜鸣皋到美国进修的是精密机械制造专业,他被分配到哈特福城的普惠航空发动机公司工具样板厂做实习工程师,从此与航空结上了缘。为了多学点知识和技术,他把全部精力倾注于实习劳动中,周末,还赶到耶鲁大学冶金系去听课。1946年春,听说实习生可以申请入校,他便报了该校物理冶金专业。转眼半年过去了,颜鸣皋在美实习一年期就要到了,而他的冶金专业课刚刚入门。没有公费支持学业就得半途而废,他心中不免有些焦虑。课业的系主任看他如此好学,提出为他写一封向驻美使馆申请留下来学习的信,得到了国民政府驻美使馆的认可,从此颜鸣皋在失去公助学费的情况下继续自己的深造道路,而一切费用通过向好友借钱解决。

1947年颜鸣皋通过在切斯铜合金加工厂打工,结合课堂理论课程所学,写出了第一篇论文《金属加工织构的研究》,发表后很快受到各国业界的重视和称赞。仅用一年,他就获得了物理;台金科学硕士学位。切斯铜合金加工厂研究部为此给颜鸣皋下达了正式聘书。由于条件有了改善,加快了研究步伐,颜鸣皋的科研有了新突破。他在铜织构研究中,创造性地把x射线掠射法用于织构测定,对微量杂质磷在固溶和化合物状态对再结晶织构的影响,提出了独到的见解,并运用于实践。他根据这些成果写出3篇论文,被誉为3篇具有博士水平的论文。1949年春,颜鸣皋作为在校生被破格选为美国“希格玛—塞”科学学会荣誉会员。当年7月,他以“铝单晶体的横断弯曲研究”为题,完成了自己的博士论文,获得耶鲁大学物理冶金学博士学位。

毕业后,颜鸣皋应邀到纽约大学工学院化工系与主任尼尔森一道做研究工作,并共同建立钛合金研究室。钛合金是一种世界刚刚起步的新型结构材料,发展前景广阔。在研究室组建过程中,他边教授金相学边和同事制造成一台可熔炼纽扣锭的小型真空非自耗电弧炉。他们还接到美国陆军部的委托,开展钛一碳、钛一氮平衡相图的研究,对钛合金的性能及工业化生产进行攻关。未用多长时间,颜鸣皋承担的钛合金平衡相图和加工织构的研究这两个课题就取得了革命性突破,填补了世界空白。他首次提出钛合金拉伸、压缩与轧制织构的晶格位向及其与性能关系的报告,完成了一系列论文和专著,为他在今后回到国内创建钛合金研究带来长远的影响。1950年初,继“希格玛—塞”荣誉会员后,他又被“兰普达—依普西隆”化工学会推选为荣誉会员。

颜鸣皋对事业的痴迷丝毫没有影响他对祖国的关注。随着我军三大战役的胜利,他对国内革命战争的发展趋势已经有了清晰地认识。他参加了与中共南方局有密切联系的“留美中国科学工作者协会”的活动,并且是匹兹堡第一次代表大会的组织者和活跃分子,参加编辑向留学生宣传国内形势的《留美通讯》。新中国成立,特别是抗美援朝战争爆发后,经慎重考虑,颜鸣皋决定返回祖国。回国前,他遭到美国联邦调查局的阻挠,以“非法留居”被关押,经校方和友人协助聘请律师起诉,于1951年2月胜诉后乘船回国。

国家为了在仿制飞机的基础上适时转向自行研制,首先考虑建立自己的航空研究机构。而搞航空研究最基础的是填补材料研究的空白。颜鸣皋回国后,其才学在一穷二白的工业基础上得到了逐渐施展,开始在华北大学工学院冶金系任教,1952年华北大学工学院更名为北京工业学院。1956年,党中央号召“向科学进军”,颜鸣皋奉召和我国科技精英一道参予编制国家12年科学技术发展规划,规划将他倡议的钛合金研究列为重中之重的72个项目之一。从此之后,颜鸣皋由教育单位被调到了刚刚创建的航空材料研究所,开始了与航空材料结伴一生的历程。

颜鸣皋走马上任,负责带领筹备组人员筹建钛合金专业和钛合金实验室。他只有36岁,而他手下的筹备组人员大多是刚刚走出校门20岁左右的大学生。在最初的筹建者中,有的甚至连钛合金这个名词都没听说过。颜鸣皋便从基础知识的“恶补”开始,分六个部分给大家做《钛及钛合金》的系列讲座。就在这群启蒙者中,有许多后来成为航空材料的栋梁之材。毕业于上海交通大学的曹春晓最后成长为中国科学院院士、航空材料专家。

由于北京航空材料研究所被列为苏联援建的156个项目之一,航空材料所的建设先后得到22位苏联专家的帮助指导。颜鸣皋在组织大家掌握基础知识的基础上,通过对外学习和培训培养钛合金材料研制和铸造研发的骨干和尖子。1957年10月,颜鸣皋光荣入党,成为一名中共预备党员。在他整天和同事们日夜攻关下,7.5千克真空自耗电极电弧炉试车成功并投入使用。

在苏联撕毁合同撤走专家后,我国航空科研战线开展“摸透米格—21”会战。自行设计研制新型歼击机,首先要攻克的是这种飞机上使用的钛合金材料。在与协作单位通力合作下,通过对轧制工艺、热处理制度、冲压成型工艺和焊接性能的深入研究,试制出宽800毫米、长3米的大规格TCl钛合金板材,用这种板材;中压成我国首批新型歼击机所使用的机罩前段、水平安定面和整流包等机件。

1961年,颜鸣皋被任命为金属物理及化学分析研究室主任。他设计制造出我国第一台钛合金铸造专用炉——铸造凝壳炉,不仅为开展铸造钛合金及其成形工艺创造了条件,还为以后设计制造50千克小批生产用钛合金铸造炉打下基础。1963年,他被提升为研究所总工程师,在国防部六院航空材料研究所被定衔为技术上校。在此期间,他与自己的搭档、副主任陈学印合著发表了《镍基合金的强化》的论文,在当时苏美发达国家镍基高温合金研究进入快速发展的同时,也开创了我国高温合金研究与应用的理论新成果。

正当颜鸣皋的科研成果不断获得丰收的时候,文化大革命开始了,他被打成“美国特务”、“苏修特务”。颜鸣皋的性格决定了他把磨难当成党的考验,总在自身找问题,从来没有怀疑过党和领袖发动这场运动的正确性。在严重的批斗逼供下,他在精神上承受了巨大的压力,患了处于精神分裂症边缘的“幻听症”,病情的反复发作,使他受到造反派的很多皮肉之苦,由于胃出血,饭量很小,骨瘦如材。在一次重体力劳动中,口吐鲜血栽倒在地……

航空材料疲劳与断裂理论研究获得成果

上世纪70年代初,正在服役的国产歼6飞机不断频发起落架裂纹,裂纹概率呈正态分布,峰值在飞行70~120个起降之间,对保障飞行训练、安全和战斗起飞构成了严重威胁。在不得已的情况下,武汉军区空军采用补焊方法来缓解备件不足问题。但这样做是否可靠,需要科学求证,他们为此找到北京航空材料研究所。材料所的上属部门三机部对这一课题非常重视,进行了科研立项,组织北航、西工大共同投入研究。在研究所的邀约下,处在病休中的颜鸣皋不计前嫌答应参与指导研究。这时的颜鸣皋已被宣布“解放”,虽说还列为“没有改造好的资产阶级知识分子”,但能边参加劳动边进行心爱的研究工作,这对他已是很满足了。颜鸣皋在政治和生活的某些方面是迟钝的,但科学眼光异常敏锐,视野非常开阔,就在台上批斗低头弯腰时,他已开始注意到断裂力学和新型检测技术在世界航空界的迅猛发展趋势了。

nlc202309010117

这是他科研道路上的一个新的航标灯。当时,疲劳和断裂力学理论、参数测定的研究在我国处于初期,虽然讨论火热,可实际应用相对落后。在颜鸣皋指导下,对断口形貌进行了系统研究。他们利用扫描电镜,对α—N曲线从起始裂纹至临界裂纹,对裂纹起始、扩展、失稳扩展,至最终断裂的各个阶段特征,直接在断口上从低倍到高倍进行系统研究。利用高压透射电镜,进行断裂与钢的组织结构的研究。与中科院金属研究所共同商讨了通过金属内耗作用研究裂纹形成扩展的机理。通过反复试验,他们研究出了一套基层部队能够简便而快速准确的裂纹检测方法:为了对付内孔裂纹,他们研究出了内孔喷丸强化板带。通过试飞和损伤容限评估,补焊加强化的起落架寿命可达1200个起降,4次检查周期裂纹漏检概率为万分之几,安全概率极大增强,检查周期由50个起降改为200个起降。武汉空军还把报废在仓库中的200多副起落架重新做了修复使用,解决了飞行训练的燃眉之急。

1978年,颜鸣皋在“文革”结束后的新一届所领导班子中被任命为技术副所长、总工程师。甩掉包袱的他首先希望的是,在疲劳和断裂研究上有深入的开拓。他对不同晶系合金初期裂纹扩展出现的小平面位相,根据滑移方向和层错能的高低进行预测,获得重要研究成果。完成了疲劳裂纹萌生与初期扩展的力学行为与微观机制的研究,为我国新机种选材、服役机种故障分析和延寿做出重要贡献。应用断裂力学分析与错位模型,首次推导出预测疲劳裂纹扩展门槛值的理论计算方程,在世界疲劳界引起广泛关注。他还研究出不同超载形式和程序对飞机结构材料疲劳寿命的影响,根据断口变化特征采取变参数法对常用的威林伯格和马尔斯迟滞模型进行了修正,提高了对程序和随机加载寿命估算的精确度。他把自己的研究成果撰写出《金属疲劳断裂微观机制》一文,成为我国首次发表的有独立见解、系统阐明疲劳与断裂微观机制的经典代表作。他还为配合飞机设计部门进行损伤容限设计,对大量国产材料进行断裂数据与成活率测定,出版了多种手册与数据汇编:为飞机安全设计、合理选材提供了大量数据和理论依据,并建立了完整的试验装备,培养了一大批技术骨干,使北京航空材料研究所在材料疲劳与断裂应用研究方面处于国内领先,国际享有盛誉的地位。

架设桥梁与甘为人梯

随着改革开放力度加大,颜鸣皋参加国内外学术交流活动日益增多。早在1987年,就由他主持召开了第五届国际材料力学行为会议,并当选为理事会主席,后连续参加主持5届。1999年又被该会议推选为名誉主席,被当年的国际疲劳大会授予“终身荣誉会员”。

1991年11月,颜鸣皋当选为中国科学院学部委员(后改为院士)。然而在荣誉面前他十分淡定,把育人却视作自己后半生的神圣使命。他认为航空材料科技队伍的建设和稳定,要特别注意培养和造就一批新世纪技术骨干与创新性学术带头人。国家恢复学位制后,他就被国务院聘为第一、第二届学位委员会;台金评议组成员。北京航空材料所首批获得国务院学位委员会授权的航空科研系统第一个也是当时唯一一个博士学位授予权和多专业硕士学位授予权单位。他关心所里的研究生招生与培养、导师队伍建设,倾毕生所学亲自培养了15名硕士、23名博士、10余名博士后,目前这些学生有的已在科研和管理工作上崭露头角,并且出手不凡,成为本专业的技术骨干、学科带头人,其中半数以上担任了院领导、研究室主任、总工程师、教授、大学系主任等以上领导职务,一批优秀的跨世纪高层次人才正在崛起。颜鸣皋不仅创造了科研的辉煌,也为航空材料科研的发展打下了扎实的人才基础。

颜鸣皋的人生已跨过了90岁高峰,严重的骨质疏松病有时迫使他不得不住院治疗。然而这个当年我国航空材料研究的开山者浑身依然洋溢着骨气、豪气与朝气,他的病床旁堆放着资料与书籍,科研工作还是他挥之不去的依恋。他对来访者说:“‘航空报国,强军富民’是我们肩负的光荣历史使命。党和国家领导人多次给予我们极大的关怀和鼓励,也寄予我们极大的期望。我们航空材料基础研究,是国家航空事业腾飞的基础,我要为此尽点微薄之力。

4.航空航天材料的发展 篇四

姓名:李经纬

学号:0823020124 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。

一.飞机结构用复合材料的优势

现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。

复合材料在飞机结构上的应用首先带来的是显著的减重效益,复合材料尤其是碳纤维复合材料其密度仅为1.6g/cm3左右,如等量代替铝合金,理论上可有42%的减重效果。近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。

二.飞机结构用复合材料的发展过程

先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。

1.复合材料在军用飞机上的发展过程

纵观国外军机结构用复合材料所走过的道路,大致可分为三个阶段: 第一阶段复合材料主要用于受力较小或非承力件,如舱门、口盖、整流罩以及襟副翼、方向舵等,大约于上世纪70年代初完成。

第二阶段复合材料主要用于垂尾、平尾等尾翼一级的次承力部件,以F-14硼/环氧复合材料平尾于1971年研制成功作为标志,基本于上世纪80年代初完成。此后F-

15、F-

16、F-

18、幻影2000和幻影4000等均采用了复合材料尾翼,此时复合材料用量大约只占全机结构重量的5%。

第三阶段复合材料开始应用于机翼、机身等主要的承力结构,受力很大,规模也很大。主要以1976年美国原麦道公司研制成功FA-18复合材料机翼作为里程碑,此时复合材料用量已提高到了13%,军机结构的复合材料化进程进一步得到推进。此后世界各国所研制的军机机翼一级的部件几乎无一例外地都采用了复合材料,其复合材料用量不断增加,如美国的AV-8B、B-

2、F/A-

22、F/A-18E/F、F-

35、法国的“阵风”(Rafale)、瑞典的JAS-

39、欧洲英、德、意、西四国联合研制的“台风”(EF2000)、俄罗斯的C-37等,具体如表1所示。

应该指出继机翼、机身采用复合材料之后,飞机的最后一个重要部件——起落架也开始了应用复合材料,向着全机结构的复合材料化又迈进了一步。复合材料用在起落架上是代钢而不是代铝,可有更大的减重空间,一般可达40%左右。

2.复合材料在民用航空上的发展

继军机之后,国外大型民机也大量采用复合材料,以波音飞机为例,其进程大致走过了四个阶段:第一阶段:采用复合材料制造受力很小的前缘、口盖、整流罩、扰流板等构件,该阶段于上世纪70年代中期实现。第二阶段:制造升降舵、方向舵、襟副翼等受力较小的部件,该阶段约于80年代中期结束。第三阶段:制造垂尾、平尾受力较大的部件,突破了尾翼级部件在大型客机上的试用,随后B777设计应用了复合材料垂尾、平尾,共用复合材料9.9吨,占结构总重的11%。第四阶段:在飞机最主要受力部件机翼、机身上正式使用复合材料,如波音公司正在研制的B787“梦想”飞机,其复合材料用量达50%。下图为B787“梦想”中复合材料的使用情况。

图中深蓝色部分为飞机的碳层合板,用于机身主体的机构,浅蓝色为碳夹芯板,用于飞机的尾翼部分和侧翼的少部分部件,绿色部分是玻璃纤维,红色部分为铝,黄色部分为铝/钢/钛吊架。

空客也于70年代中期开始了先进复合材料在其A300系列飞机上的应用研究,经过7年时间于1985年完成了A320全复合材料垂尾的研制,此后A300系列飞机的尾翼一级的部件均采用复合材料,将复合材料的用量迅速推进到了15%左右。已于2005年初下线并首飞的A380超大型客机,其复合材料用量达25%,主要应用部位包括中央翼、外翼、垂尾、平尾、机身地板梁和后承压框等,开创了先进复合材料在大型客机上大规模应用的先河。

上面的图为空客大型民机结构用复合材料的进程。

3.复合材料在我国飞机制造的应用

我国于上世纪 70 年代已开展军机用先进复合材料的研究。“六五”期间作为预研项目研制了两个机型的复合材料垂尾,1985 年开始研制某型机带整体油箱的复合材料机翼,90 年代初研制了某型机复合材料垂尾和前机身,此后多种机型均正式采用了复合材料,其复合材料用量接近10%。

虽然我国在航空和汽车领域中,对于复合材料已经有了一定的了解和应用,但是复合材料的开发和投用在我国仍是一个重大的难点,我国航天事业起步慢,也没有核心技术的支持,但是我相信,在长期的努力之下,我们国家一定会拥有自己的复合材料的技术,并用于飞机,汽车等的制造中。

三.飞机结构复合材料在将来的发展及前景

人们以前一直担心树脂基复合材料结构的使用寿命问题,30多年来的应用发展历史证明了先进复合材料具有优异的使用性能,使用寿命不成问题,这也是目前飞机结构复合材料用量大幅提高的基础和前提。自20世纪70年代先进复合材料进入飞机结构以来,各种飞机从未因大量使用复合材料引发飞行事故,这无疑为复合材料的应用增加了信心和安全置信度。最早的装机件历经30余年的使用,已到设计的使用寿命,最近的检测结果表明,空中使用和地面验证情况相符,疲劳和使用环境未造成剩余强度下降,仍可承受既定的设计载荷,绝大多数制件至今仍处于良好状态。曾以为树脂基复合材料的老化可能是影响使用的严重问题,国外的大量使用经验证明,老化不成问题,性能衰退未超过使用要求。同时使用经验还表明,复合材料随飞机结构成功地经受了疲劳与温度、吸湿及腐蚀等环境的考验,有些问题并不像当初预计的那样严重。

实践还使人们认识到复合材料越是用于主结构问题越少,使用性能可能更好。如复合材料薄板,特别是薄的蜂窝结构面板常出现冲击损伤容限等问题,但主结构板厚增加,如A380中央翼盒处板厚可达45mm,损伤阻抗能力提高,损伤容限已不成问题。当板厚超过8mm损伤容限问题会急剧下降,厚板的吸湿、温度传导等问题均会下降,机体结构内部的框、梁、肋用复合材料冲击、吸湿、耐温等敏感问题也会相应下降,因此材料许用值和结构设计值可适当放宽。国内20余年的飞机结构用复合材料结果也表明复合材料确是一种使用性能优异的新材料。

如今复合材料在四大机种上的大量应用,已形成目前世界航空领域再度起飞的发展新态势,事实雄辩地证明复合材料是实现飞机现代化的必由之路,飞机结构复合材料化也是大势所趋。未来飞机特别是军机为了进一步达到结构减重与降低综合成本,复合材料将不断取代其他材料,用量继续增长。美国一报告中指出:到2020年,只有复合材料才有潜力使飞机获得20%~25%的性能提升,复合材料将成为飞机的基本材料,用量将达到65%。

2000年统计,铝,钢,钛,复合材料各占飞机部件材料的65%,15%,5%,15%。铝占的比重仍然是最大的,而预计将来,复合材料降占主导位置。下图为现在与将来预计飞机用材料比例图。

飞机结构用复合材料的发展趋势概括起来可归纳为以下几个方向:

(1)高性能化。高性能化趋势从材料角度主要体现在三个方面,一是提高力学性能,二是提高耐热性能,三是提高耐服役环境性能。

(2)多功能化。同一结构实现多种功能是复合材料的优势之一,如承力/吸波,承力/吸波/减振、降噪一体化是飞机结构用复合材料的一个重要发展方向。要实现多功能化,设计是首位,材料是根本,工艺是保证。

(3)智能化。智能化对提高结构效率和可靠性具有重要作用,是飞机结构设计越来越重视的方向。开发飞机结构用复合材料自感知、自诊断、自适应智能化技术,可以实现复合材料飞机结构噪声抑制、振动控制、主动变形、健康监测。

(4)低成本化。这是一个永恒的主题。成本过高仍是制约飞机结构大量应用复合材料的主要障碍,因此低成本化仍为复合材料发展中急需解决的关键技术。低成本化重点考虑制造技术低成本化、设计方法低成本化、全寿命低成本化。

(5)制造过程数字化。有利于减少试验量,缩短研制周期,降低废品率及提高生产效率。应发展复合材料制造过程模拟与工艺参数优化技术,实现复合材料制造过程数字化与飞机结构设计数字化趋向相适应。

(6)设计制造一体化。在设计阶段就考虑制造与装配中的问题,可加快产品研制进度,提高质量,有效降低成本。采用全新的设计理念和手段,将设计和制造融为一体,是复合材料发展的又一个重要趋势。

四.我国复合材料的研究与开发

1.碳纤维

多年来在碳纤维技术方面我国未能突破其关键技术,研究进展缓慢,与国外的差距越来越大,产量远远不能满足国内的需求,导致至今碳纤维95 % 以上依赖进口,并深陷受制于人的局面。特别是随着A380、B787等几大机种上复合材料用量的剧增,碳纤维严重短缺,引发危机,对我国飞机结构用先进复合材料的发展影响甚大。

碳纤维生产技术难度很大,特别是原丝技术难度大,没有好的原丝就碳化不出优质的碳纤维,成为我国碳纤维产业的瓶颈。近几年,国家有关部门对国产碳纤维的发展也很重视,有多个计划给予支持,有些企业自行投资也在研发碳纤维,并取得良好的前期效果。因此,可望在十一五、十二五期间我国碳纤维有新的较大发展,这对促进我国飞机结构大量用复合具有深远的意义。

2.新型树脂体系

5.航空航天特殊材料加工技术 篇五

——激光切割加工工艺在航空航天领域的应用

激光制造技术在国防和航空航天领域的产业化应用前景远大,具有效率高、能耗低、流程短、性能好、数字化、智能化的特点,本文主要介绍了激光切割加工的组成、工作原理及各激光切割加工工艺技术在航空领域中的应用。针对现状,我国将继续发挥激光制造技术的优势,改变我国航空航天领域的关键器件和技术主要依赖进口的现状,最终形成我国新一代激光制造产业链。

激光切割加工的组成及工作原理

激光加工有四部分组成,分别是激光器、电源、光学系统、机械系统。工作原理 :

激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光切割加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光切割加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光切割加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。

随着激光制造技术的发展,桥梁、船舶等结构都由传统的铆接工艺发展到采用激光焊接技术,但先进的激光焊接技术难以在飞机制造中开展广泛的应用。长久以来,飞机结构件之间的连接一直采用落后的铆接工艺,主要原因是飞机结构采用的铝合金材料是热处理强化铝合金(即高强铝合金),一经熔焊后,热处理强化效果就会丧失,而且晶间裂纹难以避免。因此,普通氩弧焊等熔焊方法在飞机制造中的应用成为禁区。另一方面,在80年代初,铝及其合金的激光加工十分困难,被认为是不可能的。主要是由于铝合金存在对10.6mm波长激光的高反射和自身的高导热性。在当时,激光加工主要使用波长为10.6mm的CO2激光器,而铝对CO2激光的反射率高达97%,通常作为反射镜使用。但是,激光加工的优越性又极大地吸引着从事激光材料加工的科研工作者。他们为此付出了大量的时间和精力来研究铝合金激光加工的可能性。

目前,高强铝合金激光焊接成果已经成功应用于欧洲空中客车公司飞机制造中,其铝合金内隔板均采用激光加工,实现了激光焊接取代传统铆接工艺。激光焊接技术的采用,大大地简化了飞机机身的制造工艺,使机身重量减轻18%,成本下降21.4%~24.3%,被认为是飞机制造业的一次技术大革命。空客A380的制造就采用了激光焊接技术,极大地减轻了飞机自重,增加了载客量。德国政府2006年公布的科技发展计划中将激光焊接技术列为航空工业两大尖端发展技术之一。

6.航空航天热固性材料论文1 篇六

2011年11月18日

航天航空用热固性材料论文

航天航空用热固性材料

0905010437

文水武

摘 要:本文综述了热固性材料的特性及应用领域进行了评价和探讨,同时对航空航天先进复合材料的发展前景进行了展望。

关键词:

功能材料

热固性

航空航天事业

固性材料

环氧树脂是优良的反应固化型性树脂。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 热固性塑料的概述

指在一定条件下(如加热、加压)下能通过化学反应固化成不熔不溶性的塑料。常用的热固性塑料有酚醛塑料、聚氨酯塑料、环氧塑料、不饱和聚酯塑料、呋喃塑料、有机硅树脂、丙烯基树脂等及其改性树脂为机体制成的塑料。

第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。这种材料称为热固性塑料。

航天航空用热固性材料论文

热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三度的网状结构,不仅不能再熔触,在溶剂中也不能溶解。酚醛、服醛、三聚氰胺甲醛、环氧、不饱和聚酯、有 机硅等塑料,都是热固性塑料。

主要用于隔热、耐磨、绝缘、耐高压电等在恶劣环境中使用的塑料,大部分是热固性塑料,最常用的应该是炒锅锅把手和高低压电器。树脂基复合材料的发展史

树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。

树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破。在70年代树脂反应注射成型(Reaction Injection 2

航天航空用热固性材料论文

Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种技术研究成功,现已大量用于卫生洁具和汽车的零件生产。1972年美国PPG公司研究成功热塑性片状模型料成型技术,1975年投入生产。80年代又发展了离心浇铸成型法,英国曾使用这种工艺生产10m长的复合材料电线杆、大口径受外压的管道等。从上述可知,新生产工艺的不断出现推动着聚合物复合材料工业的发展。

进入20世纪70年代,对复合材料的研究发迹了仅仅采用玻璃纤维增强树脂的局面,人们一方面不断开辟玻纤-树脂复合材料的新用途,同时也开发了一批如碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶纤维、高密度聚乙烯纤维等高性能增强材料,并使用高性能树脂、金属与陶瓷为基体,制成先进复合材料(Advanced Composite Materials, 简称ACM)。这种先进复合材料具有比玻璃纤维复合材料更好的性能,是用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。国防、军工及航空航天用树脂基复合材料

据有关资料报导,航天飞行器的质量每减少1干克,就可使运载火箭减轻500千克,而一次卫星发射费用达几千万美元。高成本的因素,使得结构材料质轻,高性能显得尤为重要。利用纤维缠绕工艺制造的环氧基固体发动机罩耐腐蚀、耐高温、耐辐射,而且密度小、刚性好、强度高、尺寸稳定。再如导弹弹头和卫星整流罩、宇宙飞船的防热材料、太阳能电池阵基板都采用了环氧基及环氧酚醛基纤维增强材料来制造。处于航天航空飞行及其安全的考虑所需,作为结构材料应具有轻质高强、高可靠性和稳定性,环氧碳纤维复合材料成为不可缺少的材料。

高性能环氧复合材料采用的增强材料主要是碳纤维(CF)以及CF和芳纶纤维(K-49)或高强玻璃纤维(S-GF)的混杂纤维。所用基体材料环氧树脂约占高性能复合材料树脂用量的90%左右。高性能复合材料成型工艺多采用单向预浸料干法铺层,热压罐固化成型。高性能环氧复合材料已广泛应用在各种飞机上。以美国为 3

航天航空用热固性材料论文

例,20世纪60年代就开始应用硼/环氧复合材料作飞机蒙皮、操作面等。由于硼纤维造价太贵,70年代转向碳/环氧复合材料,并得到快速发展。大致可分为三个阶段。第一阶段应用于受力不大的构件,如各类操纵面、舵面、扰流片、副翼、口盖、阻力板、起落架舱门、发动机罩等次结构上。第二阶段应用于承力大的结构件上,如安定面、全动平尾和主受力结构机翼等。第三阶段应用于复杂受力结构,如机身、中央翼盒等。一般可减重20%~30%。目前军机上复合材料用量已达结构重量的25%左右,占到机体表面积的80%。高性能环氧复合材料在国外军机和民机上的应用实例较多。

我国于1978年首次将碳-玻/环氧复合材料用于强-5型飞机的进气道侧壁。据有关会专家介绍,20世纪80年代在多种军机上成功地将C/EP用作垂直安定面、舵面、全动平尾和机翼受力盒段壁板等主结构件。

国内外发展现状及趋势

航天高新技术对航天先进复合材料的要求越来越高,促使先进复合材料向几个方向发展:① 高性能化,包括原材料高性能化和制品高性能化。如用于航空航天产品的碳纤维由前几年普遍使用的T300已发展到T700、T800甚至T1000。而一般环氧树脂也逐步被韧性更好的、耐温更高的增韧环氧树脂、双马树脂和聚酰亚胺树脂等取代;对复合材料制品也提出了轻质、耐磨损、耐腐蚀、耐低温、耐高温、抗氧化等要求。② 低成本化,低成本生产技术包括原材料、复合工艺和质量控制等各个方面。③ 多功能化,航天先进复合材料正由单纯结构型逐步实现结构与功能一体化,即向多功能化的方向发展。

碳纤维增强复合材料(CFRP)是目前最先进的复合材料之一。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点,广泛用作结构材料及耐高温抗烧蚀材料,是其它纤维增强复合材料所无法比拟的。5 用于固体发动机喷管的耐热树脂基体

耐高温结构复合材料用的新型热固性树脂一般指芳杂环高聚物,如聚酰亚 4

航天航空用热固性材料论文

胺、聚苯砜等,它们的耐热性比改性环氧和多官能团环氧更高,其中聚酰亚胺是目前耐热性最好、已实现工业化生产的重要品种。聚酰亚胺中的双马来酰亚胺(BMI)既具有聚酰亚胺耐高温、耐湿热、耐辐射的特点,又有类似于环氧树脂较易加工的优点。但缺点是熔点高、溶解性差、脆性大,如HexcelF650是成熟的第二代BMI树脂。在非常潮湿的情况下,最高连续使用温度为204.4℃,采用HexcelF650基复合材料的导弹经喷气式战斗机超声速冲刺后,能承受比预料更严酷的热环境。如能应用于固体发动机壳体,对其综合性能的提高十分有利。目前的主要问题是BMI的固化温度(约300℃)和固化压强(约1.5MPa)均比较高,使缠绕型组合芯模和壳体内绝热层难以承受[6,9,10]。

国内外喷管用树脂基防热材料的发展经历大致相同,从玻璃/酚醛、高硅氧/酚醛到碳/酚醛、碳/聚芳基乙炔,从单功能到多功能、低性能到高性能,树脂体系经历了从酚醛树脂、改性酚醛树脂到高性能树脂。目前对聚苯并咪唑、聚喹口恶啉、聚苯并唑、聚苯并噻唑、聚芳基乙炔等高性能树脂的应用研究已成为热点,是树脂基防热材料发展的方向。由于碳/酚醛复合材料具有生产周期短、制造成本低、性能适中等特点,是目前固体发动机喷管烧蚀防热材料中广泛使用的材料之一,主要用在如喷管扩张段一类受热流强度较低的部件上;又因其价格低廉,甚至在美国航天飞机助推器的喷管喉衬上也使用碳/酚醛材料。国外典型的碳/酚醛材料有FM5055、MX4957A等牌号,所用酚醛树脂多以Ba(OH)

2、NH4OH等为催化剂合成。酚醛树酯虽耐烧蚀性优良,但重现性不好,烧蚀可预示性差[1,16]。

由于碳纤维的密度、耐热性、刚性等方面的优势,增强纤维以碳纤维为主。碳纤维复合材料在空间技术上的应用,国内也有成功范例,如我国的第一颗实用通信卫星应用了碳纤维/环氧复合材料抛物面天线系统;第一颗太阳同步轨道“风云一号”气象卫星采用了多折迭式碳纤维复合材料刚性太阳电池阵结构等。随着航空航天工业的迅速发展,对材料的要求也日益苛刻,一个国家新材料的研制与应用水平,在很大程度上体现了一个国家的国防和科研水平,因此许多国家都把新材料的研制与应用放在科研工作的重要地位。

航天航空用热固性材料论文

6火箭发动机壳体用韧性环氧树脂基体

为了适应航空航天领域日益苛刻的要求,通用环氧树脂已不能满足要求,世界各国都在致力于开发各种高性能环氧树脂,以便于开发同高性能增强材料(如芳纶、碳纤维等)相匹配的树脂体系。但总结起来,大都是在保证环氧树脂优异的工艺性的前提下,实现环氧树脂的多官能化,以改善其固化物的耐热性和粘接性。

环氧树脂由于性能优异,数十年来一直是火箭发动机壳体用复合材料树脂基体的主体,预计今后相当长时间内仍将如此.这些年来曾经历过刚性环氧-柔性环氧-刚性环氧的再认识过程,但居主导地位的一直是刚性双酚A二缩水甘油醚的环氧混合物。环氧树脂的固有缺点是耐冲击损伤能力差,耐热性能也较低(小于170℃),火箭发动机在高速下飞行,外表面必须良好绝热,以防御气动加热影响,这样则加大了发动机的惰性质量。多年来各国都在努力改进环氧树脂性能,例如提高韧性或耐热性,以不断提高发动机的性能。许多研究工作表明环氧树脂改进仍有很大潜力。航天器用外热防护涂层材料

固体火箭发动机的外防护主要包括气动热蚀防护和发动机燃气防护两部分。气动热蚀防护主要以树脂基复合材料为主,如法国宇航公司为战略导弹研制的防热涂料,主要成分为硅树脂和中空二氧化硅颗粒,是一种导热系数0.1~0.15w/(m k),密度0.6g/m3的可喷涂涂层[54];俄罗斯研制的C-300导弹使用了牌号为ВЩ 027的防热涂层材料,大型“质子号”运载火箭使用了以氯磺化聚乙烯弹性体为基体,加入不同填料及轻质中空微球[55,56]的外热防护材料;美国的气动热蚀防护材料品种较多,广泛应用于航天飞机和导弹等航天产品,其基体材料主要为环氧树脂、氯磺化聚乙烯、酚醛、环氧-聚氨酯、聚硫-环氧和硅橡胶等,美国公司生产的供宇宙飞船及重返大气设备表面用耐烧蚀防热涂层,使用的基体是双组分室温硫化硅橡 6

航天航空用热固性材料论文

胶[57]。

我国现在开始抓飞机复合材料的预研,当然有利于缩小与世界先进水平的差距。但是从长远来看,要从根本上解决我国民机技术上的差距,还得从解决我国民机技术长期落后的三个原因做起,即要加大民机研制的频度、成立专门的民机研究所、建立科技转化生产力体制机制的航空工业最佳模式。

高性能树脂基体及其改性是我门树脂行业的责任和义务。努力做好这方面的研发和产业化才能使我们从一个生产消费大国变成真正的生产消费强国。

7.航空航天材料的发展 篇七

伴随着中国经济转型升级, 节能降耗政策的持续大力推进, 以及中国实施多年的纳米材料战略, 气凝胶材料近年来受到广泛关注。国内市场起步较晚, 前期主要是国外气凝胶产品在销售, 近年来随着国内气凝胶企业实力不断增强, 规模逐步扩大, 气凝胶行业驶入了快速发展通道。预计2020 年市场规模将达到37.16 亿元, 2015 年到2020 年的复合增长率约达61.1%。

国内企业正努力做大做强中国的气凝胶产业, 专家指出, 可遵循三步走的战略:

第一步: 国内气凝胶企业应充分发挥气凝胶产品特性, 为客户创造尽可能大的价值, 企业才能壮大自身。在未来5 年里, 工业领域的节能降耗应该是气凝胶行业革命的主战场。

第二步:在经济全球化的今天, 当气凝胶行业在国内站稳脚跟后, 走出去是必然的选择。 在走出去前, 还需在国内先做好充分准备, 特别是知识产权的优先布局。

8.航空复合材料结构修补技术与应用 篇八

关键词:航空;复合材料;结构;修补技术

中图分类号:TQ436.2 文献标识码:A 文章编号:1006-8937(2016)23-0056-02

1 概 述

复合材料修补的设计和可行性研究最早始于上个世纪70年代初叶。当时,美国和苏联的冷战正处于关键时期,也是太空竞赛的重要节点,因此,以英美为首的资本主义国家开始积极投入资源研究复合材料的修补技术,并且采取了积极而严密的保密机制。而我国的复合材料修补技术研究直到上个世纪的80年代中后期才开始筹建。在1989年,我国首次实现了对某飞机副油箱水平安定板支臂裂纹进行了以碳纤维复合材料为补片的外场修补,标志着我国航天材料修补技术及工艺应用开端。然而,我国在该项技术的研发上落后于发达国家太多,加上各国之间的技术交流缺乏有效的途径,这使得我国的航空符合材料结构修补技术研究综合水平不高。尤其是在某些特点材料结构的修补上缺乏足够深入和系统的研究,其中的不足之处表现在多个方面,不仅仅是对该复合材料的研究和修补技术上,更表现在有限元模拟和工程应用技术储备等方面。

因此,这也是本文介绍结构复合材料修补技术的初衷,希望可以有更多力量投入到在航空领域材料结构修补技术的研究和应用当中。

2 航空复合材料结构损伤及修补的分析

2.1 航空复合材料结构的损伤

复合材料在制造和应用的阶段往往容易产生结构性的损伤,这主要是由于该类材料在物质组成和系统性能上具有一定的特殊性。然而,该类材料往往具有较高的物质成本,整个部件的置换往往需要耗费大量劳务成本和物质成本,因此,往往对航空复合材料的结构损伤采取修补的方式,使之再次投入使用。对于修补技术而言,首先便是需要对复合材料的损伤特点进行分析,并通过对其结构损伤详情和材料组成差异性的分析,决定相应的修理工作。

具体而言,航空复合材料的结构损伤往往分为高速冲击损伤与低速冲击损伤两个大的类别,其修补技术也需要根据这两类损伤的不同具体确定。因为低速冲击损伤所附带的能量水平较低,所以其引发的复合材料内部结构的层间分离和集体裂纹,其材料结构表明并不会有太明显的特征,但是这类损伤也会使得材料结构的强度大大减弱,无法继续发挥使用性能。而高速冲击损伤的表象则相对明确,因为具有大量的能力,而且相对集中,因此所造的破坏和易见性损伤都明显,例如裂缝、空洞、断裂等等。

2.2 航空复合材料结构的修补原则

2.2.1 基本的修补原则

航空复合材料的基本修补原则主要包括了便捷性、时效性、经济效益以及使用性能的恢复等诸多方面。

具体来看,第一,需要修补之后的强度和硬度满足使用要求,同时还需要保障材料在结构性上的完整,无论是承载状况还是使用性能都能恢复到标准水平。第二,需要在修补的过程中要尽可能少影响机械整体结构、重量以及其他性能,控制在可接受的标准范围内。第三,还需要材料表明的平整性、光洁度以及完备性,这主要是为了保障航空设备的外形不发生变化,减少对设备的启动影响。第四,由于修补具有较强的操作性,同时不需要太多的器材和设备。第五,修补具有在经济效益是符合标准的,需要保障成本是处于可接受的范围内。

2.2.2 结构性修补的原则

对于从事修补的技术人员来说,除开对于基本修补原则的注重之外,还需要对结构性修补原则引起重视。首先,需要保障修补通道的预设置,方便今后检修工作和强化工作的进行。其次,要对频繁损坏的位置进行设计方案上的优化。最后,还需要强化对组合构件的设计和应用,降低单一项目修补所带来的难度,及其对整体结构的影响。除此之外,还需要尽量减少对整体构建的置换和装卸,进一步避免安装所带来的时间成本。

3 航空符合材料结构修补技术的分类

3.1 机械连接类

机械类的修补技术大多是通过焊接和铆接来实现,通常而言,这类修补需要在所需修补的位置外表覆盖补片,然后通过螺栓或铆钉对补片进行固定。这样一来,被损坏位置在经过修补之后有可以维系完整的载荷传递路线,满足其原有的功能性需求,具有非常明显的优势,而且在操作上也相对简单。同时这类修补技术也有效地避免在修补过程出现冷藏和加热的需求,因此对辅助设备功能性要求较低。在最后阶段的修补连接件处理上并不需要投入太多的技术施工,同时又满足了效率和便捷性的需求,具有相对可靠的修补性能。然而,该类修补技术模式也存在一定的技术缺陷,尤其是连接孔的位置会出现应力过于集中的问题,需要引起高度的重视。

同时,这类机械连接修补技术还存在不少的问题需要解决。

①补片采用的材质(一般采用钦合金、铝合金、不锈钢等纤维复合材料)、厚薄以及形态;

②紧固件的材质(常用单面螺栓或抽芯铆钉)和类型;

③紧固件的位置排布(间距一般为4~5D,孔边距为3D,保持和铆钉孔的间距);

④科学的打孔技术;

⑤打孔对于整体结构的效果;

⑥紧固件的安装、配置以及保存问题。

3.2 胶接类

胶接类修补技术可以直接从名称进行理解,是指通过特殊的胶体将损坏位置与补片进行连接固定,以实现使用性能的恢复。胶接法的应用,使得损坏部位的修补模式有了更多的选择空间和更强的可调节性,可以实现切除填补,这也使得胶接类修补法主要分为贴补、挖补等不同的类别。

首先是贴补修补,其本质是利用外部补片的胶接完成对损伤位置的修补,但是能够用到贴补修补的损伤位置并不多,一般只能在平面损伤中进行修补,而且大多都是不会影响到整体气动外形的部位。通常应用到贴补补片模式的材料也具有较多的选择空间,除了可以选用钛、铝、不锈钢等金属材质之外,还可以直接运用碳/环氧、硼/环氧等类型的复合材料。然而事实上,对于这类外贴补片的材料选择,往往会优先选用和母体材质相近的材料完成修补工作。

其次是固化完成的复合材料层板,钛、铝合金金属材料。胶接修补模式可以有效减少在修补中所消耗的时间成本,并且对修补位置的气动外形影响也相对较小。挖补修补,应用这类修补的主要原因是因为这类损伤部位需要进行高强度的清理,然后再由新材料进行填补。而这类修补技术也可以根据填充模式的不同进行划分,主要是斜接填充和阶梯填充两大类。

以斜接填充法为例,主要是将损坏位置进行二次修整,保证其呈现斜面状,然后采用新的材料进行补充,而对于基于胶接面的剪切则可以保证其匀称性,同时避免载荷偏离、剥离应力过小的问题,所以修补效果更好,特别是关于厚层合板方面的修补完全可以忽略厚度因素,就可以保证修补位置表面恢复光洁。然而,相比贴补法的特点分析,这类修补模式往往对操作工艺具有较高的要求,而且会耗费较大的时间成本,还需要特别的操作环境和操作设备,因此,在一般的厂家并不容易开展。加上阶梯修补本身与斜接修补就有不少的相似性,只是阶梯修补需要将损坏位置修整为阶梯型,再利用新选用的修补材料进行填充。然而,这类修补模式往往需要对修补工作的操作人员有较高的要求,不仅仅需要利用专业的设备,还需要高超的技术水平和严谨的工作态度。值得注意的是,这类修补模式需要对没有损失的部位进行清除,因此会衍生出不少的风险。

3.3 其他修补类

对于航空复合材料而言,除了其本身材料构成上的特殊性之外,还有其所运用领域的特殊性,综合下来,其易受损的状况也比普通金属材料要频繁的多。因此,该类材料的修补模式也和其他传统修补模式存在一定的差异性。

因此,除了前两种常用的修补方法之外,我国在技术发展的过程中也涌现出了不少的新型修补模式。其中发展和应用状况相对良好的主要是:电子束固化修补、光固化修补以及微波修复等等。这类修补模式往往具有相对较高的修补效率,通常适用于非补片式的修补需求,例如微波修补,则主要采用的是一种特殊的“胶接”方法,即在损坏地方加入微波吸收剂,然后强化该位置的磁导率,然后以特定的微波施加设备对修补位置导入微波,使之在较短的时间周期可以构建全新的高强度修复面,最终实现对于损伤位置的修补,恢复其使用性能。

4 结 语

随着时代的发展,航空复合材料的应用领域和前景也得到了进一步的显现,同时也催生航空复合材料结构修补产业和技术的发展和完善。然而,我国目前的航空符合材料及其修补的发展还相对较慢,与发达国家存在较大的差异。

因此,需要国家加大对航空复合材料结构修补技术的支持和引导,尤其是对教育产业的引导和扶持,让更多的人可以有平台接触该知识,通过扩大教育基础加大高级技术人才对该领域研究的深入,为我国航空复合材料修补技术的发展提供坚实的基础。

参考文献:

[1] 陈先有,崔晶.航空复合材料结构修补技术与应用[J].新技术新工艺,

2007,6:74-76+4.

[2] 魏建义.航空复合材料结构修补技术与应用[J].橡塑技术与装备,

2015,24:146-148.

[3] 谭朝元,孙宝岗,邓火英.结构复合材料修补技术研究进展[J].宇航材料 工艺,2011,2:26-29+71.

[4] 相超.贴补复合材料层合板的静强度与稳定性研究[D].南京:南京航空 航天大学,2014.

上一篇:活动横幅内容下一篇:绿色校园建设活动方案