定积分证明题方法工作总结

2024-09-25

定积分证明题方法工作总结(共8篇)

1.定积分证明题方法工作总结 篇一

1、经验总结

(1) 定积分的定义:分割—近似代替—求和—取极限

(2)定积分几何意义:

①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab

②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a

反数

(3)定积分的基本性质:

①kf(x)dx=kf(x)dx aabb

②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa

③f(x)dx=f(x)dx+f(x)dx aac

(4)求定积分的方法: baf(x)dx=limf(i)xi ni=1nbbbbbcb

①定义法:分割—近似代替—求和—取极限 ②利用定积分几何意义

’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba

2.定积分证明题方法工作总结 篇二

关键词:定积分,证明,不等式

利用定积分证明不等式, 主要是利用定积分的几何意义和平面图形的面积大小关系建立不等关系, 进而证明不等式。

一、用定积分证明代数不等式

例1.证明x>0时,

原高等数学教材中通常利用拉格朗日中值定理来证明这个不等式, 方法如下:

证明:首先取函数f (x) =1n (1+x) , 并取闭区间[0, x]

显然f (x) 在[0, x]上满足拉格朗日中值定理的条件

于是有f (x) -f (0) =f′ (ξ) (x-0) (0<ξ<x)

对上述证明过程, 部分数学基础较差的学生总是觉得难于理解, 为什么要取函数f (x) =1n (1+x) , 并取闭区间[0, x], 使用拉格朗日中值定理得出的结论还要作替换才能找到不等关系。

二、用定积分证明数列不等式

三、利用函数y=xp-1 (x>0, p>1) 的定积分, 来证明著名的Young不等式

证明:函数y=xp-1 (p>1) 在x>0时是单调递增的 (如图2所示)

取x轴上点A (a, 0) , y轴上点B (0, b) ,

过点A引x轴的垂线, 交曲线于y=xp-1于E,

过点B引y轴的垂线, 交曲线于y=xp-1于D,

面积+曲边梯形ODB的面积,

特别地, 取p=q=2, 得到a2+b2≥2ab。

参考文献

[1].《高等数学》 (工程类) , 陈如邦, 高等教育出版社, 2011年5月

[2].《数学分析》, 吉米多维奇

3.定积分证明题方法工作总结 篇三

湖北省宜昌市第二中学曹超

邮编:443000电子邮箱:c220032003@yahoo.cn

数列和式不等式aiA(或aiA)的证明通常要用到放缩法,由于放缩法技巧性强,且无固定模式,i

1i1

n

n

在实际解题过程中同学们往往难以掌握。学习了定积分的相关知识后,我们可以利用定积分的定义及几何意义证明此类不等式,下面笔者仅就两例对这种方法加以介绍。

例1

证明:1)1

第2题)

证明:

构造函数f(x)

1

1

1(nN)(高中人教(A)版选修4-5P29,作出函数图象,图(1)中n-1个矩形的面积

1

应为直线x1,xn,x轴和曲

线

f(x)

所围成曲边梯形面积的不足近似值,故



n

x

2dx=2x

2n

=2,所以

图(1)

1



1。

图(2)中n

个矩形的面积和1



应为直线

x1,xn1,x轴和曲

线f(x)所围成的曲边梯形

面积的过剩近似值,故1



n1

x

dx=

图(2)

2x2

n1

=2,不等式得证。

评析:

教材对本题证明给出了提示:

①,实际解题过程中,由于不等式①技巧性强,思维量大,学生如不参考提示很难得到。事实

上,如图(3)所示,根据定积分的定义及几何意义,在区间n,n1(nN)上的曲边梯形的面积大于以区间的右端点n1对应的函数值f(n1)为一边的长,以1

为邻边的长的矩形的面积,小于以区间的左端点n对

图(3)

应的函数值f(n)为一边的长,以1为邻边的长的矩形的面积,即

n1n

x

dx2x2

n1n

代数变形技巧得到,更非“空穴来风”,而是有着明确几何意义的代数表示,数形结合思想在这里得以充分地体现。

例 2对于任意正整数n,试证:(1)当nN时,求证:ln(n1)lnn

(2)

1n1

1n2



1nn

ln

3

1n+1

分析:此题的设计意图是利用第(1)问的结论证明第(2)问。但如果没有第一问作铺垫,第(2)问的证明很难用代数方法得到,如果利用例1所述方法,那么证明变得非常简洁。

证明:(1)证明略。

(2)构造函数f(x)

1x

(x0),作出函数图象,根据yf(x)

在区间n,2n上定积分定义及其几何意义,图(4)中n个矩形的面积和小于由直线xn,x2n,x轴和曲线f(x)围

1x

所,即

成

n的12

边梯形的面积

n1

21n1

ln2nxx

n(n2l

7n)n,l不等式nln

得证。

图(4)

新课标新增的微积分知识有着丰富的数学背景及内涵,所蕴含的数学思想方法为我们问题的解决提供了新的视角,所以我们在平常学习过程中应予以足够的重视。最后提供两道练习题供同学们参考。

1、2、求证:()()(n

n

n

n

n1

nnn)()2nn

1n

1n1

(nN)



1n

证明:对于大于1的正整数n,n2

4.积分不等式的证明方法 篇四

摘要

在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.

关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

南通大学毕业论文

ABSTRACT

When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.

Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty

南通大学毕业论文

1.引

不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.

实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.

本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.

在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.

南通大学毕业论文

2.几个重要的积分不等式

在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz不等式,Young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.

2.1 Cauchy-Schwarz不等式

无论是在代数还是在几何中Cauchy-Schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,F,P中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.

定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有

[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.

aaabbb证明:要证明原不等式成立,我们只需要证

设Ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证FbFa成立,aa由Ft在[a,b]上连续,在a,b内可导,得

Ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt

ftgxgtfxdx0.

(2.1)a由(2.1)式可知Ft在[a,b]上递增,由ba,知FbFa,故原不等式成立.

证毕

实际上关于Cauchy-Schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文

fxfxdxgxfxdx0,aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出

CauchySchwarz不等式的推广形式.

定理2.2[2] 设fx,gx,hx在a,b上可积,则

hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有

bat1fxt2gxt3hxdx

bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa

ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为

babbaf2xdxbagxfxdxabhxb2fxdx

xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将Cauchy-Schwarz不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz不等式及其推广形式在积分不等式证明中的应用.

除了Cauchy-Schwarz不等式之外还有很多重要的积分不等式,例如Young不等式,相较于Cauchy-Schwarz不等式我们对Young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young不等式进行一些研究.

2.2 Young不等式

Young不等式,以及和它相关的Minkowski不等式,HÖlder不等式,这些都是在现代分

南通大学毕业论文

析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young不等式的证明.

定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.

证明:引辅助函数g(a)abf(x)dx,(2.2)

0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是

当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即

gamaxgxgf1b

(2.3)

由分部积分得

f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为

11f(x)dx0xdf(x),g(f1(b))f1(y)dy,(2.4)

0b将(2.2)式和(2.4)式代入(2.3)式得

abf(x)dxf(y)dyf1(x)dx,000ab1b即f(x)dxf1(x)dxab. 证毕

00ab 6 南通大学毕业论文

3.定积分不等式常见的证明方法

关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.

3.1 利用函数的凹凸性

在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.

定理3.1 若t定义在间隔m,M内,且t0,则t必为下凸函数.

定理3.2 设fx在[a,b]上为可积分函数,而mf(x)M.又设t在间隔mtM内为连续的下凸函数,则有不等式

1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有

1b1bfxdxfxdx,aabababa即fxdxabba1dxbbfx12dxba.

证毕,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.

3.2 辅助函数法

辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明

南通大学毕业论文 的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.

例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.

00a11x证明:令Fxf(t)dt 0x1,由fx连续,得Fx可导

x0则Fxfxxftdt0xx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而Ft0,Fx在(0,1]上单调减少,则对任意a(0,1),有F(a)F(1). 即

a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令FxFx1xf(t)dt,0x1,由fx连续,得Fx可导, 则 x0x0fxxftdtx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而Ft0,Fx在(0,1]上单调减少,则对任意0ab1,有F(a)F(b),即

1a1b ftdtftdt.

(3.1)

a0b0由f非负,可得fxdxfxdx.

(3.2)0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.

证毕

babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8

1dx(ba)2. f(x)南通大学毕业论文

在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.

证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx

xaxftxfxdtdt2dt

afxaftxfxft2dt0, aftfx

所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.

2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]

ba证明: 原不等式即为xfxdx则Fttft1t2a1taftf , a,t.

2abbfxdx0,构造辅助函数 aa2tattFtxfxdxfxdx ,ta,b,a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以Ft0.故Ft在a,b上单调递增,且Fa0, 所以对x(a,b],有FxFa0.当xb时,Fb0.即

baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:

1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.

2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.

3.3 利用重要积分不等式

在第2部分中我们给出了Cauchy-Schwarz不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.

南通大学毕业论文

例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.

402证明:由fxftdtf0和fxftdtf10x1x

可得

f2xx0ftdt2xx1112dtf2tdtxf2xdx,(x0,), 0002111112dtf2tdt(1x)f2xdx,(x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,(3.3)0811

2(3.4)fxdx.8010

112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]

112fxdx.

证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxM,gxdx0,a则以下两个积分不等式

bafxgxdx2b2f2xdxg2xdxm2bag2xdx及

aaabbb bafxgxdx2MmMmbaaf2xdxg2xdx成立.

ab证明:取hx1,由gxdx0及定理2.2知

babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.

2因此

 bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.

(3.5)

2b2a 10 南通大学毕业论文

由mfx可知 bafxdx2b22m2ba,bb2因而bafxgxdxafxdxagxdxmbaag2xdx.

22MmMm由于0mfxM,因此fx.

22化简得f2xMmMmfx, 两边同时积分得 f2xdxMmbaMmfxdx, aabb22由算数-几何平均值不等式可知

于是2baf2xdxMmbaf2xdxMmba,abbaabf2xdxbafxdx2Mm4Mm2.

1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx

b2Mma4Mmb

(3.6)f2xdxg2xdx.

ab由式(3.5)和式(3.6)可知

bafxgxdx2MmMm2baf2xdxg2xdx.

证毕

ab以上两道题分别利用了Cauchy-Schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.

3.4 利用积分中值定理

积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.

定理3.3(积分第一中值定理)若f(x)在[a,b]上可积且mf(x)M,则存在 11 南通大学毕业论文

u[m,M]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.

定理3.4(积分第一中值定理的推广)若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立

fxgxdxfgxdx.

aabb定理3.5(积分第二中值定理的推广)若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.

aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.

证明:由积分中值定理知

0afxdxf1a, 10,a; fxdxf2ba,2a,b;

ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕

0ba即

例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.

2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.

证法一

bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文

abab由定理3.4可知,分别存在1a,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且

210121,所以有 f2f10.

ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二

证明:由定理3.5可知:存在a,b,bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.

由fx单调增加及a,b知fafb0,a0,b0.

bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.

3.5 利用积分的性质

关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.

例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,13 南通大学毕业论文

有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt

0101 fx0dt0110ftdtftdt01ftftftdtdt 0

1fxfxdx.故原不等式成立, 证毕

013.6 利用泰勒公式

在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.

定理3.6(带有拉格朗日型余项的Taylor公式)设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:

f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nRn(x)

(1)

2!n!f(n1)()其中Rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.

例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,Mmaxfx,xa,b试证明:fxdxabba123M.

证明:对xa,b,由泰勒公式得

f

fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文

两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8Mb22dxMba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.

222222

ababab因为fx0,所以可以得到 fxffx,222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕

2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.

3.7 利用重积分

在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.

南通大学毕业论文

3.7.1 直接增元法

命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.

aa

bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:

xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.

axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.

aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt(其中D{(x,t)|axb,atx})aaDbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt

atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.

aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕

在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量

aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.3.7.2 转换法

在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分

命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D{(x,y)|axb,cyd}上可积,且

Df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.

acacbdbd其中D{(x,y)|axb,cyd}

例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:

南通大学毕业论文

babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.

aaabbbaaabbb

证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:

babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,aaabbaabbb令Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证I0;

Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx

aaaabbbb

同理

p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy

aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy

aap(x)p(y)g(y)[f(y)f(x)]dxdy.

(3.7)bbbIp(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx

a

p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p)xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.

(3.8)aa

(3.7)(3.8)得

2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即I0.

证毕

2.将常数转换为重积分的形式

在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中D{(x,y)|axb,ayb}.

D例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx

abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)D 17 南通大学毕业论文

移项可得(Df(x)1)d0, f(y)2(Df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)DDf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(D故 (Dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕

aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.

3.8 利用微分中值定理

微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.

例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:

2baa1bfxdx1maxfx. x2a,b证明:应用Lagrange中值定理,a,x,其中axb,使得

fxfafxa, 因为fa0, 所以fxMxa, Mmaxfx,xa,b从a到b积分得

a bfxdxMbaM2bxadxMxadxx2

aa2bM1122bamaxfxba.即222babafxdx1maxfx.证毕 x2a,b 18 南通大学毕业论文

例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:

fxdxf121003xdx.

证明:令Fxx0ftdt,Gxf3tdt,02xFx,Gx在0,1上满足柯西中值定理,则

fxdx10210f03xdxF1F0FG1G0G02fftdt0f32ftdt0f2 01

2ftdtftdtf2f0202f11 , 01.

2fff所以 10fxdx2f2xdx.

证毕

01通过以上两道题目可以发现:

1.在应用Lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange中值定理.

2.在研究两个函数的变量关系时可以应用Cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用Cauchy中值定理.

无论是Cauchy中值定理还是Lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.

南通大学毕业论文

4.总

我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.

南通大学毕业论文

参考文献

[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22

5.离散数学证明题解题方法 篇五

1、定义和定理多。

离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。

●证明等价关系:即要证明关系有自反、对称、传递的性质。

●证明偏序关系:即要证明关系有自反、反对称、传递的性质。(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。

●证明满射:函数f:XY,即要证明对于任意的yY,都有x

或者对于任意的f(x1)=f(x2),则有x1=x2。

●证明集合等势:即证明两个集合中存在双射。有三种情况:第一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第二、已知某个集合的基数,如果为א,就设它和R之间存在双射f,然后通过f的性质推出另外的双射,因此等势;如果为א0,则设和N之间存在双射;第三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。

●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。

●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-

1是的子群。对于有限子群,则可考虑第一个定理。

●证明正规子群:若是一个子群,H是G的一个子集,即要证明对于任意的aG,有aH=Ha,或者对于任意的hH,有a-1 *h*aH。这是最常见的题目中所使用的方法。●证明格和子格:子格没有条件,因此和证明格一样,证明集合中任意两个元素的最大元和最小元都在集合中。

图论虽然方法性没有前几部分的强,但是也有一定的方法,如最长路径法、构造法等等 下面讲一下离散证明题的证明方法:

1、直接证明法

直接证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有相同的性质,或者符合某一些性质必定是某一类东西。

直接证明法有两种思路,第一种是从已知的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,则可以先从已知条件按照定理推出一些中间的条件(这一步可能是没有目的的,要看看从已知的条件中能够推出些什么),接着,选择可以推出结论的那个条件继续往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看S,则X,使得f(x)=y。●证明入射:函数f:XY,即要证明对于任意的x1、x2X,且x1≠x2,则f(x1)≠f(x2);

从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推一直到已知的条件。通常这两种思路是同时进行的。

2、反证法

反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在唯一”等的题目。

它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

3、构造法

证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

4、数学归纳法

数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。作这一类型题目的时候,要注意一点就是所要归纳内容的选择。

学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。

在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。

学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等

再快乐的单身汉迟早也会结婚,幸福不是永久的嘛!

爱就像坐旋转木马,虽然永远在你爱人的身后,但隔着永恒的距离。

6.定积分证明题方法工作总结 篇六

一、小课题研究题目《培养学生解几何证明题方法的研究》

二、研究意义

为适应实施素质教育和推进新课改的要求,不断促进教师的教科研能力提升和专业发展,努力提高教育教学质量,建设学习、科研型学校,立足学校实际,通过小课题研究的提出与实施,不断推动教育科研为学校的教育改革与发展服务,为提高教育教学质量服务,培养学生几何实际应用能力使学生能够运用所学几何知识解决实际问题的基本内容和重要途径。因为几何问题是实物图的简化和抽象,我们实际生活的周围环境中常见的几何图形比比皆是,进而出现的不同问题和各种各样的实际问题,需要用到几何知识来解决。通过解答这些问题,促使学生把所学的几何知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既理解几何来源于生活又服务于生活的实用价值,从而初步培养了应用所学的数学知识解决实际问题的能力。对初中几何进行有效的定位。

三、研究目标

1.通过研究,探讨培养学生解几何证明题的方法、途径和模式。能用数学语言对推理过程进行清楚规范的表达。

2.从教学内容、数学思想方法上,给学生一明确的方法指引,进而在初中阶段强化几何教学,为学生进一步深造打下基础。3.为学生有效学习初中阶段的几何学习打好基础,提高学生理论联系实际能力的培养。

四、课题界定

1.该课题研究是为初中数学几何教学设置一个基本的思维方式,研究对象为初中几何教学内容的深度与广度。

2.课题的研究目的是为学生学习初中几何后能有效解决数学中的几何问题。

五、研究内容

明确“几何”研究的是几何图形,而且它又是一门数学学科,把“形”和“数”有机的结合起来。在遇到一个几何问题时,最好先弄清题意,画出表示这个问题的几何图形,通过图形进行分析,并利用条件中给我们提供的已知数进行分析计算,然后得到我们所希望的结论。就是说,学几何时不要忘记利用代数,是数学学科的较高境界。

1.初中数学课程教学内容的几何初步教学要求及措施研究; 2.通过中考试题几何问题的研究,对初中数学教学的导向研究; 3.数学思想方法在初中数学教学中运用提高。

六、研究方法

本课题的研究方法采取初中七年级教师合作研究方式,对初中几何教学内容、数学思想方法、考试导向作全面的比较分析,提出对初中几何适应性较强的学习教学要求,为初中数学教学指定出具体目标,从而解决长期以来初中教学几何问题难度较大的问题。总结反思,在课题研究后期及时收集过程性研究资料进行建档,整理研究成果,撰写课题研究报告,全面总结课题研究的得失,并反思得失的成因。

1.实验法:“分组合作教学”,提炼出解初中几何的具体方法,措施、有效性合作。

2.个案法:以近年中考试题为案例,研究中考试题中初中几何教学的导向功能。

3.总结法:教案设计,活动记实,具体教学衔接内容的研究,教学反思等。

七、研究步骤(1)准备阶段:

①2017年2月,成立课题组,制定具体研究方案,进行课题组成员责任分工;

②2017年3月—2017年4月,探索研究学习指导、学习心得,学习方法等,形成一系列可应用的学习资源。

③2017年5月,形成阶段性成果。

(2)实施阶段:2017年5月—2017年6月,教学实践。

(3)中期总结,2017年5月,归纳整理优秀案例,撰写中期研究报告。

(4)结题阶段:2017年10月底,收集整理优秀案例;撰写子课题及总课题研究报告;撰写研究论文。

八、研究预期成果 1.提交本课题研究工作报告一份。

2.本学期提交一定数量的有代表性、有一定学习借鉴价值的研究论文和案例专辑,总结出具有指导性和推广价值的经验。

3.促进学生数学思维方法、学习习惯、学习品质、学习成绩、思想品德等方面的进步和提高。

7.浅谈几何证明题的解题方法与技巧 篇七

作者:容茂和完成时间:2011年12月

【内容摘要】:针对学生解决几何证明题比较困难的情况,给学生分析研究几何证明题的解题方法与技巧,提高学生学习几何的兴趣,增强解决问题的信心。

【关键词】: 方法与技巧 ;注重基础 ; 善于归类 ;突破难关

在初中阶段,学生学习数学都会遇到两大难题:一是代数中的列方程解应用题;二是几何中的证明题。下面,笔者结合多年的教学经验和方法谈谈几何证明题的解题方法与技巧。

一、注重基础,善于归类。知识要靠平时的积累,只有当量变发生到一定程度才能产生质变。因此,在平时的学习中,特别是从七年级开始学习几何这门课时,就要做到每学习一个几何概念、定理、推论等都要分清它们的用途,并进行归类,为以后的学习打下基础。例如:在人教版七年级上册第四章《图形认识初步》中,在学习“线段的中点”、“角的平分线”、“等角的补角相等”、“等角的余角相等”等概念和性质时,就要分清:“线段的中点”可以用于证明两条线段相等;“角的平分线”、“等角的补角相等”及“等角的余角相等”等概念和性质都可以用来证明两个角相等。随着学习的不断深入,需要学习掌握的定理、性质就会更多。因此,学生必须做到边学习边归类,三年下来,整个初中阶段就会形成一个环环紧扣、条理清晰的几何知识系统。

二、明确几何证明题的类型。在知识的归类中,我们可以逐渐发现上述所学习的定理、性质、推论等的用途基本上都不外乎用来证明:两条线段相等、两个角相等、两条线段(或直线)平行、两个三角形全等(或相似),或者一个图形是某些特殊的图形(如平行四边形、菱形、矩形、正方形、等腰三角形、等边三角形、等腰梯形

等)。比较常见的是前面的四种证明题类型。因此,学生在碰到相应类型的证明题时,头脑中就要有相应的定理、性质、推论的出现,而对于用哪一个或几个定理去解决问题,取决于证明题的需要。

三、确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回

1到“已知”;第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。

四、要善于挖掘及利用题目图形中的隐藏条件。有的证明题中的已知条件有限,仅从已知条件出发未必能够找出正确的证明方法,但如果善于观察及利用图形中的隐藏条件,则可能很容易证明。例如

“对顶角相等”、“三角形的一个外角等于与它不相邻的两个内角的和”、“在同一个圆中,同一段弧所对的圆周角相等”等等就不需要在题目及图形中说明或指出,但它们也属于已知条件。

除了要掌握几何证明题的常用方法外,还要知道一些类型题的解题技巧。下面以证明“两条线段相等”这一类型为例,说明它的解题技巧。

(一)要证明相等的两条线段在同一条直线或线段上。

这种题型的证明方法都是从“求证”问题入手,通过分析,寻求

“证据”回到“已知”条件。具体的证明方法是通过线段的加或减得到,例如:人教版九年级上册第88页第8题,如图1,两个圆都是以

O为圆心,求证:AC=BD。分析:要求证相等的两条线段AC与BD

都在同一条线段AB上,而AB是大圆的弦交小圆于C、D两点;而题目中可用的条件不多,B

因此可以结合圆、弦考虑作辅助线:过圆心O作

线段OEAB于E,则构成垂径定理,于是有AE=BE,CE=DE,AECE=AC,BEDE=BD,所以AC=BD。图

1(二)要证明相等的两条线段在同一个三角形内。

这种题型的主要证明方法是考虑用“等角对等边”定理展开证

明。例如:如图2,在△ABC中,AE是△ABC的外角∠DAC的平分线,且AE∥BC,求证:AB=AC。

分析:如果要证明AB=AC 证明:∵AE平分∠DAC∴∠DAE=∠EACE∵AE∥BC∴∠DAE=∠B,∠EAC=∠C

∴∠B=∠C∴△ABC是等腰三角形BC

图2∴AB=AC

(三)要证明相等的两条线段分别在两个三角形内。

这种题型的主要证明方法是考虑根据“三角形全等”的定理展开

证明。在证明前,首先要把这两条线段分在两个三角形内,再去考虑证明这两个三角形全等。例如,人教版八年级下册第121页第8题,如图3,四边形ABCD是等腰梯形,点E、F在BC上,且BE=FC,连接DE,AF,求证:DE=AF。

分析:因为要证明线段DE、AF相等,显然DE、AF不在同一个三角形内,也不在同一直线或线段上,所以要考虑用“三角形全等”的中,定理去进行证明,AF在△ABF中,DE在△DCEAD 因此可能性围绕证明△ABF≌△DCE,然

后结合已知条件“等腰梯形”有

AB=DC,∠B=∠C,这时已有“一边一角”,但还有一个条件“BE=FC”未BEFC 用,于是有BE+EF=FC+EF,即BF=CE,于是构图3成“SAS”,因此△ABF≌△DCE。这题主要从

“已知”及“求证”两方面入手,通过分析找到中间“桥梁”:△ABF≌△DCE。

如果遇到一些证明题比较棘手,利用上述三种方法都不能证明

时,可以考虑用线段的“转移”,即把“求证”中的其中一条线段使之与图中的另一条线段相等,于是就使得“求证”中的另一条线段与这条线段或在同一条直线(或线段)上,或在同一个三角形内,或在两个三角形中,再用上述三种方法的其中一种去进行证明。这种证明方法属于借助中间“桥梁”(当然可能还有其它方法可证,这要由题目的已知条件和图形去确定解题方法)。

例如,如图4,在△ABC中,AF是BC边上的中线,D是AF上的一

点,BD的延长线交AC于点E,且∠BDF=∠CAF。求证:BD=AC。

分析:在图4中所要求证的两条线段虽然可以分在两个三角形

(BD在△ABD或△BDE,AC在△ACF或△ABC)中,但它们显然不全

等,这时可以考虑通过作辅助线,使“AC”与BD在同一个三角形中,再用定理“等角对等边”去进行证明。辅助线作法:延长AF到G,使FG=AF,连接BG,如图5。这时△ACF≌△GBF(SAS),于是可得BG=AC以及∠G=∠CAF,而已知∠BDF=∠CAF,所以∠BDF=∠G,故BD=BG,从而得到BD=AC。这个过程相当于把AC转移到一条和它相等的线段BG

上,使之在同一个三角形中,这就是线段的“转移”,这也是证明题中的一种常用技巧。

A

E

BFC

4A

E

BFC

G

8.ch 6 定积分的应用 篇八

§6 定积分的应用

第六章

定积分的应用

教学目的

1、理解元素法的基本思想;

2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:

1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:

1、截面面积为已知的立体体积。

2、引力。

高等数学教案

§6 定积分的应用

§6.1 定积分的元素法

回忆曲边梯形的面积

设yf(x)0(x[a b]) 如果说积分

Aaf(x)dx

b是以[a b]为底的曲边梯形的面积 则积分上限函数

A(x)af(t)dt

x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素

以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分

Aaf(x)dx 

b

一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得

Uaf(x)dx

b

用这一方法求一量的值的方法称为微元法(或元素法)

高等数学教案

§6 定积分的应用

§6 2 定积分在几何上的应用

一、平面图形的面积

1.直角坐标情形

设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为

Sa[f上(x)f下(x)]dx 

类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为

Sc[右(y)左(y)]dy

例1 计算抛物线y2x、yx2所围成的图形的面积

解(1)画图

(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2

(4)计算积分 S0(xx)dx[2x21x3]10333213db

例2 计算抛物线y22x与直线yx4所围成的图形的面积

解(1)画图

(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4

2(4)计算积分

418

S2(y41y2)dy[1y24y1y3]42622 例3 求椭圆x2a2y21所围成的图形的面积

2b 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx

所以 高等数学教案

§6 定积分的应用

S40ydx a椭圆的参数方程为: xa cos t  yb sin t 

于是

S40ydx4bsitdn(acots)

2a02ab02(1co2st)dt2abab

4absi2ntdt022

2.极坐标情形

曲边扇形及曲边扇形的面积元素

由曲线()及射线   围成的图形称为曲边扇形 曲边扇形的面积元素为

dS1[()]2d

2曲边扇形的面积为

S1[()]2d

2例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积

24a23

解: S01(a)2d1a2[13]023322

例5.计算心形线a(1cos)(a>0)所围成的图形的面积

 解: S201[a(1cos]2da20(12cos1cos2)d

22232n1si2n]

a2[32si0a

242

二、体 积

1.旋转体的体积

旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴 高等数学教案

§6 定积分的应用

常见的旋转体 圆柱、圆锥、圆台、球体

旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体

设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx 

于是体积元素为

dV  [f(x)]2dx 

旋转体的体积为

Va[f(x)]2dx

例1 连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积

解: 直角三角形斜边的直线方程为yrx

hb

所求圆锥体的体积为

2hh1hr2

V0(rx)2dxr2[1x3]0h33h2y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)ab的体积

解: 这个旋转椭球体也可以看作是由半个椭圆

yba2x2

a及x轴围成的图形绕x轴旋转而成的立体 体积元素为

dV  y 2dx 

于是所求旋转椭球体的体积为

22a2 Vab2(a2x2)dxb2[a2x1x3]aaab

33aa

例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积

所给图形绕x轴旋转而成的旋转体的体积为 高等数学教案

§6 定积分的应用

Vx0y2dx0a2(1cots)2a(1cots)dt

a30(13cots3co2stco3st)dt

5 2a 3

所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则

22(y)dy0x1(y)dy

Vy0x22a2a22a2t)2asintdt0a2(tsint)2asintd t

2a2(tsin

a30(tsint)2sintdt6 3a 3 

2.平行截面面积为已知的立体的体积

设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx  立体的体积为

VaA(x)dx

例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积

解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为

A(x)1(R2x2)tan 于是所求的立体体积为

2R2R3tan[R2x1x3]

VR1(R2x2)tandx1tanR2233Rb2

例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积

解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(R

§6 定积分的应用

体得等腰三角形 这截面的面积为

A(x)hyhR2x2

于是所求正劈锥体的体积为

VRhRxdx2Rh02cos2d1R2h

2R222

三、平面曲线的弧长

设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2     Mi1 Mi    Mn1 MnB  并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为

i1n曲线弧AB的弧长 并称此曲线弧AB是可求长的

定理

光滑曲线弧是可求长的

1.直角坐标情形

设曲线弧由直角坐标方程

yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度

取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为

(dx)2(dy)21y2dx

从而得弧长元素(即弧微分)

ds1y2dx

以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为

sa1y2dx

b

在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此 高等数学教案

§6 定积分的应用

例1 计算曲线y2x2上相应于x从a到b的一段弧的长度

3解 yx2 从而弧长元素

ds1y2dx1xdx 13因此 所求弧长为

sab2221xdx[2(1x)2]ba[(1b)(1a)]

3333

3例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度

c

解 yshx 从而弧长元素为

cds1sh2xdxchxdx

cc因此 所求弧长为

bbb

sbchxdx20chxdx2c[shxdx]b02cshcccc

2.参数方程情形

设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数

因为dy(t) dx(t)d t  所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt

(t)所求弧长为

s2(t)2(t)dt

例3 计算摆线xa(sin) ya(1cos)的一拱(0  2)的长度

解 弧长元素为

dsa2(1cos)2a2sin2da2(1cos)d2asind

2所求弧长为 高等数学教案

§6 定积分的应用

28a

s02asind2a[2cos]0222

3.极坐标情形

设曲线弧由极坐标方程

()(    )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得

x()cos

y()sin(   ) 于是得弧长元素为

dsx2()y2()d2()2()d

从而所求弧长为

s2()2()d

例14

求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长

解

弧长元素为

dsa22a2da12d

于是所求弧长为

2s0a12da[2142ln(2142)] 高等数学教案

§6 定积分的应用

§6.3 功

水压力和引力

一、变力沿直线所作的功

例1 把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为

Fkq(k是常数)

r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a

例1

电量为+q的点电荷位于r轴的坐标原点O处它所产生的电场力使r轴上的一个单位正电荷从r=a处移动到r=b(a

提示: 由物理学知道 在电量为+q的点电荷所产生的电场中 距离点电荷r处的单位正电荷所受到的电场力的大小为Fkq(k是常数) r

2解: 在r轴上 当单位正电荷从r移动到r+dr时

电场力对它所作的功近似为k即功元素为dWk于是所求的功为

Wabkq2qdr

r2qdr

r211drkq[1]bakq()

rabr

例2

在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀 把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功

解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k  即

pVk 或pk

V

解: 在点x处 因为VxS 所以作在活塞上的力为 高等数学教案

§6 定积分的应用

FpSkSk

xSx当活塞从x移动到xdx时 变力所作的功近似为kdx

x即功元素为dWkdx

x于是所求的功为

bbWakdxk[lnx]bakln

xa

例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功?

解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为

dW882xdx

此即功元素 于是所求的功为

225(kj)

xW088.2xdx88.2[]5088.222

5二、水压力

从物理学知道 在水深为h处的压强为ph  这里  是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为

PpA

如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算

例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为  

计算桶的一个端面上所受的压力

解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图

在水深x处于圆片上取一窄条 其宽为dx  得压力元素为 高等数学教案

§6 定积分的应用

dP2xR2x2dx

所求压力为

P02  xR2x2dx(R2x2)2d(R2x2)03222R2rR3

[(Rx)2]033RR

1三、引力

从物理学知道 质量分别为m

1、m 2 相距为r的两质点间的引力的大小为

FGm1m2

r2其中G为引力系数 引力的方向沿着两质点连线方向

如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算

例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力

例5 求长度为l、线密度为的均匀细直棒对其中垂线上距棒a单位处质量为m的质点M的引力

解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量

2222为dy 与M相距ra2y2 于是在水平方向上 引力元素为

dFxGmdyamdya

Ga2y2a2y2(a2y2)3/2引力在水平方向的分量为

Fxl2Gl22Gmlamdy1

上一篇:关于军训生活的优秀演讲稿下一篇:人力资源岗位职责风险