医院污水处理工艺选择与设计

2024-09-01

医院污水处理工艺选择与设计(通用10篇)

1.医院污水处理工艺选择与设计 篇一

模具材料与热处理工艺选择问题研究

摘 要:随着科学技术的发展和不断提高,模具材料的热处理工艺的选择问题得到了很好的解决。近几年,我国模具行业发展迅速,不过模具材料的水平和热处理工艺跟发达国家相比,还有很大的差距。目前模具市场的竞争非常激烈,如何提高模具的生产质量和减少产生周期是一个很重要的问题。延长模具的性能会带来巨大的经济效益和社会效益。从理论上讲,模具的性能主要包括精度和表面光洁度。

关键词:模具材料 问题研究 热处理工艺

在现阶段,模具是一种很重要的加工工艺装备,也是我国制造业发展的重要基础。随着我国工业的不断发展,对模具材料的性能要求越来越高,对模具材料的需求也相应的增加。模具材料的性能好坏决定着产品的质量和经济效益。而模具的寿命对于加工效率和成本也有非常大的影响。从理论上讲,模具的失效分为工作失效和偶然失效,工作失效指的是模具在正常工作时发生破损而导致模具寿命的结束。偶然失效指的是模具由于设计的错误从而导致模具过早的破损。影响模具寿命的因素包括五点:第一热处理不当,占百45%[1]。第二,选材不当导致模具结构的不合理,占25%。第三,工艺问题,占大约10%。第四,润换问题导致设备损坏,占大约20%。由此可见,模具材料与热处理之间的关系是影响模具寿命最主要的因素。解决热处理工艺问题是增加模具寿命的关键。

一、模具材料简介

1.1 冷作模具材料

在模具材料中,冷作模具的种类一般比较多,而且形状结构的差异也比较大。这种模具材料的工作条件和性能不是很相同。因此,在选择冷作模具时候,要进行综合的考虑,才能发挥材料的功能。目前,我国常用的冷作模具材料主要分为四大类:高速钢、硬质合金、碳素工具钢和合金工具钢[2]。

1.2 热作模具材料

在模具材料中,热作模具的选用比较苛刻,热作模具通常要在600℃左右的高温下进行工作,因此对于模具材料的选择有更高的要求,模具材料的强度,硬度,耐磨性和抗冷热疲劳度都要很好。此外,模具材料还要具备抗氧化性和抗腐蚀性。为了更好地适应先进的加工技术,很多新设备对于模具材料的韧性也做出了比较高的要求,随着一些新型热加工技术的出现和发展,新型模具材料也应运而生。例如,铁基高温合金、镍基高温合金和难熔合金用来做高温的热作模具材料[3]。

1.3 塑料模具材料

随着石油化工行业的不断发展,塑料模具已经成为了非常重要的工业原料。近年来,塑料制品越来越多,因此用于制品的塑料模具消耗量也很多。与传统的冷作和热作模具相比,塑料模具的性能更为特殊。塑料模具具有较高的硬度,一般的耐磨性和足够的深化深度。此外,塑料模具还有较低的耐热性,在200℃-250℃的温度下工作,塑料模具不变形,不养化,稳定性很好。最后,塑料模具的耐腐蚀性比热作和冷作模具要好很多。

1.4 玻璃模具材料

玻璃模具材料是一种新型的模具,目前,随着科学的不断发展,很多大型公司都在研制性能更好的玻璃模具材料来代替其他模具[4]。

二、冷作模具材料及其热处理的选择

对于冷作模具来讲,其使用寿命与模具的硬度,强度和耐磨性有很大的关系。因此,对于冷作模具的热处理工艺要求很高。对于冷作模具材料的主要性能要求是:首先要有很好的耐磨性,高强度和足够的韧性;其次要具有很好的抗疲劳性,抗擦伤性以及咬合性。

2.1 低淬透性冷作模具钢及其热处理

满足以上性能要求的冷作模具材料包括低淬透性冷作模具钢,低变形冷作模具钢和高合金工具钢等。在低淬透性冷作模具钢中使用最多的是碳素工具钢,其主要特点是含碳量比较高,耐热性比较好,可以在临界迅速地冷却并产生热应力的变形,这种变形可以主导模具的收缩方向。碳素工具钢的含碳量越高,其收缩量也就越大[5]。

除此之外,碳素工具钢的收缩会导致模具内部产生很大的内应力,这种内应力必须通过回火或者其他的方法进行消除。当然对于这种变形量的大小也要受到模具截面尺寸和淬火加热温度的影响。因此,影响低淬透性冷作模具钢冷作模具寿命的主要因素就是淬火的工艺。

2.2 低变形冷作模具钢及其热处理

对于低变形冷作模具钢来讲,其主要是在碳素工具钢的基础上添加少量的合金元素发展起来的。其中CrWMn是典型的`钢种,这种钢结构具有很好的高淬透性。并且在淬火的时候不需要进行强烈的冷却,淬火的变形量也比碳素工具钢要明显减少。但是,这类钢的变形也同样受到淬火加热温度和模具截面尺寸的影响。低变形冷作模具钢淬火温度在选择的时候,由于钨形式碳化物,这种钢在淬火低温回火时都具有很多的碳化物,并且具有很高的硬度。当采用800℃进行加热淬火时,可以得到较高的硬度(63HRC),还可以获得较高的抗弯强度和韧性。如果继续提高淬火温度时,低变形冷作模具钢的硬度就会慢慢地降低,而且抗弯强度也会降低。当淬火温度大于850℃时,硬度不断开始下降。所以,为了减少低变形冷作模具钢的变形量和提高耐磨性,淬火的温度不宜过高[6]。

2.3 高合金工具钢及其热处理

对于高合金工具钢来讲,其主要性能与碳素工具钢有一定的区别,高合金工具钢的高强度和耐磨性都比碳素工具钢要好很多。高合金工具钢的含碳量很高,同时还具有大量的碳化物元素,因此高合金工具钢具有很高的淬透性、耐磨性和热硬性。高合金工具钢在淬火时候不需要进行快速的冷却,因此产生的内应力比较小。

高合金钢模具的淬火温度的选择,首先要考虑控制淬火的变形。而冷却的方法则要根据模具的具体要求和情况而定。高合金工具钢的回火抗力很高,因此,在回火的时候很容易导致马氏体的分解和残余奥氏体的转变,这两种转变和分解都会影响模具尺寸的变形。因此高合金工具钢一般都采用低温淬火和低温回火。这样可以很好地获得高强度、高韧性和高耐磨性。此外,在模具材料生产过程中,要根据模具的工作条件来确定何种方法淬火和回火。

三、结语

在整个模具制造行业中,模具的材料是其物质基础和技术的基础。模具材料性能的好坏时时刻刻影响着模具的寿命。因此要提高模具的寿命必须要对模具进行热处理,模具的热处理工艺是保证模具性能的重要过程,与模具的寿命息息相关。如果模具材料的热处理工艺不当,就会导致模具性能不良,例如模具的韧性,冷热疲劳性能和抗磨损性能的下降。从而严重地影响模具的工作寿命,还会降低产品的质量。因此。对于不同的冷冲模具应该选择不同的模具材料以及相应的热处理工艺。

 

2.医院污水处理工艺选择与设计 篇二

1.1 工程背景

该医院位于西安市阎良区, 为某单位职工医院, 各种医疗设施齐全, 建筑面积14670m2。单位领导积极响应国家号召, 坚持“以人为本, 保护环境”的原则, 新建一套医疗污水处理系统, 将医院产生的所有医疗污水进行处理后达标排放, 以防止医疗污水中的细菌病毒等微生物对院区内的环境造成二次污染, 为单位职工及周围百姓提供一个良好、安全的生活环境。

1.2 进出水水质指标

1.2.1 污水水质

设计处理水量:Q=350m3/d

平均水量:q=21.6m3/h

设计水量确定为23m3/h

每天设计运行时间为15.5h

大肠箘数≈2.5*105个/L

1.2.2 出水水质

处理后排放水水质达到《医疗机构水污染物排放标准》GB18466-2005中一级排放标准。

粪大肠杆箘<100个/L

2 处理工艺及流程

2.1 处理工艺的确定

该工程污水来源主要是医护排水、生活排水和清洁排水等, 含有细菌、病毒、寄生虫卵和一些有毒有害物质以及有机污染物等。一般认为BOD5/COD的值大于0.45时, 可生化性好。本方案水质中BOD5/COD的值为0.46, 适宜采用生化+消毒工艺, 可以取得良好的处理效果, 设计采用“水解酸化+生物接触氧化+沉淀+过滤+CIO2消毒”工艺作为主体处理工艺, 对污水的有机污染、生物性污染、理化性污染及有毒有害物质进行全面处理, 确保达标排放。

2.2 工艺流程

各病房及门诊等的排水由排水管网汇入化粪池, 经过化粪池的预处理后自流入格栅池, 经机械格栅去除污水中漂浮物, 确保后续污水处理设施及机泵设备正常运行。污水经格栅初步处理后经污水泵进入调节池。污水在调节池中进行水质、水量调节均化后由提升泵提升进入水解酸化池, 污水进行水解酸化, 然后流入生物接触氧化池, 进行COD、BOD5的降解, NH4+-N的处理。生物接触氧化池出水中含有大量老化脱落的生物膜, 这些含有生物膜的污水流入沉淀池, 经沉淀后进入中间水池, 后经提升泵流入过滤器, 进一步去除掉水中的悬浮物, 过滤后的水最终流入消毒池, 经消毒后达标排放。沉淀池的污泥利用气提装置定期排入污泥池, 进行消化处理。

工艺流程图如下:

3 主要处理构筑物工艺设计参数

3.1 化粪池

化粪池主要是收集医院内各排污点所排放的生活和医疗污水, 设计采用钢筋混凝土结构, 顶面可过汽车, 尺寸为13m*2.5m*3.3m, 两座。

3.2 格栅间

格栅井内设机械格栅, 主要由机架、栅条、清污耙板、提升链条、电机减速驱动装置、缓冲自净卸污等装置组成。格栅井的上部建有格栅间, 格栅间设置有活性炭空气净化装置和紫外灯杀菌装置, 从而有效的杀死空气中的细菌和臭味。格栅井采用钢筋混凝土结构, 尺寸为4m*1.5m*4.6m。

3.3 调节池

由于医院的瞬时排水水量和污染物指标变化较大, 如不经过调节处理, 容易对后续处理系统造成较大的负荷冲击, 影响处理效果。调节池主要作用是对污水进行水质水量的均化处理, 削减高峰负荷, 减少水质水量的较大变化对后续系统的影响。调节池采用地下式钢筋混凝土结构, 设计可调节约6小时的来水水量, 调节池尺寸为7m*4m*4m。

配套设施:污水提升泵两台, 一用一备, 型号为WQ25-8-1.5, 流量25m3/h, 扬程8m, 功率1.5KW。

3.4 水解酸化池

作为好氧处理的预处理, 可使复杂大分子有机物分解为能在好氧处理中被降解去除的简单小分子有机物, 显著提高污水的可生化性。水解酸化池有效停留时间设计为1.9小时, 有效容积43.5m3, 采用地下式钢筋混凝土结构, 具体尺寸为4m*3m*4m。

3.5 生物接触氧化池

为了提高接触氧化处理单元的处理效果, 生物接触氧化部分设置为两个接触氧化池串联运行, 形成二级接触氧化处理系统。设计污水有效停留时间为2.9小时, 有效容积67m3, 采用地下式钢筋混凝土结构, 具体尺寸为6.7m*4m*4m。

3.6 沉淀池

污水经过二级接触氧化池后, 污染物经过微生物的作用变成了活性污泥, 部分黏附在填料上, 还有部分老化污泥脱落在水中, 随出水带入沉淀池中, 沉淀池用于去除污水中的以老化生物膜为主体的悬浮物。沉淀池采用斜管沉淀池, 设计有效停留时间为1小时, 采用地下式钢筋混凝土结构, 具体尺寸为3.4m*3m*4m。

3.7 污泥池

采用地下式钢筋混凝土结构, 具体尺寸为3.3m*1.5m*4m。

3.8 中间水池

采用地下式钢筋混凝土结构, 具体尺寸为3.3m*1.5m*4m。

配套设施:污水潜水泵两台, 一用一备, 型号为WQ25-30-5.5, 流量25m3/h, 扬程30m, 功率5.5KW。

3.9 接触消毒池

采用地下式钢筋混凝土结构, 具体尺寸为3m*3m*4m。

设计采用CIO2全自动消毒装置, 根据水质水量可以自动调整CIO2的投加量。采用CIO2消毒, 只起氧化杀菌作用, 不起氯化作用, 不会生成有机氯化物, 可除臭、去色、杀菌、氧化锰铁等物质, 不生成氯胺。

配套设施:污水潜水反洗泵一台, 型号为WQ65-15-5.5, 流量65m3/h, 扬程15m, 功率5.5KW。

4 工艺单元处理效果分析

5 结语

(1) 采用了水质特点的生化+消毒的处理工艺, 处理系统具有一定的灵活性和调节余地, 以减少水质、水量变化对系统造成的负荷冲击, 确保运行稳定;

(2) 污泥产量较低, 无需污泥回流;

(3) 整套系统采用PLC控制, 实现全自动控制, 无需专人管理;

(4) 主要构筑物均采用埋地式钢筋混凝土结构, 地上部分建设备间, 构筑物尽量合建, 节省占地和工程建设投资;

(5) 所有处理单元均互相连通, 所产生的废气均由紫外灯和活性炭空气过滤器处理后排放, 从而彻底杜绝二次污染的产生。

3.医院污水处理工艺选择与设计 篇三

【关键词】模具材料 热处理工艺 问题研究

在现阶段,模具是一种很重要的加工工艺装备,也是我国制造业发展的重要基础。随着我国工业的不断发展,对模具材料的性能要求越来越高,对模具材料的需求也相应的增加。模具材料的性能好坏决定着产品的质量和经济效益。而模具的寿命对于加工效率和成本也有非常大的影响。从理论上讲,模具的失效分为工作失效和偶然失效,工作失效指的是模具在正常工作时发生破损而导致模具寿命的结束。偶然失效指的是模具由于设计的错误从而导致模具过早的破损。影响模具寿命的因素包括五点:第一热处理不当,占百45%[1]。第二,选材不当导致模具结构的不合理,占25%。第三,工艺问题,占大约10%。第四,润换问题导致设备损坏,占大约20%。由此可见,模具材料与热处理之间的关系是影响模具寿命最主要的因素。解决热处理工艺问题是增加模具寿命的关键。

1 模具材料简介

1.1 冷作模具材料

在模具材料中,冷作模具的种类一般比较多,而且形状结构的差异也比较大。这种模具材料的工作条件和性能不是很相同。因此,在选择冷作模具时候,要进行综合的考虑,才能发挥材料的功能。目前,我国常用的冷作模具材料主要分为四大类:高速钢、硬质合金、碳素工具钢和合金工具钢[2]。

1.2 热作模具材料

在模具材料中,热作模具的选用比较苛刻,热作模具通常要在600℃左右的高温下进行工作,因此对于模具材料的选择有更高的要求,模具材料的强度,硬度,耐磨性和抗冷热疲劳度都要很好。此外,模具材料还要具备抗氧化性和抗腐蚀性。为了更好地适应先进的加工技术,很多新设备对于模具材料的韧性也做出了比较高的要求,随着一些新型热加工技术的出现和发展,新型模具材料也应运而生。例如,铁基高温合金、镍基高温合金和难熔合金用来做高温的热作模具材料[3]。

1.3 塑料模具材料

随着石油化工行业的不断发展,塑料模具已经成为了非常重要的工业原料。近年来,塑料制品越来越多,因此用于制品的塑料模具消耗量也很多。与传统的冷作和热作模具相比,塑料模具的性能更为特殊。塑料模具具有较高的硬度,一般的耐磨性和足够的深化深度。此外,塑料模具还有较低的耐热性,在200℃-250℃的温度下工作,塑料模具不变形,不养化,稳定性很好。最后,塑料模具的耐腐蚀性比热作和冷作模具要好很多。

1.4 玻璃模具材料

玻璃模具材料是一种新型的模具,目前,随着科学的不断发展,很多大型公司都在研制性能更好的玻璃模具材料来代替其他模具[4]。

2 冷作模具材料及其热处理的选择

对于冷作模具来讲,其使用寿命与模具的硬度,强度和耐磨性有很大的关系。因此,对于冷作模具的热处理工艺要求很高。对于冷作模具材料的主要性能要求是:首先要有很好的耐磨性,高强度和足够的韧性;其次要具有很好的抗疲劳性,抗擦伤性以及咬合性。

2.1 低淬透性冷作模具钢及其热处理

满足以上性能要求的冷作模具材料包括低淬透性冷作模具钢,低变形冷作模具钢和高合金工具钢等。在低淬透性冷作模具钢中使用最多的是碳素工具钢,其主要特点是含碳量比较高,耐热性比较好,可以在临界迅速地冷却并产生热应力的变形,这种变形可以主导模具的收缩方向。碳素工具钢的含碳量越高,其收缩量也就越大[5]。

除此之外,碳素工具钢的收缩会导致模具内部产生很大的内应力,这种内应力必须通过回火或者其他的方法进行消除。当然对于这种变形量的大小也要受到模具截面尺寸和淬火加热温度的影响。因此,影响低淬透性冷作模具钢冷作模具寿命的主要因素就是淬火的工艺。

2.2 低变形冷作模具钢及其热处理

对于低变形冷作模具钢来讲,其主要是在碳素工具钢的基础上添加少量的合金元素发展起来的。其中CrWMn是典型的钢种,这种钢结构具有很好的高淬透性。并且在淬火的时候不需要进行强烈的冷却,淬火的变形量也比碳素工具钢要明显减少。但是,这类钢的变形也同样受到淬火加热温度和模具截面尺寸的影响。低变形冷作模具钢淬火温度在选择的时候,由于钨形式碳化物,这种钢在淬火低温回火时都具有很多的碳化物,并且具有很高的硬度。当采用800℃进行加热淬火时,可以得到较高的硬度(63HRC),还可以获得较高的抗弯强度和韧性。如果继续提高淬火温度时,低变形冷作模具钢的硬度就会慢慢地降低,而且抗弯强度也会降低。当淬火温度大于850℃时,硬度不断开始下降。所以,为了减少低变形冷作模具钢的变形量和提高耐磨性,淬火的温度不宜过高[6]。

2.3 高合金工具钢及其热处理

对于高合金工具钢来讲,其主要性能与碳素工具钢有一定的区别,高合金工具钢的高强度和耐磨性都比碳素工具钢要好很多。高合金工具钢的含碳量很高,同时还具有大量的碳化物元素,因此高合金工具钢具有很高的淬透性、耐磨性和热硬性。高合金工具钢在淬火时候不需要进行快速的冷却,因此产生的内应力比较小。

高合金钢模具的淬火温度的选择,首先要考虑控制淬火的变形。而冷却的方法则要根据模具的具体要求和情况而定。高合金工具钢的回火抗力很高,因此,在回火的时候很容易导致马氏体的分解和残余奥氏体的转变,这两种转变和分解都会影响模具尺寸的变形。因此高合金工具钢一般都采用低温淬火和低温回火。这样可以很好地获得高强度、高韧性和高耐磨性。此外,在模具材料生产过程中,要根据模具的工作条件来确定何种方法淬火和回火。

结语

在整个模具制造行业中,模具的材料是其物质基础和技术的基础。模具材料性能的好坏时时刻刻影响着模具的寿命。因此要提高模具的寿命必须要对模具进行热处理,模具的热处理工艺是保证模具性能的重要过程,与模具的寿命息息相关。如果模具材料的热处理工艺不当,就会导致模具性能不良,例如模具的韧性,冷热疲劳性能和抗磨损性能的下降。从而严重地影响模具的工作寿命,还会降低产品的质量。因此。对于不同的冷冲模具应该选择不同的模具材料以及相应的热处理工艺。

参考文献

[1]刘登发,雷根成.模具材料及热处理工艺对模具寿命影响分析与研究[J].模具技术,2008(2).

[2]中国机械工程学会热处理专业学会《热处理手册》编委会.热处理手册[M].北京:机械工业出版社,1991.

[3]陈雪菊,张超,陈慧.模具材料及其热处理对冷冲模具寿命的影响[J].科技信息,2004(2).

[4]李强.3Cr2W8V热作模具钢热处理工艺和性能研究[J].成组技术与生产现代化,2010(4).

[5]楼程华,孔凡志,姚建华等.半导体激光熔覆高硬度铁基合金的耐磨性能研宄[J].应用激光,2010,30(6):470-474.

4.医院污水处理工艺选择与设计 篇四

摘要:污水处理是现代社会可持续发展的一个重要组成部分,对防治、减少或根除水污染发挥了积极的作用.文章以某小区生活污水处理为例,通过分析比较,选择A/O处理工艺开展设计,并运用化学法除磷.通过去除率预测分析得知,该处理工艺适应能力强、耐冲击负荷,具有良好的处理效果.作 者:张思梅 胡淑恒 ZHANG Si-mei HU Shu-heng 作者单位:张思梅,ZHANG Si-mei(安徽水利水电职业技术学院,市政工程系,合肥,231603)

胡淑恒,HU Shu-heng(合肥工业大学,资源与环境学院,合肥,230009)

5.医院医疗污水处理工艺流程 篇五

(一)根据医院的规模、性质和处理污水排放去向,进行工艺选择。根据医院分类,分为传染病医院和综合医院。医院污水处理后排放去向分为排入自然水体和通过市政下水道排入城市污水处理厂两类。

医院污水处理所用工艺必须确保处理出水达标,主要采用的三种工艺有:加强处理效果的一级处理、二级处理和简易生化处理。工艺选择原则为:

1、传染病医院必须采用二级处理,并需进行预消毒处理。

2、处理出水排入自然水体的县及县以上医院必须采用二级处理。

3、处理出水排入城市下水道(下游设有二级污水处理厂)的综合医院推荐采用二级处理,对采用一级处理工艺的必须加强处理效果。

4、对于经济不发达地区的小型综合医院,条件不具备时可采用简易生化处理作为过渡处理措施,之后逐步实现二级处理或加强处理效果的一级处理。

(二)不同处理工艺的应用情况考虑到以上原则,本方案设计的医院污水处理工艺流程进行比较: 随着污水处理技术不断地发展,近年开发的在国内外普遍应用的工艺有:

1、加强处理效果的一级处理工艺

对于处理出水最终进入二级处理城市污水处理厂的综合医院,应加强其处理效果,提高ss的去除率,减少消毒剂用量。加强一级处理效果宜通过两种途径实现:对现有一级处理工艺进行改造以加强去除效果和采用一级强化处理技术。(1)工艺流程

对于综合医院(不带传染病房)污水处理可采用“预处理→一级强化处理→消毒”的工艺。通过混凝沉淀(过滤)去除携带病毒、病菌的颗粒物,提高消毒效果并降低消毒剂的用量,从而避免消毒剂用量过大对环境产生的不良影响。一级强化处理工艺流程(略)

医院污水经化粪池进入调节池,调节池前部设置自动格栅,调节池内设提升水泵。污水经提升后进入混凝沉淀池进行混凝沉淀,沉淀池出水进入接触池进行消毒,接触池出水达标排放。

调节池、混凝沉淀池、接触池的污泥及栅渣等污水处理站内产生的垃圾集中消毒外运。消毒可采用巴氏蒸汽消毒或投加石灰等方式。(2)工艺特点

加强处理效果的一级强化处理可以提高处理效果,可将携带病毒、病菌的颗粒物去除,提高后续深化消毒的效果并降低消毒剂的用量。其中对现有一级处理工艺进行改造可充分利用现有设施,减少投资费用。(3)适用范围

加强处理效果的一级强化处理适用于处理出水最终进入二级处理城市污水处理厂的综合医院。

2、二级处理工艺(1)工艺流程说明

二级处理工艺流程为“调节池→生物氧化→接触消毒”。医院污水通过化粪池进入调节池。调节池前部设置自动格栅。调节池内设提升水泵,污水经提升后进入好氧池进行生物处理,好氧池出水进入接触池消毒,出水达标排放。

调节池、生化处理池、接触池的污泥及栅渣等污水处理站内产生的垃圾集中消毒外运焚烧。消毒可采用巴氏蒸汽消毒或投加石灰等方式。

二级处理工艺流程(非传染病和传染病污水)(略)

传染病医院的污水和粪便宜分别收集。生活污水直接进入预消毒池进行消毒处理后进入调节池,病人的粪便应先独立消毒后,通过下水道进入化粪池或单独处理(如虚线所示)。各构筑物须在密闭的环境中运行,通过统一的通风系统进行换气,废气通过消毒后排放,消毒可采用紫外线消毒系统。(2)工艺特点

好氧生化处理单元去除codcr、bod5等有机污染物,好氧生化处理可选择接触氧化、活性污泥和高效好氧处理工艺,如膜生物反应器、曝气生物滤池等工艺。采用具有过滤功能的高效好氧处理工艺,可以降低悬浮物浓度,有利于后续消毒。(3)适用范围

适用于传染病医院(包括带传染病房的综合医院)和排入自然水体的综合医院污水处理。篇二:医疗污水处理设备医院废水处理系统(工艺流程简图)《医疗污水处理设备医院废水处理装置详细资料》

(工艺图)

一、dsw-a设备特点 1.可埋入地表以下 2.无污泥产生

3.对周围环境无影响

4.全自动控制、不需要人员管理 5.操作简单、维修方便 6.工艺新、效果好 7.使用寿命长

二、dsw-a(0.5-5)结构图

三、dsw-a(10-30)工艺流程、结构图

四、dsw-a工艺流程图

1.调节池(不在设备内)2.潜污泵(二台一备一用)3.初沉池 4.三级接触氧化池 5.二沉池(二只并联运行)6.消毒池 7.消毒装置 8.污泥池 9.风机房 10.风机(二台交替运行)注:dsw-a(0.5-5)设备不设初沉池,污水直接进入接触氧化池。接触氧化池为二级,二沉池的污泥自流至污泥池。污泥采用厌氧消化。

五、dsw-a设备适用范围

该设备适用于住宅区、宾馆、疗养院、学校、矿山、工厂等生活有机污水处理与之类似的工业有机污水处理。

六、dsw-a设备工艺说明

dsw-a设备的设计主要是对生活污水和与之类似的工业有机污水处理,其主要处理手段是采用目前较为成熟的生化处理技术——生物接触氧化法,水质参数按一般生活污水水质设计计算,按bod5平均200mg/l,出水bod5按20mg/l设计。共有六部分组成:(1)初沉池(2)接触氧化池(3)二沉池(4)消毒池、消毒装置

(5)污泥池(6)风机房、风机。现分别论述如下:(1)初沉池:该设备初沉池为坚流式沉淀池,污水在沉淀池的上升流速为0.6-0.7毫米/秒,沉淀下来的污泥用

空气提至污泥池。(注:dsw-a0.5-5m3/h不设初沉池)(2)接触氧化池:初沉后的水自流至接触池进行生化处理,接触池分为三级,总停留时间为4小时以上,加强型设备接触氧化时间可达6小时,填料为新颖梯形填料,易结膜,不堵塞,填料比表面积为160m2/m3,接触池气水比在12:1左右。(注:dsw-a0.5-5m3/h接触池为二级)(3)二沉池:生化后的污水流到二沉池,二沉池为二只竖流式沉淀池并联运行,上升流速为0.3-0.4毫米/秒,排泥采用空气提至污泥池。(注dsw-a0.5-5m3/h污泥自流到污泥池中)(4)消毒池与消毒装置:消毒池按规范:“tj14-74”标准为30分钟,若是医院污水,消毒池可增加停留时间至1-1.5小时。采用固体氯片接触溶解的消毒方式,消毒池与消毒装置能根据出水量的大小不断改

变加药量,达到多出水多加药,少出水少加药的目的,需要其它装置可另行配制。(注:如用于工业污水,消毒池与消毒装置可以不要)(5)污泥池:初沉池、二沉池的所有污泥均用空气提至dsw-a的污泥池内进行好氧消化,污泥池的上清液加流至接触氧化池内进行再处理,消化后剩余污泥很少,一般1-2年清理一次,清理方法可用吸粪车从污泥池的检查孔伸入污泥池底部进行抽吸后外运即可。(dsw-a0.5-5m3/h污泥采用厌氧消化)(6)风机房、风机:设备dsw-a的风机房设在消毒池的上方,风机房进口采用双层隔音,进风口有消声器、风机过滤器,因此运行时无噪声。风机采用二台l型罗茨鼓风机,能自动交替运行,单台风机运行寿命为30000小时左右。

七、dsw-a设备技术参数表

dsw-a设备因为埋地设置,维护与保养较为困难,因此在设计中该设备就考虑了它的免维护性,整个设备结构合理可靠,同时也考虑到即使发生一些故障,也可通过设备的各检查孔进入设备内。

dsw-a设备所有设施均设置在若干个箱体内,箱体采用a3钢板制作,钢板厚度8mm,各箱体用无缝钢管联接,设备内外均采用化工部推广产品氯磺化聚乙烯防腐涂料,设备一般涂刷该涂料8道:2道底漆6道面漆,防腐寿命一般可达10年以上。

整套dsw-a设备设计维护保养周期为10年。

十、dsw-a设备配套水泵

dsw-a所配套的水泵是用于把污水从调节池内提升至dsw-a设备内篇三:医院污水处理工艺流程说明书

医院污水处理工艺流程说明

6.医院污水处理工艺选择与设计 篇六

字体: 小 中 大 | 打印 发表于: 2006-11-02 14:29 作者: sunsky2002 来源: 海川化工论坛

中小规模城市污水处理厂工艺流程选择的依据和方法 摘 要: 本文主要介绍了选择中小规模城市污水处理厂工艺流程的依据、原则和方法, 并根据不同的条件推荐了适用的工艺流程。关键词: 城市污水处理;工艺流程;原则;方法中图分类号: TK730.6

文献标识码:A

文章编号: 1007—6921(2002)04—0043—03 1 前言根据我国发展规划, 2010 年全国设市城市和建制镇的污水平均处理率不低于50% , 设市城市的污水处理率不低于60% , 重点城市的污水处理率不低于70%。为了引导城市污水处理及污染防治技术的发展, 加快城市污水处理设施的建设, 2000 年5 月国家建设部、环境保护局和科技部联合印发了《城市污水处理及污染防治技术政策》。本文将结合该政策的内容, 主要研究日处理能力为10 万m 3 以下, 特别是1~ 5 万m 3.d 规模的城市污水处理厂适用的各种处理工艺流程的比较和选择, 从而确定不同条件下适用的较优工艺流程。1 中小规模城市污水处理厂工艺流程概述二级生物处理指利用水中的微生物来去除污水中的碳源有机物, 二级强化生物处理是指除利用微生物来去除污水中的碳源有机物外, 还需去除污水中的氮和磷。城市污水二级及二级强化处理一般以好氧生物处理为主, 好氧处理可分为活性污泥法和生物膜法两大类。活性污泥法是利用河川自净原理, 人工创建的生化净化污水处理方法。中小规模城市污水厂适用的方法主要有AB 法、SBR 法、氧化沟法、AO 法、A 2O 法、水解好氧法等。生物膜法是利用土壤自净原理发展起来的, 通过附着在各种载体上的生物膜来处理污水的好氧生物处理法, 主要包括生物转盘、生物滤池和生物接触氧化法等工艺。2 污水处理工艺流程选择的依据和原则 2.1 污水处理级别的确定选择污水处理工艺流程时首先应按受纳水体的性质确定出水水质要求, 并依此确定处理级别, 排水应达到国家排放标准(GB8978-1996)。设市城市和重点流域及水资源保护区的建制镇必须建设二级污水处理设施;受纳水体为封闭或半封闭水体时, 为防治富营养化, 城市污水应进行二级强化处理, 增强除磷脱氮的效果;非重点流域和非水源保护区的建制镇, 根据当地的经济条件和水污染控制要求, 可先行一级强化处理, 分期实现二级处理。2.2 工艺流程选择应考虑的技术因素处理规模;进水水质特性, 重点考虑有机物负荷、氮磷含量;出水水质要求, 重点考虑对氮磷的要求以及回用要求;各种污染物的去除率;气候等自然条件, 北方地区应考虑低温条件下稳定运行;污泥的特性和用途。2.3 工艺流程选择应考虑的技术经济因素〔3〕批准的占地面积, 征地价格;基建投资;运行成本;自动化水平, 操作难易程度, 当地运行管理能力。2.4 工艺流程选择的原则保证出水水质达到要求;处理效果稳定, 技术成熟可靠、先进适用;降低基建投资和运行费用, 节省电耗;减小占地面积;运行管理方便, 运转灵活;污泥需达到稳定;适应当地的具体情况;可积极稳妥地选用污水处理新技术。3 污水处理工艺流程的比较和选择方法〔2、3、4、5〕在选定污水处理工艺流程时可以采用下面介绍的一种或几种比较方法。3.1 技术比较在方案初选时可以采用定性的技术比较, 城市污水处理工艺应根据处理规模、水质特性、排放方式和水质要求、受纳水体的环境功能以及当地的用地、气候、经济等实际情况和要求, 经全面的技术比较和初步经济比较后优选确定。方案选择比较时需要考虑的主要技术经济指标包括: 处理单位水量投资、削减单位污染物投资、处理单位水量电耗和成本、削减单位污染物电耗和成本、占地面积、运行性能可靠性、管理维护难易程度、总体环境效益等。定性比较时可以采用有定论的结论和经验值等, 而不必进行详细计算。几种常用生物处理方法的比较见表2。表

2常用生物处理方法的比较序号处理方法BOD5 去除率N、P 去除率 占地 投资 能耗 1 常规活性污泥法 90%~ 95% 低 大 大 高 2 SBR 法 85%~ 95% 一般 较小 小 较低 3 CASS 90%~ 95% 较高 较小 一般 一般 4 UN ITANK 85%~ 95% 一般 小 大 一般 5 氧化沟 92%~ 98% 较高 较大 较小 低 6 AB 90%~ 96% 较高 一般 一般 一般 7 A 2O 90%~ 95% 高 大 一般 一般 8 高负荷生物滤池 75%~ 85% 较低 较小 大 低 9 生物接触氧化 90%~ 95% 一般 较小 一般 较高 10 水解好氧法 90%~ 95% 一般或 较小 较小 较低 较高 3.2 经济比较在选定最终采用的工艺流程时, 应选择2~ 3 种工艺流程进行全面的定量化的经济比较。可以采用年成本法或净现值法进行比较。3.2.1 年成本法。将各方案的基建投资和年经营费用按标准投资收益率, 考虑复利因素后, 换算成使用年限内每年年末等额偿付的成本-年成本, 比较年成本最低者为经济可取的方案。3.2.2 净现值法。将工程使用整个年限内的收益和成本(包括投资和经营费)按照适当的贴现率折算为基准年的现值, 收益与成本现行总值的差额即净现值, 净现值大的方案较优。3.2.3 多目标决策法。多目标决策是根据模糊决策的概念, 采用定性和定量相结合的系统评价法。按工程特点确定评价指标, 一般可以采用5 分制评分, 效益最好的为5 分, 最差的为1 分。同时, 按评价指标的重要性进行级差量化处理(加权), 分为极重要、很重要、重要、应考虑、意义不大五级。取意义不大权重为1 级, 依次按2n-1 进级, 再按加权数算出评价总分, 总分最高的为多目标系统的最佳方案。评价指标项目及权重应根据项目具体情况合理确定。例如确定某城市污水处理厂工艺流程时采用了表2 所示的评价指标及权重: 表

2评价指标项目及权重表序号评价指标项目权重 1 基建投资16 2 年经营费指标16 3 占地面积8 4 受纳水体的性质及环境功能4 5 水质特点和回用要求8 6 气候等自然条件4 7 工艺流程的成熟程度8 8 能源消耗和节能效果4 9 工程施工量、难易程度、建设周期2 10 运行管理方便2

进行工艺流程选择时, 可以先根据污水处理厂的建设规模, 进水水质特点和排放所要求的处理程度, 排除不适用的处理工艺, 初选2~ 3 种流程, 然后再针对初选的处理工艺进行全面的技术经济对比后确定最终的工艺流程。4 中小规模城市污水厂处理工艺流程选择的探讨〔6、7、8〕 4.1 根据进水有机物负荷选择处理工艺进水BOD5 负荷较高(如> 250m g.L)或生化性能较差时, 可以采用AB 法或水解-生物接触氧化法、水解-SBR 法等;进水BOD5 负荷较低时可以采用SBR 法或常规活性污泥法等。4.2 根据处理级别选择处理工艺二级处理工艺可选用氧化沟法、SBR 法、水解好氧法、AB 法和生物滤池法等成熟工艺技术, 也可选用常规活性污泥法;二级强化处理要求除磷脱氮, 工艺流程除可以选用AO 法、A 2O 法外, 也可选用具有除磷脱氮效果的氧化沟法、CA SS 法和水解-接触氧化法等;在投资有限的非重点流域县城, 可以先建设一级强化处理厂, 采用水解工艺、生物絮凝吸附(即AB 法的A 段)和混凝沉淀等物化强化一级处理, 待资金等条件成熟后再续建后续生物处理工艺, 形成水解好氧法、AB 法等完整工艺。4.3 根据回用要求选择处理工艺严重缺水地区要求污水回用率较高, 应选择 BOD5 和SS 去除率高的污水处理工艺, 例如采用氧化沟或SBR 工艺, 使BOD5 和SS 均达到20m g.L 以下甚至更低, 则回用处理只需要直接过滤就可以达到生活杂用水标准, 整个污水处理及回用厂流程非常简捷、经济。如果出水将在相当长的时期内用于农灌, 解决缺水问题, 则处理目标可以以去除有机物为主, 适当保留肥效。4.4 根据气候条件选择处理工艺冰冻期长的寒冷地区应选用水下曝气装置, 而不宜采用表面曝气;生物处理设施需建在室内时, 应采用占地面积小的工艺, 如UN ITAN K 等;水解池对水温变化有较好的适应性, 在低水温条件下运行稳定, 北方寒冷地区可选择水解池作为预处理;较温暖的地区可选择各种氧化沟和SBR 法。4.5 根据占地面积选择处理工艺地价贵、用地紧张的地区可采用SBR 工艺(尤其是UN TAN K);在有条件的地区可利用荒地、闲地等可利用的条件, 采用各种类型的土地处理和稳定塘等自然净化技术, 但在北方寒冷地区不宜采用。用水解池作为稳定塘的预处理, 可以改善污水的生化性能, 减小稳定塘的面积。4.6 根据基建投资选择处理工艺为了节省投资, 应尽量采用国内成熟的, 设备国产化率较高的工艺。基建投资较小的处理工艺有水解-SBR 法、SBR 法及其变型、水解-活性污泥法等。用水解池作预处理可以提高对有机物的去除率, 并改善后续二级处理构筑物污水的生化性能, 可使总的停留时间比常规法少30%。采用水解-好氧处理工艺高效节能, 其出水水质优于常规活性污泥法。氧化沟法在用于以去除碳源污染物为目的二级处理时, 与各种活性污泥法相比, 优势不明显, 但用于还须去除氮磷的二级强化处理时, 则投资和运行费用明显降低。4.7 根据运行费用选择处理工艺节省运行费用的途径有降低电耗、减少污泥量、减少操作管理人员等。电耗较低的流程有自然净化、氧化沟、生物滤池、水解好氧法等, 污泥量较少的有氧化沟和SBR 等, 自动化程度高、管理简单的流程有SBR 等。综合比较, 在基建费相当的条件下, 运行费用较低的处理方法有氧化沟、SBR、水解好氧法等。4.8 污泥处理中小规模城市污水处理厂产生的污泥可进行堆肥处理和综合利用, 采用延时曝气的氧化沟法、SBR 法等技术的污水处理设施, 污泥需达到稳定化。4.9 可以推广应用的新工艺在尽量采用成熟可靠工艺流程的同时, 也要研究开发适用于北方地区中小污水厂的新工艺, 或审慎采用国内外新开发的高效经济的先进工艺技术。城市污水处理新工艺应向简单、高效、经济的方向发展, 各类构筑物从工艺和结构上都应向合建一体化发展。目前可以重点考虑应用和推广使用的流程有一体化氧化沟技术、CA SS、UN ITAN K 和膜法等。5 结束语城市污水处理工艺应根据污水水质特性、排放水质要求, 以及当地的用地、气候、经济等实际情况, 经全面的技术经济比较后优选确定。处理水量在10 万m 3 以下的城市污水处理厂可以优先考虑的处理工艺有水解-SBR 法、SBR 法、氧化沟法、AB 法、水解-接触氧化法、AO 法等, 如果条件适宜也可采用稳定塘等自然净化工艺。

7.反应器的工艺设计与选择 篇七

搅拌釜反应器又称釜式反应器 (反应釜) , 是化工生产中使用最广泛的反应器之一。目前国家已有K型和F型反应釜系列。K型反应釜的长径比较小, 而F型的长径比较大。材质有碳钢、不锈钢和搪瓷等数种。高压反应釜、真空反应釜、常减压反应釜和低压常压反应釜均已系列化生产、供货充足, 选型方便, 有些化工机械厂家还可接受修改图纸进行加工, 设计者可根据工艺要求提出特殊要求, 在反应釜系列的基础上进行修改。在反应釜系列中, 传热面积和搅拌形式基本上都是规定了的, 在选型时, 如果传热面积和搅拌形式不符合设计项目的要求, 可与制造厂家协商进行修改。如果在反应釜系列中没有设计项目适用的型号, 工艺设计人员可向设备设计人员提出设计条件, 自行设计非标准反应釜。

1.1 搅拌釜反应器的设计内容:

1.1.1 确定反应釜的操作方式:

根据工艺流程的特点, 确定反应釜是连续操作还是间歇操作。间歇操作是原料一次装入反应釜, 然后在釜内进行反应, 经过一定时间, 达到要求的反应程度后便卸出全部物料, 接着是清洗反应釜, 继而进行下一批原料的装入、反应和卸料, 所以这种反应釜又叫分批式反应釜或间歇反应釜。连续操作是连续地将原料加入反应器, 反应后的物料也连续地流出反应器, 所使用的反应釜叫连续反应釜。

1.1.2 汇总设计基础数据:

设计基础数据包括物料流量、反应时间、操作压力、操作温度、投料比、转化率、物料的物性数据等。

1.1.3 确定反应釜的台数和连接方式

a.间歇反应釜:从釜式反应器的标准系列中选定设计采用的反应釜后, 釜的体积就确定了, 将反应需要的反应体积除以每台釜的体积所得的数值即为反应釜的台数, 此值若不是整数, 应向数值大的方向归整为整数。b.连续反应釜:对连续操作的反应釜, 当按单釜计算得到的反应体积过大而导致釜的加工制造发生困难时, 需要使用若干个体积较小的反应釜。这些小釜是串联还是并联操作呢?这要根据釜内所进行的反应的特点来决定。对有正常动力学的反应 (即反应速率随反应物浓度的增大而增大) , 釜内反应物浓度越高对反应越有利, 在这种情况下, 采用串联方式比较好, 因为串联各釜中, 反应物的浓度是从前到后逐釜跳跃式降低的, 在前面各釜内能够保持较高的反应物浓度, 从而获得较大的反应速率。而对有反常动力学的反应, 反应物含量越低反应速率越大, 这时应采用各小釜并联的连接方式, 因为并联各釜均在对应于出口转化率的反应物含量 (即最低反应物含量) 下操作、根据反常动力学的特点, 可获很高的反应速率。

1.2 搅拌釜反应器体积的计算:

化学反应器的设计同所有化工单元过程设计类似, 遵循的基本规律是反应器内的能量守恒、物料守恒, 除此之外, 还必须考虑反应器内化学反应的进程。

计算反应器体积时, 可以对整个反应器或反应器某一个微元进行物料平衡和动量平衡分析, 建立数学模型方程。

1.3 固定床催化反应器催化剂用量的确定, 固定床催化反应器设计中最主要的是确定催化剂的用量。

工业上经常根据在实验室装置、中间试验装置或工厂现有生产装置上所得到的操作条件数据, 如空速、时空产率、生产强度等, 按反应装置的生产要求对催化剂用量进行估计。设计的前提是所设计反应器与提供数据的反应装置应具有相同的操作条件, 如催化剂性质、粒径、原料组成、气体流速、温度、压力等。

2 固定床式——固相催化反应器的设计

2.1 固定床式——固相催化反应器的类型:

单段绝热式固定床反应器:此类反应器的反应过程中催化剂床与外界没有热交换, 反应物料在绝热情况下只反应一次。多段绝热式固定床反应器则是多次在绝热条件下进行反应的, 反应一次之后经过换热以满足所带的温度条件再进行下一次的绝热反应, 每反应一次称为一段。单段绝热式固定床催化反应器的优点是结构简单、空间利用率高, 造价低。

2.2 多段绝热固定床催化反应器:

此类反应器多用以进行放热反应, 如合成氨、合成甲醇、二氧化碳氧化等。多段绝热式固定床催化反应器按段间冷却方式的不同, 又分为中间间接换热式、原料气冷激式和非原料气冷激式三种, 这些类型的反应器的示意图如图1所示。

图1为四段间接换热式催化反应器的示意图。原料气经第1, 2, 3.4换 (预) 热器预热后, 进入第I段反应。由于反应放热, 经第一段反应后, 反应物料温度升高, 第一段出口物料经第4换热器冷却后, 再进入第II段反应。第II段出来的物料, 经换热后进入第III段。第III段出来经过换热的物料, 最后进入第IV段反应。产品经预热器1回收热量, 送入下一工序。总之, 反应一次, 换热一次, 反应与换热交替进行, 这就是多段绝热反应器的特点。这种型式的反应器, 在一氧化碳蒸汽转化、二氧化硫氧化制三氧化硫的工业生产上采用得比较普遍。

直接换热式 (或称冷激式) 反应器与间接换热式不同之处在于换热方式。前者系利用补加冷物料的办法使反应后的物料温度降低;后者则使用换热器。图1 (b) 为原料气冷激式反应器示意图, 共四段, 所用的冷激剂为冷原料气、亦即原料气只有一部分经预热器l预热至反应温度, 其余部分冷的原料气则用作冷激剂。经预热的原料气进入第1段反应, 反应后的气体与冷原料气相混合而使其温度降低, 再进入第B段反应, 依次类推。第IV段出来的最终产物经预热器回收热量后送至下一工序。如果来自上一工序的原料气温度本来已很高, 这种类型的反应器显然不适用。图1 (c) 为非原料气冷激式反应器示意图, 其道理与原料气冷激式相同, 只是采用的冷激剂不同而已。非原料气冷激式所用的冷激剂, 通常是原料气中的某一反应部分。例如一氧化碳变换反应中, 蒸汽是反应物, 采用非原料气冷激式反应器时, 段与段之间就可通过喷水或蒸汽来降低上段出来的气体温度。这样做还可使蒸汽分压远段升高, 对反应有利。又如二氧化硫氧化也有采用这种型式的反应器的, 以空气为冷激剂, 反应气体中氧的分压逐段提高, 对促进反应平衡和提高反应速率都是有利的。

参考文献

[1]陈敏恒, 袁渭康, 张琪.绝热固定床反应器的研究—— (Ⅲ) 径向反应器着火规律和温度分布[J]化工学报, 1985, 4.

8.医院污水处理工艺选择与设计 篇八

关键词:固体废物处理与处置;课程工艺设计;教学体系

1.引言

《固体废物处理与处置》是环境工程专业的9门核心课之一,由此确立该课程在环境工程专业本科人才培养中的重要地位[1, 2]。该课程具有典型的实践操作性和实用性特点,对环境工程本科理论与实践的结合能力培养至关重要,已有众多高校学者对该课程的教学内容和方式进行了研究。刘珊等[3]探索了将双语教学引入理论课堂的方式,提出了若干固体废物专业课双语教学实践的具体教学方法。肖相政等[4]也对如何优化教学内容提出了探索与创新思路。黄红丽等[5]尝试将12课时的实验教学内容和方式进行改革,在有限课时中丰富教学内容和强化教学效果。

而课程设计作为理论课程最重要的实践能力训练方式之一,相关研究较少。本论文结合武汉理工大学环境工程专业本科教学中“固体废物处理工艺设计”课程设计教学进行实践和改革研究,对课程设计的教学内容和考核要点进行优化,以提高学生将理论知识运用于实践的能力。

2.“固体废物的处理与处置”工艺设计主题的比选

根据目前国内大部分高校固体废物处理与处置课程的教学核心内容,主要有收集运输、预处理、物化处理、生物处理、热处理、资源化利用、填埋处置等章节,其中热处理(焚烧、热解)因为涉及专业较多,如热能工程、电气工程、自动控制、机械工程等,不适宜作为环境工程专业课程设计的主题。较为适宜作为课程设计主题的有收集运输、好氧堆肥和卫生填埋三项。

(1)收集运输

理论课程中收集运输的主要对象为城市生活垃圾,设计到工艺设计的内容有容器设置数量、集装时间、行程时间、每周工作时间和收集次数等,收集运输的相关计算基于服务区的基础数据(如人口、人均日产量、区域特征等),进而根据区域道路和收集点分布特点确定清运路径[6, 7]。收集运输工艺设计主要基于理论课程知识,知识背景要求相对单一,对CAD制图等技能要求较低。

(2)好氧堆肥

好氧堆肥主要适用于可降解生物质含量较高的固体废物,如农林废弃物、餐厨废弃物等。生活垃圾因成分复杂、产品合格率无法保证等原因,越来越少采用堆肥工艺作为处理方式。但随着我国日益紧缺的土地资源带来的环保设施选址难问题,好氧堆肥成为生活垃圾预处理的有效方式之一[8, 9]。好氧堆肥作为小规模试验或实验室研究主题较多,而实际大型工程应用仍较少,不具有普遍性。

(3)卫生填埋

卫生填埋仍为我国大部分地区生活垃圾处置的主要方式,其具有经济性、操作简便等特点。卫生填埋涉及生物处理、污水处理、CAD制图、流体力学等知识技能[10],所需知识背景均为环境工程专业必修课程,具备作为课程设计主题的优势。此外,卫生填埋在我国工业固体废物、危险废物等方面也应用广泛,熟练掌握卫生填埋的工艺设计对环境工程专业学生今后的实践能力和就业优势的提高均有帮助。

综上所述,卫生填埋最适宜作为《固体废物处理与处置》的课程工艺设计主题,我校已将卫生填埋作为课程设计主题实施了三年,教学实践效果良好。

3.“固体废物的处理与处置”工艺设计教学体系

课程工艺设计以卫生填埋场的工艺设计为主线,要求学生在16课时(1周)内,完成卫生填埋场的总体设计和规模计算、防渗系统的布置、封场系统与堆体整形、渗沥液收集与导排系统、渗沥液处理规模与工艺设计等。

3.1基础资料

课程设计的基础资料主要包括城市概况、气象资料、地形地质资料等,详见表1。

3.2设计要求

要求学生基于已有资料按照完成一套卫生填埋场的主要工艺设计文件,填埋场的主要功能设施的设计计算要在设计说明书或图纸中得到体现,具体要求见表2。

3.3考核要求

(1)考核方式:

平日考勤、设计报告,加上抽查提问,对成绩进行综合评定。重点了解学生对所学知识的掌握、理解和综合运用能力。

(2)评分办法:

课程设计结束后,学生应提交教学大纲和设计任务书所规定完成的相关材料,由指导教师按评分标准进行批阅,并综合课程设计过程中学生各方面的表现,评定学生的成绩。

四、结语

《固体废物处理与处置》课堂工艺设计教学方法的探索与改进在学生专业课学习发挥了重要作用。据近两年毕业生反馈情况,改革后课程设计内容和要求对学生理论知识的巩固和运用作用明显,充当了学生在CAD软件熟练运用与环境工程实际工程项目中的重要媒介,让学生的固体废物处理工艺学习中针对性的学习了实际工程设计技巧。为新形势下我校环境工程专业工程复合型人才的培养奠定了重要基础。相信随着今后教学改革的不断深入,《固体废物处理与处置》课程工艺设计教学会更加充实和完善。

参考文献

[1]赵先,江娟,张芳,张璐,基于应用型人才培养的“城市固体废物处理”课程教学改革与创新,科教导刊,9(2015)103-104.

[2]苏小丽,陈云霞,段金华,《固体废物处理与处置》課程教学改革初探,广州化工,40 (2012) 201-202.

[3]刘珊,张小玲,陈爱侠,大学短学时“固体废物的处理与处置”专业课双语教学研究与实践,教育与教学研究,25(2011)87-90.

[4]肖相政,简放陵,刘雯,固体废物处理与处置课程教学改革探索与实践,中国科教创新导刊,11(2014) 39-41.

[5]黄红丽,罗琳,周惜时,秦普丰,魏建宏,王寒,魏祥东,固体废物处理与处置的实验教学改革研究,实验科学与技术,12(2014)94-96.

[6]姜薇薇,农村生活固体垃圾收运系统选址与路线优化研究,in,曲阜师范大学,2014.

[7]孙凤海,李汉楠,徐玉梅,城市生活垃圾收运管理模式的优化设计,沈阳建筑大学学报(自然科学版),27(2011)942-946.

[8]杨列,刘婷,陈思,张俊,熊辉,胡骏嵩,陈朱蕾,生活垃圾机械-生物预处理工艺优化,环境工程,29 (2011) 89-93.

[9]杨列,陈朱蕾,唐素琴,龙思杰,胡骏嵩,生物预处理过程中有机质与水分对垃圾热值影响研究,环境卫生工程,22 (2014) 19-21.

[10]陈朱蕾,薛强,生活垃圾卫生填埋工程实用技术指南——标准应用·设计计算·案例精选,中国建筑工业出版社,北京,2013.

9.医院污水处理工艺选择与设计 篇九

基于水质水量分析的多种工业废水处理工艺优化设计与应用

摘要:某工厂在硅新材料生产过程中,排放强酸性高氟废水(污酸)和酸性废水,对其两种废水进行处理,是本工程设计的`技术难题.通过对两种工业废水的水质、水量特点的分析,确定了分质前处理与混合后续处理的最佳技术方案,在确保水质处理效果的前提下,有效地降低了工程投资与运行成本.作 者:陈希勇    张允计    叶绍成    CHEN Xi-yong    ZHANG Yun-ji    YE Shao-cheng  作者单位:陈希勇,叶绍成,CHEN Xi-yong,YE Shao-cheng(中国恩菲工程技术有限公司,北京,100038)

张允计,ZHANG Yun-ji(洛阳中硅高科新材料有限公司,河南,洛阳,471000)

期 刊:工程建设与设计   Journal:CONSTRUCTION & DESIGN FOR PROJECT 年,卷(期):, “”(4) 分类号:X703 关键词:工业废水处理    水质水量分析    工艺优化设计   

10.医院污水处理工艺选择与设计 篇十

摘 要:XX市XX镇生活污水处理厂设计处理规模12000m3/d,采用氧化沟工艺作为废水脱氮除磷阶段核心处理工艺,该工艺流程简单、构筑物少、处理效率高、投资省。经处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,总投资约1600万元。

关键词:生活废水;氧化沟工艺;

前言

XX镇位于四川XX市境内中部平原地区。东邻XX镇、XX乡,南接XX乡、XX镇,西连XX镇,北靠XX镇。1985年并乡入镇,仍名XX镇。幅员面积50.7平方公里,耕地面积3975亩。

XX镇历来是XX市商贸重镇,享有“大蒜之乡”、“川剧之乡”和“兰花之乡”的美誉。1992年被XX市列为优先发展经济“一条线”乡镇,1995年被列为成都市小城镇建设试点镇,同时被评为四川省文化先进乡镇,并首批被命名为成都市特色文化之乡,连续4年被列为国家级农业综合开发区。隆丰镇基础设施完备,初步形成了工业、农业和第三产业综合发展的格局,已由农业经济向城乡型经济发展。

基于新农村建设的要求,基础配套设施的完善,新建污水处理站是必须的也是必备的。为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;该污水处理站将收集该镇八成以上的生活污水,处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,满足排水和环保的要求[1]。同时与农民居住区环境的改善和新农村建设的总体思路完全吻合。1.1设计任务及依据 1.1.1设计任务

12000 m3/d乡镇生活污水站初步设计。1.1.2设计依据及原则 1.1.2.1 设计依据

《地表水环境质量标准》(GB3838-2002)《污水综合排放标准》(GB8978-1996)《生活饮用水卫生标准》(GB5749-2006)《污水排入城市下水道水质标准》(CJ3082-1999)《城市污水处理厂污水污泥排放标准》(CJ3025-93)《中华人民共和国环境保护法》;

《建设项目环境保护设计规定》;

《彭州市建设项目环境管理》;

《水污染物排放限值》(DB44/26-2001)中的一级标准; 《污水综合排排放标准》(GB8978-1996)中的一级标准;

《建筑给水排水设计规范》(GBJ 15-88);

1.1.2.2 设计原则

(1)选用运行安全可靠、经济合理的工艺流程。

(2)采用先进的技术和设备,合理利用资金,提高污水处理站的自动化程度和管理水平。

(3)根据基础设施统一规划、分步实施的方针,在方案设计中充分考虑远、近期结合,为发展留有余地。

(4)污水处理厂的位置,应符合城市规划要求,位于城市下游,与周边有一定的卫生防护带,靠近受纳水体,少占农田。

(5)严格执行国家和地方现行有关标准、规范和规定。1.1.3 设计范围

本方案设计范围为:通过对类似生活污水水质情况的综合分析,提出可行性方案,最终推荐最优方案;内容主要包括污水处理工艺流程、设备选型、污水构筑物及附属工程等进行综合规划设计。

1.2 设计水量及水质 1.2.1 设计人口

根据统计,隆丰镇2005年人口共43000人,结合当地70/00的人口年增长速度,以等比数列推算法[2]预计到2020年人口总数达48000人左右。

1.2.2 设计水量

根据居民生活污水定额[2]145 L /(人·d),设计水量平均总流量为6525m3/d,平均时流量272m3/h,即75 L/s。所以时变化系数Kz=1.7,小时最大流量Qmax=12000m3/d。

1.2.3 设计水质

根据本地城镇污水的原始资料,和该污水处理厂出水直接排放到河流内,而该河流是饮用水源保护区,所以,处理出水应该达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标。

表1 设计水质

进水水质(mg/L)出水水质(mg/L)处理程度(%)BOD5 200 20 90 CODcr 350 60 82.8

SS 300 20 93.3

T-N 40 20 50

NH3-N 30 15 50

TP 8 1 87

高25℃ 低12℃

6~9

水温

pH 2处理工艺方案选择 2.1工艺方案选择原则

作为乡镇基础设施的重要组成部分和水污染控制的关键环节,乡镇污水处理厂工程的建设和运行意义重大。由于乡镇污水处理厂的建设和运行不但耗资较大,而且受多种因素的制约和影响,其中处理工艺方案的优化选择对确保处理厂的运行性能和降低费用最为关键,因此有必要根据确定的标准和一般原则,从整体优化的观念出发,结合设计规模、污水水质特性以及当地的实际条件和要求,选择切实可行且经济合理的处理工艺方案,经全面技术经济比较后优选出最佳的总体工艺方案和实施方式[3]。在污水处理厂工艺方案确定中,将遵循以下原则:

(1)技术成熟,处理效果稳定,保证出水水质达到国家规定的排放要求。(2)基建投资和运行费用低,以尽可能少的投入取得尽可能多的效益。

(3)运行管理方便,运转灵活,并可根据不同的进水水质和出水水质要求调整运行方式和工艺参数,最大限度的发挥处理装置和处埋构筑物的处理能力。

(4)选定工艺的技术及设备先进、可靠。

(5)便于实现工艺过程的自动控制,提高管理水平,降低劳动强度和人工费用。本工程要求的污水处理程度较高,对污水处理工艺选择应十分慎重。本方案设计的污水处理工艺选择针对该城镇污水量和污水水质以及经济条件考虑适应力强、调节灵活、低能耗、低投入、少占地和操作管理方便的成熟先进工艺[4]。下面将对各种工艺的特点进行论述,以便选择切实可行的方案。

2.2污水处理工艺流程的确定 2.2.1 厂址及地形资料

XX镇污水处理站选址应综合考虑管网布置和现有人口分布特点,将其分别布置在龟背型场镇的两边。

2.2.2气象及水文资料 2.2.2.1水文地质资料

该地区地处成都平原。地形复杂,有低山、丘陵和平原,多条河流直贯其中,地势北高南低。

2.2.2.2气象资料

(1)风向及风速:常风向为北风,最大风速1.2m/s;(2)气温:月平均最高气温37.3℃,最低气温-2.7℃ 2.2.3可行性方案的确定 本项目污水处理的特点为:

① 污水以有机污染为主,BOD/COD=0.5,可生化性较好,重金属及其他难以生物降解的有毒物一般不超标;

② 污水中主要污染物指标BOD5、CODcr、SS值比国内一般城市污水高;

针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。

生活污水的生物处理技术是以污水中含有的污染物作为营养源,利用微生物的代谢作用使污染物降解,它是生活污水处理的主要手段,是水资源可持续发展的重要保证[5]。

根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用:普通活性污泥法、氧化沟法、A/O工艺法、AB法、SBR法等等。

a.普通活性污泥法方案

普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计及运行经验,处理效果可靠。自20世纪70年代以来,随着污水处理技术的发展,本方法在艺及设备等方面又有了很大改进。在工艺方面,通过增加工艺构筑物可以成为“A/O”或“A2/O”工艺,从面实现脱N和除P。在设备方面,开发了各种微孔曝气池,使氧转移效率提高到20%以上,从面节省了运行费用。

国内已运行的大中型污水处理厂,如西安邓家村(12万m3/d)、天津纪庄子(26万m3/d)、北京高碑店(50万m3/d)、成都三瓦窑(20万m3/d)

普通活性污泥法如设计合理、运行管理得当,出水BOD5可达10~20mg/L。它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理管理困难,基建投资及运行费均较高。国内已建的此类污水处理厂,单方基建投资一般为1000~1300元/(m3/d),运行费为0.2~0.4元/(m3/d)或更高。

b.氧化沟方案

氧化沟污水处理技术,是20世纪50年代由荷兰人首创。60年代以来,这项技术在欧洲、北美、南非、澳大利亚等国已被广泛采用,工艺及构造有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点(基建投资及运行费用相对较低,运行效果高且稳定,维护管理简单等)的逐步深入认识,目前已成为普遍采用的一项污水处理技术。目前常用的几种商业性氧化沟有荷兰DHV公司60年代开发的Carrousel氧化沟,美国Envirex公司开发的Orbal氧化沟,丹麦Kruger公司发明的DE氧化沟等。在我国,氧化沟工艺是使用较多的工艺[4]。

氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,成为A/O工艺;氧化沟前增加厌氧池可成为A2/O(A-A-O)工艺,实现除磷。由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。

氧化沟污水处理技术已被公认为一种较成功的革新的活性污泥法工艺,与传统活性污泥系统相比,它在技术、经济等方面具有一系列独特的优点。

① 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气的空气扩散器,不建厌氧消化系统,运行管理要方便。

② 处理效果稳定,出水水质好。实际运行效果表明,氧化沟在去除BOD5和SS方面均可取得比传统活性污泥法更高质量的出水,运行也更稳定可靠。同时,在不增加曝气池容积时,能方便地实现硝化和一定的反硝化处理,且只要适当扩大曝气池容积,能更方便地实现完全脱氮的深度处理。

③ 基建投资省,运行费用低。实际运行证明,由于氧化沟工艺省去初沉池和污泥厌氧消化系统,且比较容易实现硝化和反硝化,当处理要求脱氮时,氧化沟工艺在基建投资方面比传统活性污泥法节省很多(当只需去除BOD5时,可能节省不多)。同样,当仅要求去除BOD5时,对于大规模污水厂采用氧化沟工艺运行费用比传统活性污泥法略低或相当,而要求去除BOD5且去除NH3-N时,氧化沟工艺运行费用就比传统活性污泥法节省较多。

④ 污泥量少,污泥性质稳定。由于氧化沟所采用的污泥龄一般长达20~30d,污泥在沟内得到了好氧稳定,污泥生成量就少,因此使污泥后处理大大简化,节省处理厂运行费用,且便于管理。

⑤ 具有一定承受水量、水质冲击负荷的能力。水流在氧化沟中流速为0.3~0.4m/s,氧化沟的总长为L,则水流完成一个循环所需时间t=L/S,当L=90~600m时,t=5~20min。由于废水在氧化沟中设计水力停留时间T为10~24h,因此可计算出废水在整个停留时间内要完成的循环次数为30~280次不等。可见原污水一进入氧化沟,就会被几十倍甚至上百倍的循环量所稀释,因此具有一定承受冲击负荷的能力。

⑥ 占地面积少。由于氧化沟工艺所采用的污泥负荷较小、水力停留时间较长,使氧化沟容积会大于传统活性污泥法曝气池容积,占地面积可能会大些,但因为省去了初沉池和污泥厌氧消化池,占地面积总的来说会少于传统活性污泥法。

c.A/O和A2/O法

A/O工艺自被开发以来,就因为其特有的经济技术优势和环境效益,愈来愈受到人们的广泛重视.通常称为A/O工艺的实际上可分为两类,一类是厌氧/好氧工艺,另一类是缺氧/好

氧工艺.厌氧状态和缺氧状态之间存在着根本的差别:在厌氧状态下既有无分子态氧,也没有化合态氧,而在缺氧状态下则存在微量的分子态氧(DO浓度<0.5mg/L),同时还存在化合态的氧,如硝酸盐.。

A2/O法的特点有:

①A2/O法在去除有机碳污染物的同时,还能去除污水中的氮磷,与传统活性污泥法二级处理后再进行深度处理相比,不仅投资少、运行费用低,而且没有大量的化学污泥,具有良好的环境效益。

②A2/O法厌氧、缺氧、好氧交替进行,有利于抑制丝状菌的膨胀,改善污泥沉降性能。③A2/O法工艺流程简单,总水力停留时间少于其他同样功能的工艺,节省基建投资。④A2/O法缺点是受泥龄、回流污泥中溶解氧和硝酸盐氮的限制,不可能同时取得脱氮和除磷都好的双重效果。

d.A-B法工艺

AB工艺是一种生物吸附―降解两段活性污泥工艺,A段负荷高,曝气时间短,0.5h左右,污泥负荷高2~6 kgBOD5/(kgMLSS·d),B段污泥负荷较低,为0.15~0.30 kgBOD5/(kgMLSS·d),该段工艺有机物、氮和磷都有一定的去除率,适用于处理浓度较高,水质水量较大的污水,通常要求进水BOD5≥250mg/L,AB工艺才有明显优势[4]。

AB工艺的优点:

具有优良的污染物去除效果,较强的抗冲击负荷能力,良好的脱氮除磷效果和投资及运转费用较低等。

① 对有机底物去除效率高。

② 系统运行稳定。主要表现在:出水水质波动小,有极强的耐冲击负荷能力,有良好的污泥沉降性能。

③ 有较好的脱氮除磷效果。

④ 节能。运行费用低,耗电量低,可回收沼气能源。经试验证明,AB法工艺较传统的一段法工艺节省运行费用20%~25%.AB工艺的缺点

① A段在运行中如果控制不好,很容易产生臭气,影响附近的环境卫生,这主要是由于A段在超高有机负荷下工作,使A段曝气池运行于厌氧工况下,导致产生硫化氢、大粪素等恶臭气体。

② 当对除磷脱氮要求很高时,A段不宜按AB法的原来去处有机物的分配比去除BOD5 5%~60%,因为这样B段曝气池的进水含碳有机物含量的碳/氮比偏低,不能有效的脱氮。

③ 污泥产率高,A段产生的污泥量较大,约占整个处理系统污泥产量的80%左右,且剩余污泥中的有机物含量高,这给污泥的最终稳定化处置带来了较大压力。

e.SBR工艺

SBR实际上是最早出现的活性污泥法,早期局限于实验研究阶段,但近十年来,由于自动控制、生物选择器、机械制造方面的技术突破才使得这一工艺真正应用于生产实践,目前该工艺的应用正在我国逐步兴起[5]。

它是一个完整的操作过程,包括进水、反应、沉淀、排水排泥和闲置5个阶段。SBR工艺有以下特点:

① 生物反应和沉淀池在一个构筑物内完成,节省占地,土建造价低。

② 具有完全混合式和推流式曝气池的优势,承受水量,水质冲击负荷能力强。③ 污泥沉降性能好,不易发生污泥膨胀。④ 对有机物和氮的去除效果好。

但传统的SBR工艺除磷的效果不理想,主要表现在:对脱氮除磷处理要求而言,传统SBR工艺的基本运行方式虽充分考虑了进水基质浓度及有毒有害物质对处理效果的影响而采取了灵活的进水方式,但由于这种考虑与脱氮或除磷所需要的环境条件相背,因而在实际运行中往往削弱脱氮除磷效果。就除磷而言,采用非限量或半限量曝气进水方式,将影响磷的释放;对脱氮而言,则将影响硝化态氮的反硝化作用而影响脱氮效果。

表2 生物处理方案技术经济比较

方 案 A/O 氧化沟 AB法 SBR法 技术 指标 BOD5去 除率% 85~95 90~95 85~95 90~99 经济指标 基建 费 >100 <100 <100 <100

能 耗 >100 >100 <100 100

占 地 >100 >100 约100 <100

运行情况 运行 稳定 一般 稳定 一般 稳定

管理 情况 一般 简便 简便 简便

适应负荷波动 一般 适应 适应 适应

备 注

需脱氮除磷的污水处理厂

适用于中小型污水厂,需要脱氮除磷地区

适应可分期建设达到不同的要求 适用于中、小型污水处理厂

注:*将传统活性污泥法100作为相对经济指标基准。

从上面的对比中我们可以得到如下结论:根据综合分析,为使该废水达到排放标准则应考虑使用具有脱氮除磷功能的生物处理工艺。

由以上内容知,处理工艺上优先选择A/O法和氧化沟法,两种工艺都能达到预期的处理效果,且都为成熟工艺,但经分析比较,氧化沟法工艺方案在以下方面具有明显优势。

① 氧化沟法方案在达到与传统活性污泥法同样的去除BOD5效果时,还能有更充分的硝化和一定的反硝化效果;

② 氧化沟法管理较简单,适合该污水处理管理技术水平现状;

③ 氧化沟法相对A/O法具有更强的适应符合波动能力[6]。

综合以上对比分析,本工程以氧化沟法污水处理厂工艺方案作为推荐方案,如图1所示。9

程渣包外运栅渣打包机农灌格栅砂外运提升泵沉砂池厌氧池氧化沟二沉池接触池分水井至回用水深度处理系统原污水砂水分离器砂泵回流泵集泥井加氯机泥饼外运污泥脱水机贮泥池浓缩池污泥泵液氯 10 污水处理工艺设计计算 3.1污水处理系统 3.1.1格栅

格栅主要是为了拦截废水中的较大颗粒和漂浮物,以确保后续处理的顺利进行。主要是对水泵起保护作用,拟采用中格栅,格栅栅条选用圆钢,栅条宽度S=0.01m,间隙拟定为0.02m[2]。

设计参数:栅条间隙e=20.00mm,栅前水深h=0.4m,过栅流速υ=0.9m/s,安装倾角δ=60°,φ10圆钢为栅条阻力系数 =1.79。

图2 格栅示意图

① 栅条间隙数n

Qmaxsinaneh

式中: n——栅条间隙数,个;

Qmax——最大设计流量,Qmax =0.129 m3/s;

a——格栅倾角,取60; b——栅条间隙,m,取0.02 m; h——栅前水深,m,取0.4 m; v——过栅流速,m/s,取0.9 m/s;

则:

nQmaxsina0.129sin60=16.67 条

取17条 ehv0.020.40.9② 栅槽宽度 B B=S(n-1)+bn 式中: S——栅条宽度,m,取0.01 m。则:

B=S(n-1)+bn=0.01×(17-1)+0.02×17=0.5m ③ 通过格栅的水头损失h1=h0k vh0sina

2gs



b43 式中: h1——设计水头损失,m ;

h0——计算水头损失,m ;

G ——重力加速度,m/s2,取g=9.8 m/s2;

K ——系数,格栅受污物堵塞时水头损失增大倍数,一般采用 =3;

——阻力系数,其值与栅条断面形状有关;

——形状系数,取 =1.79(由于选用断面为锐边矩形的栅条)。

s0.01则: 1.790.71

b0.024343 12

0.92v2sin60=0.03 m

h0sina=0.7129.82g

h1=h0k=0.03×3=0.09m ④ 栅后槽总高度

H H=h+h1+h2

式中:h2——栅前渠道超高,取 =0.3 m。则:

H=h+h1+h2 =0.4+0.09+0.3=0.79。⑤ 栅槽总长度

L Ll1l21.00.5H1tan

BB1l12tan1

l12 l2H1hh1 式中:

l1——进水渠道渐宽部分的长度,m ;

B1——进水渠宽,m,取B1=0.35m ;

a1——进水渠道渐宽部分的展开角度,取a1=20 ;

l2——栅槽与进水渠道连接处的渐窄部分长度,m ;

H1——栅前渠道深,m.则:

l1BB10.50.350.22m 2tana12tan20l1=0.11 m 213

l2H1=h+h2=0.4+0.3=0.7 m

L=l1+l2+0.5+1.0+⑥ 每日栅渣量 W

H10.7=0.22+0.11+0.5+1.0+=2.23m tantan60W

86400QmaxW11000K总

式中:W1——栅渣量,m3/(103m3)污水,取W1=0.07 m3/(103m3)污水。则:

W=86400QmaxW1864000.1290.07=0.45 m3/d>0.2 m3/d , 宜采用机械清渣 1000KZ10001.73.1.2污水提升泵池 设计计算

① 设计流量:Q=301L/s,泵房工程结构按远期流量设计 ② 泵房设计计算

采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、氧化沟、二沉池及接触池,最后由出水管道排入关渠堰。

根据最大流量设计,选用4台150QW-180-6-5.5潜污泵(3用1备)[7],Q=180m3/h,H=6m;采用高、中、低水位分别启动水泵,通过液位计来实现自动控制;出水管上设置管式流量计,对出水流量进行监测和控制。

污水提升泵池尺寸:1000mm×900mm×1500mm 数量:1座 材质:钢筋混凝土 构造:全地埋 3.1.3平流式沉砂池

① 设计说明

污水经提升泵提升后进入平流沉砂池,共两组对称于提升泵房中轴线布置,每组分为两格[4]。每格宽度B1=0.65m 沉砂池池底采用多斗集砂,沉砂由螺旋离心泵自斗底抽送至高架砂水分离器,砂水分离通入压缩空气洗砂,污水回至提升泵前,净砂直接卸入自卸汽车外运。

设计流量为Qmax=464 m3/h=0.129 m3/s,设计水力停留时间t=30s,水平最大流速υ=0.25m/s,城市污水沉砂量X=30 m3/(106m3),清除沉砂的间隔时间T=2d。

每格池平面面积为A=

Qmax0.1290.516m2 v0.25② 沉砂池水流部分的长度(L)

LVt

式中:

L——沉砂池水流部分的长度,L;

V——曝气沉砂池有效容积,m3 ;

t ——设计水力停留时间t=40s 则:

LVt0.25307.5m ③

池宽度

B

B=n×B1=2×0.65=1.3m

式中:

B——沉砂池总宽度;

B1——单个沉砂池宽度;

n——沉砂池个数。

则:

B=n×B1=2×0.65=1.3m

④ 有效水深 hh2=A B式中:

h2——有效水深;

A——池平面面积;

B——沉砂池总宽。则:

h2=A0.5160.4 m B1.3⑤ 沉砂斗所需容积(V)

V =QmaxXT86400

KZ106式中:

V——沉砂斗所需容积;

Qmax——最大设计流量,Qmax =0.129 m3/s;

X——城市污水沉砂量,m3/(106m3);

T——清除沉砂的间隔时间,d。

KZ——水流量变化系数,取1.7。则:

V=QmaxXT864000.129302864000.3990.4m3 66KZ101.710⑥ 池总高度(H)

H= h1+h2+h3

式中:h1——沉砂池超高,取0.3m;

h2——有效深度,h2=0.4m;

h3——沉砂室高度,取0.5m 则:

H= h1+ h2+ h3=0.3+0.4+0.5=1.2m 3.1.4厌氧池 a.设计参数

设计流量:最大日平均时流量为Qmax= 129L/s 水力停留时间:T=2.5h 污泥浓度:X=3000mg/L 污泥回流液浓度:Xr=10000mg/L 考虑到厌氧池与氧化沟为一个处理单元,总的水力停留时间超过15h,所以设计水量按

最大日平均时考虑[8]。

b.设计计算 ① 厌氧池容积:

V= Q1′ T=129×10-3×2.5×3600=1161m

3② 厌氧池尺寸:水深取为h=4.0m。

则厌氧池面积: A=V1161290m2 h

4厌氧池直径:

D=4A4290m(取D=20m)3.14

考虑0.3m的超高,故池总高为H=h+0.3=4+0.3=4.3m。

③ 污泥回流量计算:

回流比计算

R =X31030.43

XrX103

污泥回流量

QR =0.43×129=55.47L/s=4792m3/d 3.1.5氧化沟

3.1.5.1 设计参数(进水水质如表1所示)

进水BOD5 =200mg/L

出水BOD5 =20mg/L 进水NH3-N=30mg/L

出水NH3-N=15mg/L 污泥负荷Ns=0.14 KgBOD5/(KgVSS·d)污泥浓度MLVSS=5000mg/L 污泥f=0.6,MLSS=3000mg/L。

拟用卡罗塞(Carrousel)氧化沟,去除BOD5与COD之外,还具备硝化和一定的脱氮

除磷作用,使出水NH3-N低于排放标准。氧化沟按设计分2座,按最大日平均时流量设计Qmax=11092 m3/d= 129 m3/s,每座氧化沟设计流量为

Q1=Qmax= 65L/s。2总污泥龄:20d MLSS=3600mg/L,MLVSS/MLSS=0.75 则MLSS=2700 曝气池:DO=2mg/L NOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3-N还原 α=0.9

β=0.98 其他参数:a=0.6kgVSS/kgBODb=0.07d-1 脱氮速率:qdn=0.0312kgNO3-N/kgMLVSS·d K1=0.23d-1 Ko2=1.3mg/L 剩余碱度100mg/L(保持PH≥7.2): 所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原 硝化安全系数:2.5 脱硝温度修正系数:1.08 3.1.5.2 设计计算 ①.碱度平衡计算:

出水处理水中非溶解性BOD5值

BOD5f;

BOD5f =0.7×Ce×1.42(1-e-0.23×5)

式中:BOD5f——出水处理水中非溶解性BOD5值,mg/L;

Ce——出水中BOD5的浓度,mg/L; 则:BOD5f =0.7×20×1.42(1-e-0.23×5)=13.6 mg/L 则出水处理水中溶解性BOD5值,BOD5=20-BOD5f =6.4 mg/L ②.设采用污泥龄20d,日产污泥量 Xc

Xc =aQLr

1bc式中:Q——为氧化沟设计流量,11092 m3/d;

a——为污泥增长系数,取0.6 kg/kg;

b——污泥自身氧化率,取0.05 L/d;

Lr——为(L0-Le)去除的BOD5浓度,mg/L;

L0——进水BOD5浓度,mg/L;

Le——出水BOD5浓度,mg/L;

c——污泥龄,d。

Xc =aQLr0.6110922006.4644 kg/d 1bc100010.0520根据一般情况,设其中有12.4%为氮,近似等于总凯式氮(TKN)中用于合成部分[9],即:

0.124644=79.8 kg/d

即:TKN中有79.810007.19 mg/L用于合成。

11092

需用于氧化的NH3-N =34-7.19-2=24.81 mg/L

需用于还原的NO3-N =24.81-11.1=13.71 mg/L ③.碱度平衡计算

一般去除BOD5所产生的碱度(以CaCO3计)约为0.1mg/L碱度去除1mgBOD5,设进水中碱度为250mg/L。

所需碱度为7.1 mg碱度/mg NH3-N氧化,即 7.1×24.81=176.15 mg/L 氮产生碱度3.0 mg碱度/ mg NO3-N还原,即 3.0×13.71=41.1 mg/L 计算所得的剩余碱度=250-176.15+41.1+0.1×Lr=32.75+0.1×193.6=133.9 mg/L

计算所得剩余碱度以CaCO3计,此值可使PH≥7.2 mg/L ④.硝化区容积计算:

曝气池:DO=2mg/L 硝化所需的氧量NOD=4.6 mg/mg NH3-N氧化,可利用氧2.6 mg/mg /NO3-N还原 α=0.9

β=0.98 其他参数:a=0.6kgVSS/kgBOD5

b=0.07d-1 脱氮速率: qdn=0.0312kgNO3-N/(kgMLVSS·d)K1=0.23d-

1Ko2=1.3mg/L 剩余碱度100mg/L(保持PH≥7.2): 所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原 硝化安全系数:2.5 脱硝温度修正系数:1.08

硝化速率为

n0.47e0.098T15

NO20.05T1.158KON102O2

220.47e0.09815150.05151.1581.32210



=0.204 d-1

故泥龄: tw114.9d 0.204n

采用安全系数为2.5,故设计污泥龄为:2.54.9=12.5 d

原假定污泥龄为20d,则硝化速率为:

n

单位基质利用率:

u10.05L/d 20nba0.050.050.167

kgBOD5/kgMLVSS.d

0.6

式中: a——污泥增长系数,0.6;

b——污泥自身氧化率,0.051/d。

在一般情况下,MLVSS与MLSS的比值是比较固定的,这里取为0.75

则:

MLVSS=f×MLSS=0.753600=2700 mg/L

所需的MLVSS总量=

2006.4100000.167100011000Kg

硝化容积: Vn1100010004074m3 2700

水力停留时间: tn⑤.反硝化区容积:

4074248.81h 11092

12℃时,反硝化速率为:

Fqdn0.03()0.029T20M

式中: F——有机物降解量,即BOD5的浓度,mg/L

M——微生物量,mg/L;

——脱硝温度修正系数,取 1.08。

T——温度,12℃。

则:

2000.0291.081220

qdn0.0336001624

=0.017kg NO3-N /kgMLVSS.d 还原NO3-N的总量=

13.7111092152kg/d 1000

脱氮所需MLVSS=

1528000kg 0.019800010002962.9m3 270021

脱氮所需池容: Vdn

水力停留时间: tdn⑥.氧化沟的总容积:

总水力停留时间:

2962.9246.4h 11092t=tn+tdn=8.81+6.4=15.2h

总容积:

V=Vn+Vdn=4074+2962.9=7036.9m3

⑦.氧化沟的尺寸:

氧化沟采用4廊道式卡鲁塞尔氧化沟,取池深3.5m,宽7m,则氧化沟总长:7036.940742962.9287.2 m。其中好氧段长度为166.2m,缺氧段长度为121m。3.573.573.57弯道处长度: 3722122166m

则单个直道长: 287.26655.3m(取54m)4

故氧化沟总池长=54+7+14=75m,总池宽=74=28m(未计池壁厚)。⑧需氧量计算:

采用如下经验公式计算:

氧量O2(kg/d)ALrBMLSS4.6Nr2.6NO3

式中:A——经验系数,取0.5;

Lr——去除的BOD5浓度,mg/L;

B——经验系数,取0.1;

Nr——需要硝化的氧量,24.8111092103=275.2 kg/d

其中:第一项为合成污泥需氧量,第二项为活性污泥内源呼吸需氧量,第三项为硝化污泥需氧量,第四项为反硝化污泥需氧量。

需要硝化的氧量:

Nr=24.811109210-3=275.2 kg/d R02=0.511092(0.19-0.0064)+0.140742.7+4.6275.2-2.6152 =2988.95 kg/d=124.54 kg/h 30℃时, 采用表面机械曝气时脱氮的充氧量为:

R0Cs(T)C1.024T20

RCs(20)

式中:α——经验系数,取0.8;

β——经验系数,取0.9

——相对密度,取1.0;

Cs(20)Cs(30)——20℃时水中溶解氧饱和度,取9.17 mg/L;——30℃时水中溶解氧饱和度,取7.63 mg/L;

C——混合液中溶解氧的浓度,取2mg/L;

T——温度,30℃。

则:

R0CsTC1.024(T20)RCs(20)= 124.549.17(3020)0.80.917.6321.024

=231.4 kg/h 查手册,选用DY325型倒伞型叶轮表面曝气机[10],直径Ф=3.5m,电机功率N=55kW,单台每小时最大充氧能力为125kgO2/h,每座氧化沟所需数量为n,则

nR0231.41.85125125

取n=2台

⑨回流污泥量:

可由公式RX求得。

XrX式中:X——MLSS=3.6g/L,Xr——回流污泥浓度,取10g/L。

则:

R3.60.56(50%~100%,实际取60%)

103.6考虑到回流至厌氧池的污泥为11%,则回流到氧化沟的污泥总量为49%Q。⑩剩余污泥量:

Qw6442400.25110921524.1kg/d0.751000

如由池底排除,二沉池排泥浓度为10g/L,则每个氧化沟产泥量为:

1524.1152.41m3/d

3.1.5.3 氧化沟计算草草图如下:

备用曝气机栏杆可暂不安装图3 氧化沟设计草图(1)

上走道板进水管接自提升泵房及沉砂池走道板上出水管至流量计井及二沉池钢梯图4 氧化沟设计草图(2)

3.1.6 二沉池

该沉淀池采用中心进水,周边出水的幅流式沉淀池,采用刮泥机[11]。3.1.6.1设计参数

设计进水量:Q=11092 m3/d=463.2 m3/h

表面负荷:qb范围为1.0—1.5 m3/ m2.h,取q=1.0 m3/ m2.h

固体负荷:qs 一般范围为120 =140 kg/ m2.d 水力停留时间(沉淀时间):T=2.5 h 堰负荷:取值范围为1.5—2.9L/s.m,取2.0 L/(s.m)3.1.6.2.设计计算 ① 沉淀池面积: 按表面负荷算: AQ463.2463.2m2 qb1② 沉淀池直径:D4A4463.224.2m16m3.14

QT=qbT=1.02.5=2.5m<4m A③ 沉淀部分有效水深为

h2 =④ 沉淀部分有效容积

3.1424.322.5=1150m3 h2=

V=

44D2⑤ 沉淀池底坡落差,设池底坡度

i=0.05

D24.3

则:

h4=i20.0520.5075m

22⑥ 沉淀池周边水深

其中缓冲层高度取h3=0.5 m

刮泥板高度取h5=0.5 m

H0=h2+h3+h5=2.5+0.5+0.5=3.5mm ⑦ 沉淀池总高度 H 设沉淀池超高h1=0.3m

H=H0+h4+h1=3.5+0.51+0.3=4.31m 3.1.6.3 校核堰负荷:

径深比

D24.38.1h1h32.50.5

D24.36.94hhh2.50.50.5

123

堰负荷

Q11092145m3/(d.m)1.67L/(s.m)2L/(s.m)D3.1424.3

以上各项均符合要求

3.1.6.4 辐流式二沉池计算草图如下:

出水进水图5 辐流式沉淀池排泥出水进水图6 辐流式沉淀池计算草图3.1.7 接触消毒池与加氯间

采用隔板式接触反应池[10]

3.1.7.1.设计参数

设计流量:Q′=11092 m3/d =129 L/s(设一座)水力停留时间:T=0.5h=30min 设计投氯量为:max=4.0mg/L

平均水深:h=2.0m

隔板间隔:b=3.5m 3.1.7.2.设计计算 ①

接触池容积:

V=Q′T=0.1293060=232m3

V232116m2

表面积A=h2

隔板数采用2个,则廊道总宽为B=(2+1)3.5=10.5m 取11m

接触池长度LA11611m B10.5

长宽比L113.14 b3.5

实际消毒池容积为V′=BLh=11112=242m3

池深取2+0.3=2.3m(0.3m为超高)经校核均满足有效停留时间的要求 ② 加氯量计算:

设计最大加氯量为max=4.0mg/L,每日投氯量为

ω=maxQ=41109210-3=44.3kg/d=1.85kg/h

选用贮氯量为120kg的液氯钢瓶,每日加氯量为3/8瓶,共贮用10瓶,每日加氯机一台,投氯量为1.5~2.5kg/h。

配置注水泵两台,一用一备,要求注水量Q=1—3m3/h,扬程不小于10mH2O ③ 混合装置

在接触消毒池第一格和第二格起端设置混合搅拌机2台(立式)。混合搅拌机动率N0为

N0QTG2102

式中:QT——混合池容积,m3;

——水力粘度,20℃时, =1.06×10-4Kg·s/m2;

G——搅拌速度梯度,对于机械混合G=500s-1。

1.060.1293050020.068KW

N035102

实际选用JBK-2200框式调速搅拌机,搅拌器直径φ2200,高度H=2000mm,电动机功率为4.0KW。

接触消毒池设计为纵向折流反应池。在第一格,每隔3.8m设纵向垂直折流板,第二格每隔6.33m设垂直折流板,第三格不设。

④ 接触消毒池计算草图如下:

图7 接触消毒池工艺计算图

3.2污泥处理系统 3.2.1污泥回流泵房 3.2.1.1.设计说明

二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回流泵房,其他污泥由刮泥板刮入污泥井中,再由排泥管排入剩余污泥泵房集泥井中。

设计回流污泥量为QR=RQ,污泥回流比R=50%-100%。按最大考虑,即QR=100%Q=129 L/s=11145.6m3/d 回流污泥泵设计选型 3.2.1.2 扬程:

二沉池水面相对地面标高为0.6m,套筒阀井泥面相对标高为0.2m,回流污泥泵房泥面相对标高为-0.2-0.2=-0.4m,氧化沟水面相对标高为1.5m,则污泥回流泵所需提升高度为:1.5-(-0.4)=1.9m 3.2.1.3 流量:

两座氧化沟设一座回流污泥泵房,泵房回流污泥量为11145.6 m3/d=464.4 m3/h 3.2.1.4 选泵:

选用LXB-900螺旋泵2台(1用1备),单台提升能力为480 m3/h,提升高度为2.0m-2.5m,电动机转速n=48r/min,功率N=5.5kW.[11]

回流污泥泵房占地面积为9m×5.5m 3.2.2 剩余污泥泵房 3.2.2.1 设计说明

二沉池产生的剩余活性污泥及其它处理构筑物排出污泥由地下管道自流入集泥井,剩余污泥泵(地下式)将其提升至污泥浓缩池中。

处理厂设一座剩余污泥泵房(两座二沉池共用)

污水处理系统每日排出污泥干重为2×1524.1kg/d,即为按含水率为99%计的污泥流量2Qw=2×152.4 m3/d=304.8 m3/d=12.7 m3/h 3.2.2.2.设计选型 ① 污泥泵扬程: 辐流式浓缩池最高泥位(相对地面为)-0.4m,剩余污泥泵房最低泥位为-4.53m,则污泥泵静扬程为H0=4.53-0.4=4.13m,污泥输送管道压力损失为4.0m,自由水头为1.0m,则污泥泵所需扬程为H=H0+4+1=9.13m。

② 污泥泵选型:

选两台,1用1备,单泵流量Q>H=14-12m, N=3kW ③ 剩余污泥泵房:

2Qw=6.35 m3/h。选用1PN污泥泵Q= 7.2-16 m3/h, 21

占地面积L×B=4m×3m,集泥井占地面积3.0mH3.0m

23.2.3 污泥浓缩池

采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。

3.2.3.1设计参数

进泥浓度:10g/L

污泥含水率P1=99.0%,每座污泥总流量: Qw=1524.1kg/d=152.4 m3/d=6.35 m3/h

设计浓缩后含水率P2 =96.0%

污泥固体负荷:qs =45kgSS/(m2.d)

污泥浓缩时间:T=13h

贮泥时间:t=4h 3.2.3.2 设计计算 ① 浓缩池池体计算: 每座浓缩池所需表面积

AQw1524.133.86m2 qs45

 浓缩池直径

D

u4A433.866.5m3.14

水力负荷

Qw152.45.05m3/(m2.d)0.21m3/(m2.h)2A3.1

 有效水深h1=uT=0.2113=2.73m

取h1=2.8m 浓缩池有效容积V1=A h1=33.862.8=94.8m3 ② 排泥量与存泥容积: 浓缩后排出含水率P2=96.0%的污泥,则

Qw′=

100P100991Qw152.4138.1m3/d1.54m3/h

100P210096

按4h贮泥时间计泥量,则贮泥区所需容积

V2=4Qw′=41.54=6.16 m3

泥斗容积

V3h43

(r1r1r2r2)22

=

式中: 3.141.21.121.10.60.622.8m3 3h4——泥斗的垂直高度,取1.2m

r1——泥斗的上口半径,取1.1m

r2——泥斗的下口半径,取0.6m

设池底坡度为0.08,池底坡降为:

h5=0.08D2r10.086.521.10.172m

故池底可贮泥容积:

V4h53

(R1R1r1r1)22

=

3.140.172(3.2523.251.11.12)2.28m3 3

式中:

R1——浓缩池半径, m;

r1——泥斗的上口半径,m。

因此,总贮泥容积为

VwV3V42.82.855.68m3V26.16m3

(满足要求)③ 浓缩池总高度:

浓缩池的超高h2取0.30m,缓冲层高度h3取0.30m,则浓缩池的总高度H为

Hh1h2h3h4h5

=2.8+0.30+0.30+1.2+0.17=4.77m ④ 浓缩池排水量:

Q=Qw-Qw’ =6.35-1.54=4.81m3/h ⑤ 浓缩池计算草图:

上清液出泥进泥图7 浓缩池计算草图

3.2.4 贮泥池及污泥泵 3.2.4.1设计参数

进泥量:经浓缩排出含水率P2=96%的污泥2Q w′=238.1=76.2m3/d,设贮泥池1座,贮泥时间T=0.5d=12h 3.2.4.2 设计计算

池容为

V=2Qw′T=76.20.5=38.1 m3

贮泥池尺寸(将贮泥池设计为正方形)

LBH=3.63.63.6m

有效容积V=46.66m3

浓缩污泥输送至泵房

剩余污泥经浓缩处理后用泵输送至处理厂南面的苗圃作肥料之用

污泥提升泵

泥量Q=76.2m3/d=3.17 m3/h

扬程H=2.3-(-1.5)+4+1=7.8m

选用1PN污泥泵两台[11],一用一备,单台流量Q=7.2~16 m3/h,扬程H=14~12mH2O,功率N=3kW

泵房平面尺寸L×B=4m×3m 4 厂区平面及高程设计 4.1厂区平面布置

4.1.1各处理单元构筑物的平面布置:

处理构筑物是污水处理厂的主体建筑物,在对它们进行平面布置时,应根据各构筑物的功能和水力要求结合当地地形地质条件,确定它们在厂区内的平面布置应考虑[13]:

① 贯通,连接各处理构筑物之间管道应直通,应避免迂回曲折,造成管理不便。② 土方量做到基本平衡,避免劣质土壤地段

④ 在各处理构筑物之间应保持一定产间距,以满足放工要求,一般间距要求5~10m,如有特殊要求构筑物其间距按有关规定执行。

④ 各处理构筑物之间在平面上应尽量紧凑,在减少占地面积。4.1.2平面布置

本着尽量节约用地,并考虑发展预留用地的原则,进行厂区的总平面布置,本期工程总占地面积约4.5亩,包括污水处理构筑物、建筑物、附属构筑物、道路绿化,按功能分为污水预处理区、污水主处理区、污泥处理区、生活管理区、预留的回用水处理区。

4.1.3管线布置

厂区内还应有给水管,生活水管,雨水管,消化气管管线。辅助建筑物:

污水处理厂的辅助建筑物有泵房,鼓风机房,办公室,集中控制室,水质分析化验室,变电所,存储间,其建筑面积按具体情况而定,辅助建筑物之间往返距离应短而方便,安全,变电所应设于耗电量大的构筑物附近,化验室应机器间和污泥干化场,以保证良好的工作条件,化验室应与处理构筑物保持适当距离,并应位于处理构筑物夏季主风向所在的上风中处。

在污水厂内主干道应尽量成环,方便运输。主干宽6~9m次干道宽3~4m,人行道宽1.5m~2.0m曲率半径9m,有30%以上的绿化。

4.2高程设计 4.2.1高程布置原则

①保证处理水在常年绝大多数时间里能自流排放水体,同时考虑污水厂扩建时的预留储备水头。

②应考虑某一构筑物发生故障,其余构筑物须担负全部流量的情况,还应考虑管路的迂回,阻力增大的可能。因此,必须留有充分的余地。

③处理构筑物避免跌水等浪费水头的现象,充分利用地形高差,实现自流。④在仔细计算预留余量的前提下,全部水头损失及原污水提升泵站的全扬程都应力求缩小。

⑤应考虑土方平衡,并考虑有利排水。4.2.2 高程布置时的注意事项

在对污水处理厂污水处理流程的高程布置时,应考虑下列事项。

①选择一条距离最长、水头损失最大的流程进行水力计算,并应适当 留有余地,以保证在任何情况下处理系统能够正常运行。

②污水尽量经一次提升就应能靠重力通过处理构筑物,而中间不应再经加压提升。③计算水头损失时,一般应以近期最大流量作为处理构筑物和管(渠)的设计流量。

④污水处理后应能自流排入下水道或者水体。4.2.3污水污泥处理系统高程布置 ①厂区设计地面标高

暂定厂区自然地平标高为地面标高,可根据厂区现场实际情况对土方适当平衡。②工艺流程竖向设计

处理厂进水管道管底标高暂定为-2.500m,以此为依据,进行污水处理流程的竖向设计。4.2.4高程确定

计算污水厂处关渠堰的设计水面标高

根据式设计资料,关渠堰自本镇西南方向流向东北方向,关渠堰底标高为-3.75m,河床水位控制在0.5-1.0m。

而污水厂厂址处的地坪标高基本上在2.25m左右(2.10-2.40),大于关渠堰最高水位1.0m(相对污水厂地面标高为-1.25)。污水经提升泵后自流排出,由于不设污水厂终点泵站,从而布置高程时,确保接触池的水面标高大于0.8m【即关渠堰最高水位(-1.25+0.154+0.3)=-0.796≈0.8m】,同时考虑挖土埋深。

各处理构筑物的高程确定

设计氧化沟处的地坪标高为2.25m(并作为相对标高±0.00),按结构稳定的原则确定池底埋深-2.0m,再计算出设计水面标高为3.5-2.0=1.5m,然后根据各处理构筑物的之间的水头损失,推求其它构筑物的设计水面标高。经过计算各污水处理构筑物的设计水面标高见下表。再根据各处理构筑物的水面标高、结构稳定的原理推求各构筑物地面标高及池底标高。具体结果见污水、污泥处理流程图。

表3 各污水处理构筑物的设计水面标高及池底标高

构筑物名称 进水管 中格栅 泵房吸水井 接触池 水面标高(m)-0.19-0.39-1.00-0.67

池底标高(m)

-0.79-1.30-2.97

构筑物名称 沉砂池 厌氧池 氧化沟 二沉池

水面标高(m)

3.00 2.00 1.5 0.60

池底标高(m)

2.10-2.00-2.00-4.53

4.3厂区给排水设计 4.3.1给水设计

厂址在规划区内,自来水直接接入厂区内供全厂的消防、生活和部分生产用水。消防、生产、生活水管道共用,管道在厂区内布置成环状。

4.3.2厂区排水设计

厂区排水按雨污分流设计[2]。生产、生活污水经厂区污水管道收集后排入粗格栅前的进水井,与原污水一并处理。厂区雨水经雨水管道,汇集排至厂外河道。技术经济分析 5.1 工程投资估算 5.1.1 土建工程造价 土建工程造价见表4。

表4 土建部分投资估算

号 1 2 3 4 5 5 6 7 8 9 10 11 12 13 工

称 格栅井 提升泵房平流沉砂池 厌氧池 氧化沟沟体 二沉池 集泥井 污泥回流泵房 污泥泵房 污泥浓缩池 加氯间 变配电间 中心控制室 土建工程造价合计

数量 1座 1座 1座 1座 2座 1座 1间 1间 1间 1间 1间 1间 64.00 m3

单 价/万元 10000元/座 600元/ m3 400元/ m3 500元/ m3 400元/ m3 400元/ m3 5000元/间 10000元/间 10000元/间 5000元/间 3000元/间 64500元/间 400元/ m3

一期价/万元 1.0 2.42 4.8 4.25 960 4.06 0.5 1.0 1.0 0.5 0.3 4.45 3.56 987.84 5.1.2 设备工程造价 主要设备投资估算见表5。

表5 主要设备投资估算

序2 名

称 格

栅 提升泵 规格、型号 中格栅、不锈钢 150QW-180-6-5.5

单 位 座 台 数 量 1 4

价格/万元

3.5 3.0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 污泥泵 回流污泥泵 污泥输送机 脱水机 刮泥机 自动化控制系统 电控部分 管道及附件 工程管道、阀门 曝气转盘 变压器 电缆 自动加药装置 配电箱 其他配件 LXB-900 3 台 LXB1400 1 台

套台

2GC型支座式中心驱1 台

动套套套套

D=1000mm,L=900mm 24个 每池3用备 QZB自藕变压器 台

840 米

国产TP2660 1套

GGD 2 套

3.3

0.6 1.5 1.4 2.2 23 8 5 4 2.4 0.8 12 2 0.2 85.2 由于一些设备以及设备附件资料不全并且所需数量有所波动,还包括一部分不可遇见费用无法确定,所以无法给出明确细节,根据经验参数并参见同水量同工艺污水厂基本设备费,故在此设备总投资粗略估计在450万元左右[14]。

5.1.3 其他投资及工程总价估算 其他投资及工程造价估算见表6。

表6 其他投资及工程总价估算

序号 1 2 3 4 5 6 7 8

名称 土建工程造价 设备工程造价

小记 设计费 运输管理费 安装调试费 税金

取费标准

(1)+(2)(3)×5%(2)×3%(2)×8%(3+4+5+6)×6%

价格(万元)

987.14 450 1537.14 71.85 41.11 44 84 1581.37 5.2运行成本概算(单座污水处理站)5.2.1基础资料 电费:0.80元/(kw.h)ClO2生产成本费:3元/kg 人工费:900元/月 5.2.2运行成本概算 成本估算见表7。

表7成本估算表

序号 1 2 3 4 5 6 7 8 9 10 11 费用名单 电费 药剂费 工资福利费 固定资产折旧 大修费 检修维护费 管理和其他费用 年经营成本 年总成本 单位水成本 单位水经营成本

单位 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 万元/年 元/t 元/t

计算公式 E1=519×0.5/1.42 E2=8.0t×30000元/t×10-4 E3=12000元/(人·年)×38人×10-4

E4=1781×4.8% E5=1781×1.7% E6=1781×1.0%

E7=(E1+E2+„„+E6)×10% Ec=E1+E2+E3+E5+E6+E7

Yc= Ec+E4 T1=Yc/365Q T2=Ec/365Q

费用价格 182.7 24.0 45.6 84.48 30.2 17.81 43.08 347.74 391.74 0.53 0.34 由于氧化沟工艺的特点,本次设计没有设计初沉池,但是在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,由于氧化沟活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。

本次设计工艺流程简单、构筑物少,运行管理方便。而且处理效果稳定,出水水质好。基建投资省总投资控制在2000万以内,运行费用低,单位水成本为0.53元/m3。

6.环境保护和安全生产 6.1 环境保护

环境保护不仅要提供合理利用、保护自然资源的一整套技术途径和技术措施,而且还要研究开发废物资源化技术、改革生产工艺、发展无废或少废的闭路生产系统,其主要任务为:

①保护自然资源和能源,消除资源的浪费,控制和减少污染。

②研究防治环境污染的机理和有效途径,保护和改善环境,保护人们自身健康。③综合利用废水、废物、废渣,促进工农业生产的发展。

水污染控制的主要任务是从技术和工程上解决预防和控制污染的问题,还要提供保护水环境质量、合理利用水资源的方法。以及满足不同用途和要求的用水工艺技术和工程措施。

6.1.1 气味控制

污水处理厂处理过程中产生对环境的影响主要在气味和噪声这两方面。采取的主要措施是隔离。

处理厂会产生各种气味,特别是原生污水,栅渣及污泥气味更为严重,其中硫化氢气味尤为敏感。本工程在污泥泵房,污泥脱水机房等室内部分,考虑采用机械通风的方式,减少气味危害,在露天的水池及采用自然通风清除气味,在总平面布置图中,充分考虑把易产生恶臭的处理机构布置在下风向,远离生活区,厂区空地充分绿化,并栽种对污染气体有吸收作用的植物。

6.1.2 厂区废水、废渣处置

①污水处理厂厂内的排水体制采用量污分流制。厂内的生活污水经厂区管道收集,输送到污水处理系统中间和原污水一起处理,达标排放。

②厂内格栅、沉砂池和脱水机房均有固体废物产生,对此,在运行管理中要按要求在指定的场所堆放,外运时要用半封闭式子卸专用车辆,运送到指定区域外置,栅渣、沉渣应榨干后打包,污泥脱水后的泥饼含水率应小于80%。

6.1.3 防止事故性排放[15]

①采用二类负荷的供电等级,双回路供电,以防止污水处理厂因停电而造 成处理厂丧失处理能力。

②构筑物应考虑维修清理,设备应要有备份。

③加强处理设施的维护管理,确保设备正常运转,减少事故性排放的机率。6.2 安全生产 6.2.1 劳动保护

按照《中华人民共和国劳动法》的要求,对操作人员安全卫生设施必须符合国家的规定标准。

①在污水处理厂运转之前,须对操作人员,管理人员进行安全教育,制定必要的安全操作规程和管理制度,操作人员必须持证上岗。

②各处理构筑物走道和临空天桥的位置均要设置保护栏杆,且采用不锈钢制作,其走道宽度和栏杆高度及它们的强度均要符合国家劳动保护规定。

③在生产有毒气体的工段,要设置硫化氢测定仪器,报警仪和通风系统,并配有防毒面具。

④对于结构密封,通风条件差的场所,采用机械通风。

⑤厂区各构筑物边应配置救生衣、救生圈、安全带、安全帽等劳动防护品。6)厂区管道,闸阀均须考虑阀门井,或采用操作杆至地面,以便操作。⑦易燃、易爆及有毒物品,须设专用仓库、专人保管。满足劳动保护规定。⑧所有电气设备的安装、防护,均须满足电器的有关安全规定,必须有接地措施和安全操作距离。

⑨机械设备的危险部分,如传送带、明齿轮、砂轮等必须安装防护装置。6.2.2 消防 6.2.2.1 防火等级

①变电站根据国家规定,丙类防火标准。②其他厂区建筑设计均按国家建筑防火规范规定。6.2.2.2 防水措施

①厂区设置消防系统,有消防水泵和室外消火组成,采用高压给水系统,②主要建筑物每层室内消火栓及消防通道,仪表控制室设有自动喷水灭火装置。③变电所、污泥泵房内设置干粉灭火器。中控室、档案室、自料室、打字间等要配置KYZ 型灭火器。

6.3结论和建议 6.3.1 结论

为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;

根据总体规划和水量调查分析,将兴建12000 m3/d的污水处理厂(不含厂外截流管道); 经技术经济比较,采用卡式氧化沟工艺,具有运行稳定、投资省、管理方便等优点,故推荐采用;

根据综合分析,单座污水处理站的主要技术经济指标如下: ①单座工程总投资:1600万元 ②单位投资:1333元/ m3

③单位运行费:0.53元/m3 ④占地面积:14.5亩 6.3.2建议

为保证拟建的污水处理厂能正常运转,达到预期的处理程度,建议有关部门对工业废水的排放加强监测和控制,严格执行国家颁布的《污水综合排放标准》(GB8978-1996)和《污水排放城市下水道水质标准》(CJ3082-1999)。

参考文献

上一篇:开展“扣好人生第一粒扣子”主题教育心得下一篇:中国诗歌史浅谈