【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的(精选6篇)
1.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇一
(第六课时)
【题1】甲溶液的pH=6,乙溶液的pH=2,则下列叙述正确的是(D)A.甲、乙两溶液的[H+]之比为400:1
B.甲、乙两溶液均呈酸性 C.甲中水的电离程度小于乙中水的电离程度
D.甲中水的电离程度与乙中水的电离程度无法比较
【解析】甲、乙两溶液中[H]之比(1×10 mol•L):(1×10
+
-6
-1
-2
mol•L
-1)=1:1×10,4故A错。未指明溶液的温度,Kw值未确定,pH<7的溶液不一定呈酸性,故B错误。若甲、乙两溶液都是酸的溶液,则甲中[H+]较小,H2O的电离被抑制程度小,电离程度大,乙中[H+]较大,H2O的电离被抑制程度大,电离程度小;若甲、乙两溶液都是强酸弱碱盐的溶液,+
+则甲中[H]较小,H2O的电离程度较小,乙中[H]较大,H2O的电离程度较大。综合上述分析,可知C错,D对。
【题2】等体积、等物质的量浓度的氢硫酸和硫酸溶液中,存在的离子总数的关系是(B)A.H2S中多
B.H2SO4中多
C.一样多
D.无法比较
【解析】本题考查电解质的强弱与电离的关系。氢硫酸、硫酸分别属于弱电解质、强电解质,前者在溶液中只有极少量电离,尽管溶液的体积、物质的量浓度一样,但是离子的个数却是后者大于前者。
【题3】在0.1 mol•L-1硫酸溶液中,水电离出的氢离子浓度是(A)
A.5×10-13 mol•L-1 B.0.02 mol•L-1 C.1×10-7 mol•L-1 D.1×10-12mol•L-1
【解析】硫酸属于二元强酸,硫酸溶液中c(H+)=0.02mol•L-1,由此可以求出氢氧根离子的浓度:c(OH-)=Kw/c(H+)=10-14/0.02 mol•L-1=5×10-13 mol•L-1,根据水的电离特点,可知由水电离出的氢离子浓度必等于其所电离出的氢氧根离子的浓度。
【题4】已达到电离平衡的的醋酸溶液中,为了促进醋酸的电离,同时使溶液的pH降低,应采取的措施是(B)
A.加一定量的水
B.加热溶液
C.加入少量盐酸
D.再加入少量冰醋酸
【解析】加一定量的水,促进了醋酸电离,但氢离子浓度却会降低,引起溶液pH升高;加入少量盐酸和再加入少量冰醋酸等措施均会抑制醋酸的电离,虽然氢离子浓度高了,也不符合要求。
【题5】某一元酸HR的溶液中,H+与HR的个数之比为m:n,则此时HR的电离平衡常数为(A)
A.m2/n
B.m2/(m+n)
C.m2/(n-m)
D.n2/m2
【解析】根据一元弱酸的电离方程式HRH++R-,可知其电离常数等于氢离子和酸根离子浓度的乘积再除以弱酸分子的浓度。所以选项A符合题意。【题6】某温度下,可逆反应HA
H++A-的电离常数为Ka,下列说法正确的是(AD)
A.Ka越大,表示该弱酸较易电离
B.Ka越大,表示该弱酸较难电离 C.Ka随反应物浓度的改变而改变
D.Ka随体系温度的改变而改变
【解析】本题考查对电离平衡常数的理解以及影响因素,各离子浓度的系数次方乘积与原来总的分子浓度系数次方的比值,只受温度影响。
【题7】相同温度下的Na2CO3和NaHCO3溶液的pH,前者和后者的关系是(A)A.前者大
B.相等
C.前者小
D.不能肯定
【解析】本题考查影响盐类的水解程度大小的有关因素,从内因来看,由于多元弱酸电离出正酸根离子最困难(弱酸的各级电离程度不同,最后一步的电离最困难),所以其正酸根离子就比酸式根离子更易水解,所以本题中Na2CO3的水解程度就比NaHCO3大,故而溶液的碱性前者比后者大。
【题8】下列各式属于正确的反应离子方程式的是(A)A.NH4++H2OB.S2-NH3•H2O+H+
-+2H2O===H2S+2OH
CH3COO-+H3O+ C.CH3COOH+H2OD.CH3COOH+OH-==== CH3COO-+H2O 【解析】本题考查书写盐类水解离子方程式的原则。B选项错误,因为多元弱酸的水解是分步进行的,不能合起来写;C选项也是错误的,因这是电离方程式,不是水解方程式;D选项也不对,因这是一个酸碱中和的离子方程式。【题9】关于“盐类的水解”反应的说法正确的是(C)A.溶液呈中性的盐一定是强酸强碱生成的盐 B.含有弱酸根离子的盐的水溶液一定呈碱性
C.盐溶液的酸碱性主要决定于形成盐的酸碱性的相对强弱 D.同浓度的NH4Cl和NaCl pH之和大于14 【解析】盐溶液的酸碱性主要决定于形成的盐的酸碱性的相对强弱:强酸强碱盐,因不水解,溶液仍呈中性;某些弱酸弱碱盐,比如CH3COONH4,因醋酸和氨水的酸碱性相当,所以两种离子的水解程度相等,溶液也仍呈中性;由此可知A、B选项均错;同浓度的NH4Cl和NaCl,前者的pH<7,后者的pH=7,所以两者之和小于14,所以也错。
【题10】将20 mL.0.4 mol•L
-1
硝酸铵溶液跟50 mL.0.1 mol•L
-1
氢氧化钡溶液混合,则混合溶液中各离子浓度的大小顺序是(B)
A.c(NO3-)>c(OH-)>c(NH4+)>c(Ba2+)B.c(NO3-)>c(Ba2+)>c(OH-)>c(NH4+)C.c(Ba)>c(NO3)>c(OH)>c(NH4)D.c(NO3)>c(Ba)>c(NH4)>c(OH)【解析】NH4+和OH-生成一水合氨过程中,其他离子未参加反应,故Ba2+为0.005 mol,NO3为0.008 mol。根据反应计算,OH过量了0.002 mol,溶液显碱性;因为溶液较稀,且反应在常温时进行(无加热条件),氨气不会全部逸出,故溶液中仍有氨水电离出的NH4+,NH4+要比OH-少的多,所以c(OH-)>c(NH4+)。【题11】下列反应的离子方程式正确的是(C)A.铝片跟氢氧化钠溶液反应:Al+2OH=AlO2+H2↑ B.硫酸镁溶液跟氢氧化钡溶液反应: SO42-+Ba2+=BaSO4↓
C.碳酸钙跟醋酸反应:CaCO3+2CH3COOH=Ca2++2CH3COO-+H2O+CO2↑ D.铜片跟稀硝酸反应:Cu+NO3-+4H+=Cu2++NO↑+2 H2O 【解析】离子反应方程式的分析应根据离子反应发生的条件,找出参加反应的离子,再抓住关键,即参加反应的离子来源物质的性质,确定所书写的化学符号。离子方程式判断的常见错误为:化学反应原理不正确、不能正确使用化学符号、电荷数不守恒、忽略了反应物用量的影响等。A、D选项电荷均不守恒,其中A选项还存在反应原理的错误。B选项中未找全参加反应的离子,除Ba2+与SO42-生成沉淀外,Mg2+和OH-亦发生反应生成沉淀。【题12】醋酸是因为过度燃烧煤和石油,生成硫的氧化物及氧化物溶于水而生成硫酸和硝酸的缘故。某次雨水的分析数据如下:
[NH4+]=2.0×10-5 mol•L-1,[Cl-]=6.0×10-5 mol•L-1,[Na+]=1.9×10-5 mol•L-1,[NO3-
-
--
-2+-
-
+
-
2+
+
-]=2.3×10-5 mol•L-1,[SO4
2-
]=2.8×10
-5
mol•L
-1,则该酸雨的pH为(D)
【解析】本题要根据溶液中正负电荷总数相等(即电荷守恒)求出[H+],再求出pH。因为电解质溶液中阴离子所带负电荷总数一定和阳离子所带正电荷总数相等,即[NH4+]+[Na+]+[H+]=[Cl-]+[NO3-]+2[SO42-]
故[H+]=1×10-4 mol•L-1,pH=4。
2.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇二
一、鲁科版教材中“联想·质疑”栏目的设置和分类统计
二、“联想·质疑”栏目的特点
1. 起点低, 落点高。
栏目涉及日常生活类占31%, 自然现象类占10%, 工业生产、新材料占8%, 历史故事占1%, 这些内容浅显易懂, 符合学生的认知规律。在另外50%中, 科学探究类项目多数是以已有实验引发思考, 在模型假设中, 部分内容只要求具备基本的科学素养即可。总计约80%的内容都易于学生学习, 起点较低, 但折射的反应原理和科学方法都高度体现了化学学科的规律性, 可谓起点低, 落点高。
2. 位置特殊, 标识醒目。
“联想·质疑”栏目一般出现在章节开始, 新内容学习之前, 常常是教材内容的第一段。栏目图标彩色印刷, “联想·质疑”四个红色大字极易吸引读者的注意力。
3. 图文并茂, 形式活泼。
本栏目100处中约有86处以图片形式出现, 图片设置背景有自然现象, 生活用品, 工厂设备、体育赛场, 火箭发射, 等等, 形式活泼多样。彩色图片生动时尚, 富有动感, 学生往往喜闻乐见。
4. 短小精悍, 凝炼有度。
本栏目所涉及问题简单明了:或一幅图片, 或几行耐人寻味、富有哲理的字词。但与本节内容紧密联系, 环环相扣, 能紧紧抓住问题的本质, 凸显章节的重点、难点。
如《必修1》第3章第2节氮循环中:一幅“雷雨发庄稼”图片”所涉及的化学反应原理, 把本节重、难点知识由点及面, 全部覆盖。
三、“联想·质疑”栏目在课堂教学中的应用
根据“联想·质疑”栏目的位置特点:一般设置在章节第一段, 是单元的开始, 常常起着承上启下, 引入新课的功效。俗话说:“良好的开始是成功的一半。”根据栏目内容, 结合学科特点, 利用生动有趣的化学现象, 采取灵活多变的教学方法, 全力挖掘栏目内涵, 充分展示化学学科的魅力, 激发学生的学习兴趣, 培养学生科学的探究方法和创新意识, 最大限度地发挥栏目在课堂教学中的重要作用。创新教法主要有以下几种:
1. 计算法。
数字可以精确地表达微粒的个数, 帮助我们认识、感悟微观世界。
例如, 《必修1》第20面:第一章第3节, 物质的量, “联想·质疑”栏目:你知道一滴水 (约0.05ml) 含有多少个水分子吗? (教师提供参数:ρH2O=1 g/ml, 一个水分子质量约为2.99×10-26kg, 请同学们计算) 。通过计算可知, 1滴水中约含有16.7万亿亿个水分子, 这样庞大的数值, 既不方便计算, 又不方便读写, 所以科学界引入了一个新物理量———物质的量, 由此导入新课。
2. 谜语法。
结合“联想·质疑”栏目内容, 设计猜谜语活动, 常常会收到引人入胜的效果, 对创设课堂学习情景起到事半功倍的作用。
例如, 《必修1》第70面:第3章第二节, 根据“联想·质疑”栏目中煤的干馏及其产物内容, 设计猜谜语:“有人说他笨, 其实并不笨, 脱去竹笠换草帽, 化工生产逞英豪”, 打一个字的常见化工原料。学生就很容易想到苯。
再如, 《必修1》第85面:“联想·质疑”栏目中硫的转化产物。设计成谜语:“我入水中较安全, 水入我中有危险, 我与水合多放热, 牢记实验保平安。”学生由此快速想到“我”是硫酸。
3. 魔术法。
魔术的魅力易将学生引入“新奇境地”。
例如, 《必修1》第95面, 第3章第4节, 根据“联想·质疑”栏目中, 海水中的元素, 设计魔术“白纸显字”———引入卤族元素———碘。 (先用淀粉液在白纸上写字, 晒干后带入课堂, 用稀碘水喷雾) 。
再如, 《化学反应原理》模块中第二面:第1章第1节, 化学反应的热效应。根据“联想·质疑”栏目中的铝热反应原理, 设计魔术“火山爆发”。这些魔术的神秘色彩, 极大地激发了学生的学习兴趣, 由视觉冲击所形成的兴奋点易于其产生持久的形象记忆。
4. 故事法。
讲故事是学生喜闻乐见的学习形式, 寓教于乐。
例如, 《化学与生活》模块第33面, 主题2中课题1:食物中的营养素, 根据“联想·质疑”栏目内容, 设计讲故事:航海探险家哥伦布的船队在航行途中, 船员患上一种病。患病的船员被留在一个孤岛上, 他们采摘红红绿绿的野果充饥。过了几日奇迹出现了, 这些船员不但没有死, 反而恢复了健康。你知道船员们患的是什么病吗?野果为什么能使他们恢复健康呢?故事使同学们对维生素的作用有了深刻的理解。
5. 影像动画法。
视频、影像、动画是现代传媒技术的极好表现形式。利用多媒体技术, 把很多历史事件的精彩瞬间回放, 或把抽象的微观世界制成课件模拟出来, 配以声响教学效果极佳。
例如, 《有机化学》模块第116面, 第3章第3节合成高分子材料。根据“联想·质疑”栏目内容, 将2008年北京奥运会中帆船比赛和撑杆跳的精彩片断回放, 提问:美丽的帆船和极富弹性的撑杆都是由什么材料制成的呢?再如, 《必修1》第40面:第1章第2节电解质, 根据“联想·质疑”栏目内容, 用flash软件将NaCl的电离过程设计成动画, 配上声音进行播放, 教学效果很好。其次, 《物质结构与性质》模块第6面:“联想·质疑”栏目中的电子云也可用动画进行描述。
6. 模型法。
微观粒子的空间构型比较抽象, 利用实物模型可以方便学生理解分子的空间伸展方向, 尤其是判断有机物结构及其同分异构现象时很实用。
例如, 《物质结构与性质》模块第39面:在第2章第2节共价键和分子的构型中, 根据“联想·质疑”栏目内容, 让学生利用火柴梗和橡皮泥制作甲烷的球棍模型。要求学生在制作过程中, 充分体会价电子对互斥原理的应用, 同时, 利用此模型可观察CH3Cl、CH2Cl2、CHCl3、CCl4是否存在同分异构现象, 从而极大地方便了学生学习。
7. 分组讨论法。
自主·合作·探究是新教材着力倡导的学习方式。对于一些看似简单却又不能全面回答的“联想·质疑”栏目中遇到的问题, 学生可采用预习, 查找资料, 上网搜索, 请教专家等形式得到答案, 然后在课堂上进行分组讨论, 代表发言, 教师点评。
如《必修1》第33面:第2章第1节, 结合“联想·质疑”栏目中物质的分类有哪些方法?我们应该怎样对物质分类?采用分组讨论法, 课堂上同学们踊跃发言, 气氛热烈, 通过辩论、点评, 锻炼了他们的发散思维能力。
8. 实验探究法。
借助实验, 创设探究环境, 引发学习兴趣, 是“联想·质疑”栏目在课堂教学中运用的最常见形式。
如《必修2》第40页:第二章第2节化学反应的快慢和限度, 结合“联想·质疑”栏目进行实验探究。方法是将药品分组: (1) 表面积大致相同的镁带、铁片, 稀盐酸 (0.5 mol/L) ; (2) H2O2 (3%) 、MnO2粉末; (3) 块状大理石块、碳酸钙粉末、稀盐酸 (3 mol/L) , 同时进行对比探究实验, 并完成如下实验记录:
用控制变量法进行实验探究有利于培养学生形成科学的探究方法和掌握实验技能。
四、对《联想·质疑》栏目的改进建议———增加副标题
《联想·质疑》栏目内容字数一般在100~200字之间;涉及内容广泛, 增加副标题可以起到提纲挈领, 画龙点睛的作用。如《必修1》第73页:第3章第2节氮的循环, “联想·质疑”栏目中可以在闪电图片前加副标题———雷雨发庄稼你知道吗?再如, 《物质结构与性质》模块第44面“联想·质疑”栏目, 可加副标题———大千世界中的对称美。显然, 增加小标题可以使栏目更加突出主题, 凸现重点难点。谨此建议。
参考文献
[1]王磊.普通高中课程标准实验教科书·化学 (必修1) [M].济南:山东科技出版社, 2007:20.
[2]王明召, 高盘良, 王磊.普通高中课程标准实验教科书·化学反应原理[M].济南:山东科技出版社, 2007:2.
[3]王磊, 潘鸿章.普通高中课程标准实验教科书·化学与生活[M].济南:山东科技出版社, 2007:33.
[4]曹居东, 王磊, 尹冬冬.普通高中课程标准实验教科书·有机化学基础[M].济南:山东科技出版社, 2007:116.
[5]陈光巨, 王磊, 王明召.普通高中课程标准实验教科书·物质结构与性质[M].济南:山东科技出版社, 2007:44.
3.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇三
知识改变命运,学习成就未来
【解析】盐类的水解使溶液呈现酸碱性,所以必然会破坏了纯水的电离平衡。Na2CO3溶液中,首先Na2CO3==2Na++CO32-,但有弱会水解,CO32-+H2O-
HCO3-+H+,HCO3+H2OH2CO3+H+。所以c(Na+)大于c(CO32-)的2倍
【题5】在水中加入下列物质,可以促进水电离的是(C)A.H2SOB.NaOH
C.Na2COD.KNO3 【解析】2H2OOH+H3O,加酸加碱均会抑制水的电离,强酸强碱盐不影响水的电离,-
+含弱酸阴离子或弱碱阳离子的盐均可以促进水的电离。【题6】下列水解反应的化学方程式错误的是(A)A.Fe3++3H2O=Fe(OH)3+3H+ B.HSO3+H2OC.C6H5COO-+H2O-H2SO3+OH
C6H5COOH+OH-
-D.Al3++3 HCO3-=Al(OH)3↓+3CO2↑
【解析】A应该为可逆符号,而不是等号。D为双水解,相互促进至最后完全。【题7】盐酸、醋酸和碳酸氢钠是生活中常见的物质。下列表述正确的是(C)A.在NaHCO3溶液中加入与其等物质的量的NaOH,溶液中的阴离子只有CO32-和OH- B.NaHCO3溶液中:c(H)+c(H2CO3)=c(OH)C.10 mL 0.10 mol•L-1CH3COOH溶液加入等物质的量的NaOH后,溶液中离子的浓度由大到小的顺序是:c(Na+)> c(CH3COO-)> c(OH-)> c(H+)D.中和体积与pH都相同的HCl溶液和CH3COOH溶液所消耗的NaOH物质的量相同 【解析】在NaHCO3溶液中加入与其等物质的量的NaOH,恰好生成Na2CO3,而Na2CO3中CO32-会水解生成HCO3-,故A错误。c(H+)+c(H2CO3)=c(OH-)+ c(CO32-)质子守恒,故B错误。CH3COOH溶液加入等物质的量的NaOH,恰好生成CH3COONa,CH3COO发生水解生成CH3COOH和OH-,所以c(Na+)> c(CH3COO-)> c(OH-)> c(H+)。HCl溶液和CH3COOH溶液的pH都相同,说明二者产生出的H+一样多,CH3COOH为弱酸,部分电离,所以要电离出相同的H+,其物质的量浓度必然要比盐酸多。【题8】醋酸溶液中存在电离平衡:CH3COOH(B)
A.CH3COOH溶液中离子浓度的关系满足:c(H)=c(OH)+c(CH3COO)B.0.1 mol/L的CH3COOH溶液加水稀释,溶液中c(OH-)减小 C.CH3COOH溶液中加入少量CH3COONa固体,平衡逆向移动
+
-
-
-+
-
H++CH3COO-,下列叙述不正确的是欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
知识改变命运,学习成就未来
D.常温下,pH=2的CH3COOH溶液与pH=12的NaOH溶液等体积混合后,溶液的pH<7
【解析】电荷守恒:c(H+)=c(OH-)+c(CH3COO-);加水稀释,促进醋酸的电离,但c(H+)却减小,再依据水的离子积可得c(OH)增大;加入少量CH3COONa固体,抑制了醋酸的电离,平衡向逆反应方向移动;pH=2的CH3COOH溶液与pH=12的NaOH溶液等体积混合后,恰好生成CH3COONa,但CH3COO水解产生OH,所以pH>7。【题9】加热蒸干下列各物质的溶液,能得到该物质晶体的是(A)A.Na2COB.FeCl3
C.Al(NO3)
2D.Ca(HCO3)2
【解析】FeCl3加热蒸干产物为Fe(OH)3,Al(NO3)2加热蒸干产物为Al(OH)3,Ca(HCO3)2加热蒸干产物为CaCO3。
【题10】为了除去MgCl2酸性溶液中的Fe3+,可在加热搅拌的条件下加入一种试剂,过滤后再加入适量的盐酸,这种试剂是(D)
A.NH3•H2O
B.NaOH
C.Na2CO3
D.MgCO3
【解析】不能引入杂质,所以需要使用的试剂阳离子也应该为Mg2+。【题11】下列操作能使水的电离平衡发生移动,而且溶液呈酸性的是(BC)A.加入小苏打
B.滴加稀硫酸 C.加入FeCl3•6H2O晶体
D.加入NaOH固体
【解析】四个选项均可使水的电离平衡发生移动,B、D是抑制水的电离,A、C是促进水的电离,要特别注意NaHCO3溶于水时即可发生HCO3-的电离,又可发生HCO3-的水解,但电离趋势小于水解趋势,故溶液呈碱性。【题12】下列电解质在溶液中存在分子的是(C)
A.Ba(OH)
2B.CH3COOH
C.Ca(OH)2
D.NH3•6H2O 【解析】本题考查的是强弱电解质的分类,弱电解质在水中不能完全电离,故存在电解质分子。
【题13】一定温度下,将一定量的冰醋酸加水稀释过程中,溶液的导电能力变化如下图所示,下列说法正确的是(C)A.a、b、c三点溶液的pH:c < a < b B.a、b、c三点醋酸的电离程度:c > a > b C.用湿润的pH试纸测量a处溶液的pH,测量结果偏小
D.a、b、c三点溶液用1 mol/L氢氧化钠溶液中和,消耗氢氧化钠溶液体积:c < a
-
-
-欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
知识改变命运,学习成就未来
【解析】pH大小与[H]有关,pH大[H]小。导电能力与离子浓度有关,在醋酸溶液中离子来源于醋酸的电离,所以醋酸溶液的导电能力越强说明[H+]越大,A不对。电离度在一定温度下与浓度有关,溶液越席电离度越大,B错误。a处溶液稀释时,[H+]增大,pH减小,C正确。既然是“一定质量的冰醋酸”,则消耗氢氧化钠溶液体积应该是a=b=c,D错误。+
4.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇四
第一课时 化学键与化学反应中的物质变化 【教学目标】高考试题库
1.了解化学键的含义及离子键和共价键的形成; 2.了解化学反应中物质变化的实质。
3.认识共价化合物及离子化合物,化合物类型与化学键类型之间的关系。【教学重、难点】
1.化学键、离子键、共价键本质的理解。2.共价化合物和离子化合物的判断。【教学方法】
讨论、比较、讲解、探究、练习等。【教师具备】 多媒体
【教学过程】 【引入】
自学习化学以来,以接触过许多化学反应,而且在分析这些化学反应时,主要是考虑参与反应的物质通过反应生成了什么物质。其实在化学反应中,不仅有物质变化,还伴随能量变化。利用化学反应,有时为了制取物质,有时利用释放能量。【板书】
第一节 化学键与化学反应 【实验录像】
水在通电条件下分解 【师问】
1.化学反应中为什么会发生物质变化?化学反应中的最小微粒是什么?
2.以电解水为例,说说水电解时为什么要消耗能量?水分子是如何分解生成氢气与氧气的
3.为什么碳与氧气反应需要先加热?
4.初中化学中曾经讨论过的化学反应的实质是什么? 【板书】
一、化学键与化学反应中的物质变化 【学生讨论】 【讲解】
水分子中氢原子和氧原子间存在着强的相互作用,破坏它要消耗能量,通电为水的电解提供能量。【板书】
1.化学键:相邻原子间强的相互作用 【讲解】
〈1〉相邻而非较远。
〈2〉“强相互作用”包括相互吸引和相互排斥。【投影】
水分解时分子中化学键变化情况示意图。【交流、研讨]】
见课本32页。要求学生独立完成练习。【检查】
学生自动起来回答。【讨论】高考试题库
你对化学反应中的物质变化有了什么新的认识? 【板书】
化学反应中物质变化的实质:旧化学键断裂和新化学键形成。【引入】
氯化氢分子存在着氢原子和氯原子形成的化学键,氯化钠固体中也存在化学键,但是两者中化学键是有区别的。【板书】
2.化学键的类型 【联想、质疑】
根据核外电子排布规律思考:
1.氢原子和氯原子为什么有形成分子的趋势? 2.氯化氢分子是怎样形成的? 【学生讨论】
【学生回答】高考试题库 【讲解】
氢原子和氯原子各提供一个电子组成一对共用电子,使两者的最外电子层都达到稳定结构并产生强烈的相互作用(化学键),从而形成氯化氢分子。【板书】高考试题库
共价键:原子间通过共用电子形成的化学键。【阅读】
含共价键的常见物质。【归纳】
一般情况下,非金属元素原子间形成的是共价键。【投影】
金属钠、cl2、nacl、与它们的微观结构示意图。【交流、研讨】
1.运用核外电子排布规律解释氯化钠是怎样形成的。2.运用化学键的知识分析这个反应的实质。【讲解】
钠原子最外层的一个电子转移到氯原子的最外电子层,形成带正电荷的na+和带负电荷的cl-。两种离子通过静电作用形成稳定化合物-氯化钠。【板书】
离子键:阴、阳离子之间通过静电作用形成的化学键。
成键元素:活泼金属元素原子和活泼非金属元素原子间易形成离子键。【交流研讨】高考试题库
1.离子键的形成原因是什么?
2.形成离子键的微粒是什么?
3.离子键的成键本质是什么?
4.哪些元素的原子之间可能形成离子键(成键条件)? 比较离子键与共价键的异同: 共价键 离子键 成键原因 成键方式 成键微粒 成键元素 【交流研讨】
完成课本34页的表格。【板书】
3.化学键与物质构成 【归纳板书】
离子化合物和共价化合物的概念
离子化合物:含有离子键的化合物叫做离子化合物。
共价化合物:只含有共价键的化合物叫做共价化合物。【思考】
如何理解与区别离子键与共价键、离子键的化合物与共价键的化合物? 【迁移应用】有哪些化合物是离子化合物,哪些化合物是共价化合物?它们还属于哪类物质? 【列表归纳】化合物、构成微粒、实例、与电解质的关系 【随堂练习】
1.下列关于化学键的叙述正确的是()a.化学键是指相邻原子间的相互作用
b.化学键既存在于相邻原子之间,也存在于相邻分子之间
c.化学键通常是指相邻的两个或多个原子之间强烈的相互吸引作用 d.化学键通常是指相邻的两个或多个原子之间强烈的相互作用 2.下列变化不需要破坏化学键的是:()a.加热分解氯化铵 b.干冰气化 c.水通电分解 d.氯化钠溶于水 3.下列几组化合物,化学键型不相同的是:()a.nh3 和h2o b.hcl和hno3 c.h2s和na2s d.cacl2和nacl 4.下列微粒中,含有离子键又含有共价键的是()a.nh3 b.nh4cl c.h2s d.kcl 【课堂总结】
总结本节课重难点。【课后作业】
课后1、2、3、5。【板书设计】
第一节 化学键与化学反应
一、化学键与化学反应中的物质变化 1.化学键:相邻原子间强的相互作用 2.化学键的类型
共价键:原子间通过共用电子形成的化学键。
离子键:阴、阳离子之间通过静电作用形成的化学键。3.化学键与物质构成
5.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇五
【教学目标】
1、了解反应的自发性与反应过程中能量变化及熵值变化的关系;
2、能够用熵增原理判断化学反应进行的方向。【教学重难点】
能够用熵增原理判断化学反应进行的方向 【教学过程设计】
〖引入〗水往低处流,而不会自发的向上流;一般在室温下,冰块会融化,铁器在潮湿空气中会生锈,甲烷与氧气的混合气体遇明火就燃烧,这些过程都是自发的。这些不用借助于外力就可以自动进行的自发过程的共同特点是,体系会对外部做功或释放热量,即体系趋向于从高能状态转变为低能状态。那是否就意味着放热反应自发进行,吸热反应就是非自发进行呢?
〖副板书〗在25℃和1.01×105Pa时,2N2O5(g)== 4NO2(g)+O2(g)∆H=56.7 kJ/mol(NH4)2CO3(s)== NH4 HCO3(s)+NH3(g)∆H=74.9 kJ/mol 〖分析〗不难看出,上述两个反应都是吸热反应,显然只根据反应热(焓变)来判断反应进行的方向是不全面的。那么究竟如何来判断反应的自发性呢?
科学家根据体系存在着力图使自身能量趋于“最低”和由“有序”变为“无序”的自然现象,提出了互相关联的能量判据和熵判据,为最终解决反应自发性问题提供了必要的依据。
〖讲解〗除自发的化学反应外,还有一类自发过程,例如放在同一密闭容器中的气体或液体物质(也包括能够挥发的固态物质)的蒸汽,不需要外界的任何作用,气态物质会通过分子的扩散自发地形成均匀混合物。这种现象可以推广到相互接触的固体物质体系,经过长期放置后,人们能够找到通过扩散而进入的另一种固体中的原子或分子(这种现象可以作为纯物质难以保存的最本质的解释)。又如把硝酸铵溶于水虽然要吸热,它却能够自发地向水中扩散。为了解释这样一类与能量状态的高低无关的过程的自发性,人们提出在自然界还存在着另一种能够推动体系变化的因素,即在密闭条件下,体系有由有序自发地转变为无序的倾向。因为与有序体系相比,无序体系“更加稳定”,可以采取更多的存在方式。以扑克牌为例,经过多次的洗牌之后,严格按照花色和序号排列的机会与花色序号毫无规律的混乱排列的机会相比,大概要相差几十个数量级。科学家把这种因素称作熵。〖板书〗熵:
1、概念:描述体系混乱度的物理量
2、符号:S
3、单位:J•mol-1•K-1
4、熵判据:在与外界隔离的体系中,自发过程将导致体系的熵增大,这个原理也叫做熵增原理。在用来判断过程的方向时,就称为熵判据。
5、同一物质的熵与其聚集状态有关:S(g)>S(l)>S(s)
6、熵变(∆S):∆S==反应物总熵—生成物总熵
7、反应进行方向的判断方法: ∆H—T∆S<0 反应能自发进行 ∆H—T∆S=0 反应达到平衡状态 ∆H—T∆S>0 反应不能自发进行
〖讲解〗在温度、压强一定的条件下,焓因素和熵因素共同决定一个化学反应的方向。放热反应的焓变小于零,熵增加反应的熵变大于零,都对∆H—T∆S<0有所贡献,因此放热和熵增加有利于反应自发进行。
〖补充习题〗
1.下列说法中,正确的是()A.化学反应总是伴随着能量变化的 B.能够自发进行的反应不一定都是放热反应 C.只有放热反应才能够自发进行
D.能够自发进行的反应就一定能够发生并完成 2.下列物质中,熵值(S)最大的是()A.金刚石 B.Cl2(1)C.I2(g)D.Cu(s)3.水在273 K、1.01×105Pa时可转化为固态,在373 K时则又可转化为气态。若分别用S(g)、S(1)、S(s)表示水的气、液、固三种状态的熵值,则下列表达式中,正确的是()A.S(g) 5.下列热化学方程式中,放出的热量最多的是()A.CH4(g)+2O2(g)== CO2(g)+2H2O(1)△H B.2CH4(g)+4O2(g)== 2CO2(g)+4H2O(1)△H C.CH4(g)+2O2(g)== CO2(g)+2H2O(g)△H D.2CH4(g)+4O2(g)== 2CO2(g)+4H2O(g)△H 6.在25℃、1.01×105 Pa条件下,反应2N2O5(g)== 4NO2(g)+O2(g)∆H== +56.7 kJ· mol-1能够自发进行。从能量上分析,生成物的总能量比反应物的总能量,从反应前后的熵值看,反应后的熵值(填“增加”、“减小”或“不变”)。〖提高题〗 7.已知:298 K、1.01×105Pa下: 石墨:△H===0.0 kJ·mol- 1、S== 5.74 J·mol-1·K-1; 金刚石:△H== 1.88 kJ·mol- 1、S== 2.39 J·mol-1·K-1。 下列叙述中,正确的是()A.根据焓和熵的观点,石墨比金刚石稳定 B.根据焓和熵的观点,金刚石比石墨稳定 C.根据熵的观点,石墨比金刚石稳定,但根据焓的观点,金刚石比石墨稳定 D.根据焓的观点,石墨比金刚石稳定,但根据熵的观点,金刚石比石墨稳定 8.某化学反应其△H== —122 kJ·mol-1,∆S== 231 J·mol-1·K-1,则此反应在下列哪种情况下可自发进行()A.在任何温度下都能自发进行 B.在任何温度下都不能自发进行 C.仅在高温下自发进行 D.仅在低温下自发进行 9.煤中含有硫,燃烧时会产生有害的SO2,用生石灰可以消除SO2,减少污染,其反应为 CaO(s)+SO2(s)== CaSO3(s)298 K、1.01×1.01×10Pa时,此反应的△H== —402.0 kJ·mol,∆S== 345.7 说明 本书是根据中华人民共和国教育部制订的《普通高中化学课程标准(实验)》和《普通高中课程标准实验教科书化学选修4化学反应原理》的内容和要求编写的,供高中化学教师参考。 根据课程标准,《化学反应原理》课程要求学生学习化学反应与能量、化学反应速率和化学平衡以及溶液中的离子平衡等内容,并要求达到以下学习目标: 1.认识化学变化所遵循的基本原理,初步形成关于物质变化的正确观念; 2.了解化学反应中能量转化所遵循的规律,知道化学反应原理在生产、生活和科学研究中的应用; 3.赞赏运用化学反应原理合成新物质对科学技术和人类社会文明所起的重要作用,能对生产、生活和自然界中的有关化学变化现象进行合理的解释; 4.增强探索化学反应原理的兴趣,树立学习和研究化学的志向。 《化学反应原理》课程共36课时,各章的课时分配建议如下: 绪论 1课时 第一章 6课时 第二章 11课时 第三章 10课时 第四章 6课时 复习2课时 本书按章编排,每章分为―本章说明‖、―教学建议‖和―教学资源‖三部分。 ―本章说明‖包括教学目标、内容分析和课时分配建议等。教学目标反映知识与技能、过程与方法和情感态度与价值观几方面的教学目的要求。内容分析主要说明本章教材的内容及其在教学中的地位和功能、知识间的逻辑关系以及教材的特点。课时分配建议可供教师安排课时参考。 教学建议分节编排,包括本节的教学目标、教学重点、难点、教学设计的思路、活动建议、问题交流和习题参考等部分。活动建议主要是对如何组织实验、科学探究和调查研究等教学活动的建议。问题交流主要介绍―学与问‖、―思考与交流‖的设计意图或对栏目活动的组织提出建议,有些还给出了相应的参考答案。习题参考包括提示、参考答案以及补充习题等。 教学资源主要编入一些本章教材的注释或疑难问题的解答,及与本章内容有关的原理拓展、科技信息、化学史、国内外化学与化工生产中的某些新成就等。这些内容意在帮助教师理解和掌握教材,一般不宜对学生讲授,以免增加学生的负担。 应该指出的是,教参是供教师备课时参考的,而采用什么教学方法,应该由教师根据具体情况决定。 本书编写者:何少华、裴群、金仲呜、冷燕平、黄明建(按编写顺序)本书审定者:李文鼎、王晶 责任编辑:冷燕平 责任绘图:李宏庆 人民教育出版社 课程教材研究所 化学课程教材研究开发中心 2006年4月 目录 绪言 说明 教学建议 教学资源 第一章 化学反应与能量 本章说明 教学建议 第一节 化学反应与能量的变化 第二节 燃烧热能源 第三节 化学反应热的计算 教学资源 第二章 化学反应速率和化学平衡 本章说明 教学建议 第一节 化学反应速率 第二节 影响化学反应速率的因素 第三节 化学平衡 第四节 化学反应进行的方向 教学资源 第三章 水溶液中的离子平衡 本章说明 教学建议 第一节 弱电解质的电离 第二节 水的电离和溶液的酸碱性 第三节 盐类的水解 第四节 难溶电解质的溶解平衡 教学资源 第四章电化学基础 本章说明 教学建议 第一节 原电池 第二节 化学电源 第三节 电解池 第四节 金属的电化学腐蚀与防护 绪言说明 一、教学目标 1.认识物质的各种化学性质是有规律可循的,而这些规律是化学的精髓,需要下功夫学习掌握。 2.了解本书的基本内容和学习方法,认识学习概念模型是学习和研究化学反应原理的基础。3.初步了解―有效碰撞‖、―活化分子与活化能‖的概念模型,认识催化剂对于化学科学研究和化工生产的巨大作用,为其后的学习打下基础。 二、内容分析 1.地位和功能 绪言作为全书的开篇,目的在于让学生从一开头就对本书的基本内容、学习方法有一个初步的了解,并简要地介绍有效碰撞理论、活化分子与活化能的概念模型,以及催化剂对于化学科学和化工生产的巨大作用,以起到提纲挈领、引起学生学习化学反应原理兴趣的作用。 在前面的学习中,学生已经知道了化学反应的发生是由于反应物分子之间发生激烈碰撞,破坏化学键,使得各原子间的组合发生变化形成新的化学键,产生了新的分子,同时也了解了化学键的断裂和形成与化学反应中能量变化的关系。本模块是以学生此前的化学学习为基础,以学生对许多具体化学反应的知识积累为前提,为适应学生的学习心理发展需求而设立的选修课程,旨在帮助学生进一步从理论上认识一些化学反应原理的基础知识和研究问题的方法。教科书中介绍的简化后的有效碰撞模型和活化分子、活化能模型及催化剂的重要作用,将为学生后面的学习打下重要基础。2.内容结构 绪言在内容上主要可分为两个部分:一是第一、第二自然段,简要地介绍本模块的基本教学内容。教科书以大量事例说明,化学反应种类繁多,条件极其复杂,但都有规律可循。而这些规律恰好是化学的精髓,是吸引人们学习、钻研化学科学的魅力所在。二是第三、第四自然段,凸显研究问题的过程与方法,侧重介绍了简化后的有效碰撞模型的构建思路,及活化分子、活化能等概念。培养学生自觉地用辩证的观点看待各种复杂的化学反应,认识事物 3 的存在具有多样性,物质的稳定具有相对性,而化学变化的复杂性和规律性相辅相成。与此同时,还指出了学习化学反应原理的方法:(1)完成书中规定的实验、活动。 (2)观察周围(包括大自然)发生的化学现象,思考或进行模拟实验。(3)认真学习概念模型,它是学习、研究化学反应原理的基础。 值得注意的是,绪言在论证了有效碰撞模型的合理性之后,坦陈现有理论的缺憾:―到目前为止,人们还没有完全掌握计算或推测化学反应活化能的理论方法‖。这种客观的科学态度不仅有利于学生对相关理论有一个客观的认识,更对培养学生的情感态度与价值观会起到潜移默化的作用。同时也会激发学生将来进行更深入探究的意识。绪言的内容结构如下图所示: 3.内容特点 绪言中概括地介绍了课程的主要内容和学习方法与思路,同时还简介了―有效碰撞理论‖和―活化分子与活化能‖两个概念模型,对全书起着提纲挈领、画龙点睛的作用。 三、课时分配建议 建议用1课时。教学建议 一、教学设计 由于本课的理论性较强,概念较为抽象,学生接受相关知识有较大难度,所以绪言教学采取以教师讲授与学生探究活动相结合的方法为宜。教学中对概念模型的表述应尽量简化,对概念模型的认识还需要在后面的学习中逐渐深入,这里更多地是强调研究问题的方法和意识。通过绪言的教学,应使学生在内容上对化学反应原理研究的范围有所了解,在方法上对科学的研究方法——概念模型法有所领悟。 教学重点:了解化学反应原理的基本学习方法——概念模型法。 教学难点:―有效碰撞‖和―活化分子与活化能‖的概念模型。 教学建议: 根据绪言内容特点,本课可设计成下述教学模式:课前自学→查阅资料→课上交流讨论→师生共同研究。教师在课前布置学生自学,然后将学生分成若干个小组,要求他们通过查阅资料、小组整理资料、先行讨论形成共识,再通过课堂上的汇报、讲解、交流和评价,完成对本课内容的学习。 新课引入首先教师指出,化学研究的核心问题是化学反应。化学中最有创造性的工作是设计和创造新的分子。化学家们通常是利用已发现的原理来进行设计并实现这个过程,如果对化学原理的理解不够清楚则无法做到。化学反应是怎样发生的?为什么有的反应快、有的反应慢?它遵循怎样的规律?如何控制化学反应为人所用?这是我们学习化学反应原理的宗旨。化学反应原理所包含的内容及学习化学反应原理的方法正是本书要探讨的问题。 教学中的主要过程可以结合学生汇报交流自学与讨论的成果,围绕下列问题展开: 1.化学反应原理研究的内容可列举学生熟悉的化学反应进行分析。 情景1: 说明:同样都与H2反应,由于O2、CuO、N2的性质不同,反应的难易程度不同。物质之间能否发生反应,是由物质本身的性质决定的,对于能够发生的化学反应,影响化学反应速率的根本原因也是反应物本身的性质,我们称之为―内因‖。 情景2:将H2+O2混合,在室温条件下可以稳定存在数百年,但点燃后却会发生剧烈的爆炸反应,而且只要配比相当,可以完全转化成生成物。 说明:外界条件可以促使其反应发生。而且在一定的条件下,反应进行得比较―彻底‖。物质之间反应的―内因‖已经具备,―外因‖则是变化的条件。不同的外界条件都能够改变化学反应的速率。 情景3:H2+N2即使在高温、高压、有催化剂的条件下反应,也不能完全转化成生成物。说明:该反应是有一定限度的。 总结:化学反应速率、方向及限度正是―化学反应原理‖要研究的问题。此时有必要指出:在不同物质体系、不同的环境中,化学反应所遵循的规律是不同的,如在第三单元将介绍水溶液中的离子反应;在第一单元和第四单元将分别介绍化学反应中物质与能量之间的定量关系以及电化学的最基础知识等等,这些都是―化学反应原理‖研究的范围。这些基本原理与我们身边经常发生的化学现象密切相关,只要我们注意观察、研究,大自然将成为无所不在的大课堂。 2.研究化学反应原理的思路与方法——概念模型法。 教科书介绍了合理简化的概念模型以及如何运用概念模型学习化学反应原理。对该段内容的处理可分三步进行: (1)建立简化的有效碰撞模型的设想:为了突出化学反应最重要的内涵,忽略其他因素的干扰作用,选择气相反应体系作为研究有效碰撞的基础模型。其优点是:气体分子运动空间远大于自身体积所占有的空间,环境影响因素相对较少。该概念模型最重要的内涵也更加突出,更容易掌握。如在水溶液中的反应,水是较大量的,研究水溶液中的化学反应就不能忽略水分子的作用。 (2)模型的基本构架 模型的建构:在一洁净的容器中,使氢气与氧气按体积比2∶1的比例混合,气体分子因自由运动而不断发生碰撞(互相接触)——这是发生化学反应的必要条件。 假设与事实:研究结果表明,从分子的热运动来看,分子发生碰撞的机会很多。如在常温常压下每个氢分子、氧分子自身或它们之间的碰撞几率为2.355×1010次/秒。假如每次碰撞都能发生化学反应,则化学变化瞬间即可完成,但事实并非如此。 立论:并不是每次分子间的碰撞都会引发化学反应,只有其中部分的气体分子碰撞是有效的,即有效碰撞——这是发生化学反应的充分条件。 (3)活化分子和活化能 对该模型的进一步认识可结合教科书上的图示(图1)。具有足够能量(活化能)的分子——活化分子的碰撞是有效碰撞的必要条件,但不充分。只有当活化分子采取适合的取向进行碰撞时才能反应。 活化分子——具有较高能量,能够发生有效碰撞的分子。 活化能——活化分子高出反应物分子平均能量部分 教科书以活化能为0的反应从另一个侧面说明有效碰撞模型的合理性。进一步说明了活化能的大小与化学反应速率的关系。 结论:某一化学反应的速率大小与单位时间内有效碰撞次数有关;而有效碰撞次数的多少与单位体积内反应物中活化分子的多少有关;活化分子的多少又与该反应的活化能的大小有关。活化能的大小是由反应物分子的性质决定的,而反应物分子的性质又与分子的内部结构密切相关,可以说,反应物分子的内部结构是决定化学反应速率的内因。那么,对于一个特定反应,人类如何使用和控制,还需要研究外部条件对它的影响。这将在后面的学习中继续讨论。 最后教科书特别指出:化学反应的活化能可以用实验方法测定,当实验条件不同时,会得出不同的结果,催化剂的应用就是实例之一。人们尚未掌握化学反应活化能的有效的理论推算方法,这种留有缺憾的教学观点值得关注,既有利于学生客观地认识科学规律,也有利于培养学生的科学精神。 关于催化剂,在化学2中已有介绍,这里着重说明催化剂的作用、意义,在第二章中进一步从由于催化剂的参与改变了活化能,从而改变了反应速率来认识催化剂的作用。3.模型研究的意义 应该说学生根据自身的生活经验,对于简化后的有效碰撞模型接受起来并不难,由于缺乏相关的知识,要达到真正领会该模型的要点是不现实的。这也是教科书采取最简化处理方法的原因。为了便于学生理解模型研究的方法和意义,教师还可以利用学生已有的可燃物燃烧条件的知识,建立下列模型: 可燃物必须有氧气参与并达到着火点才能燃烧,产生新物质的同时有能量的释放;不同的可燃物,其着火点不同;同样道理,反应物分子获得足够的能量(活化能)并具有合理的取向才能发生有效碰撞,产生新物质并伴随有能量的变化。 总结时教师强调:同其他科学研究一样,当我们研究某个问题的时候,需要提取本质的内容而控制其他干扰因素来进行。概念模型是一种比较抽象的模型,需要有意识地忽略事物的某些特征,抽象出关键的因素,使各因素之间的关系更清晰,更利于研究对象的把握,以减 7 少可能引起的偏差。概念模型法是科学认识史上重要的方法之一,学生们通过本课的学习应获得一定的认识。 二、活动建议 建议课前以小组为单位活动,对下列内容进行查阅和讨论。 活动设计1:认识化学反应原理 可供讨论的问题和教学设计意图如下: 活动设计2:简化后的有效碰撞模型、活化分子和活化能 要求学生简要回答下列问题: 活动设计3:化学反应原理的重要领域——关于催化剂的研究 要求学生填写下表: 教学资源 1.化学反应的活化能 实验证明,只有发生碰撞的分子的能量等于或超过一定的能量Ec(可称为临界能)时,才可能发生有效碰撞。具有能量大于或等于Ec的分子称为活化分子。 在一定温度下,将具有一定能量的分子百分数对分子能量作图,如图1所示。从图中可以看出,理论上来说,反应物分子的能量可以从0到∞,但是具有很低能量和很高能量的分子都很少,具有平均能量E的分子相当多。这种具有不同能量的分子百分数和能量的对应关系图,叫做一定温度下分子能量分布曲线图。 图1 等温下的分子能量分布曲线 图1中,E表示分子的平均能量,Ec是活化分子具有的最低能量,能量等于或高于Ec的分子可能产生有效碰撞。活化分子具有的最低能量Ec与分子的平均能量E之差叫活化能。 不同的反应具有不同的活化能。反应的活化能越低,则在指定温度下活化分子数越多,反应就越快。 图2 不同温度下分子能量分布曲线 不同温度下分子能量分布是不同的。图2是不同温度下分子的能量分布示意图。当温度升高时,气体分子的运动速度增大,不仅使气体分子在单位时间内碰撞的次数增加,更重要的是由于气体分子能量增加,使活化分子百分数增大。图2中曲线t1表示在t1 温度下的分子能量分布,曲线t2表示在t2温度下的分子能量分布(t2>t1)。温度为t1时活化分子的多少可由面积A1反映出来;温度为t2时,活化分子的多少可由面积A1+A2反映出来。从图中可以看到,升高温度,可以使活化分子百分数增大,从而使反应速率增大。一个化学反应体系的活化能Ea,通常是通过温度对反应速率常数的影响来测定的,其关系式为阿累尼乌斯方程,即: 2.为什么活化分子的碰撞不一定都发生有效碰撞 反应物分子之间发生有效碰撞,必须同时满足两个条件,一是反应物分子的能量必须达到某一临界数值,二是反应物分子必须按一定的方向互相碰撞。前者是能量因素,后者是空间因素。现以反应NO2+CO=NO+CO2为例来说明。 当NO2和CO分子彼此靠近时,它们分子中的价电子云就互相影响,结果,分子的键长和分子的形状都发生变化。NO2与CO分子在发生有效碰撞时,必须同时满足空间因素和能量因素两个条件。 (1)空间因素:NO2与CO分子只有在一定方向上碰撞,即N-O键和C-O键要在一条直线上发生碰撞,才能发生反应,如图3所示。 图3 NO2和CO的反应过程 很显然,当N-O与C-O在一条直线时,两个分子之间电子云相互影响最大,才有利于形成中间产物——活化络合物。 (2)能量因素:NO2与CO分子发生有效碰撞,必须克服它们价电子云之间的排斥作用。只有那些能量大的分子,当其平均能量具有或超过活化分子所具有的能量时,才能克服这种电子云间的排斥作用,形成一个处于活化状态的中间产物——活化络合物。此时原有的N-O键部分断裂,新的C…O键部分地形成。这种活化络合物既可以分解而成反应物NO2和CO,又可以形成生成物NO和CO2。图4反映了上述反应过程中能量的变化情况。 图4 NO2和CO反应过程中能量的变化 图4中,A点表示NO2+CO系统的平均能量,在此条件下,NO2与CO分子发生碰撞时并不发生反应。只有当NO2和CO分子的平均能量达到B处(或高于B处)时,碰撞才能形成活化络合物ONO…CO,而后发生反应。C是反应产物NO+CO2系统的平均能量。从图4还可以看到,E1是正反应的活化能,E2是逆反应的活化能。E2和E1之差是化学反应的热效应。正反应是放热反应,逆反应是吸热反应。 从以上分析可知,活化分子虽然具有反应所必需的能量,但如果两活化分子不在特定的相对位置发生碰撞,仍不能发生反应。 第一章 化学反应与能量 本章说明 一、1.了解化学反应中能量转化的原因和常见的能量转化形式。 2.认识化学反应过程中同时存在着物质和能量的变化,而且能量的释放或吸收是以发生变化的物质为基础的,能量的多少取决于反应物和生成物的质量。3.了解反应热和焓变的涵义。 4.认识热化学方程式的意义并能正确书写热化学方程式。 5.理解盖斯定律的意义,能用盖斯定律和热化学方程式进行有关反应热的简单计算。6.理解燃烧热的概念,认识能源是人类生存和发展的重要基础,了解化学在解决能源危机中的重要作用。知道节约能源、提高能量利用效率的实际意义。 二、内容分析 1.地位和功能 本章包括―化学反应与能量的变化‖―燃烧热能源‖和―化学反应热的计算‖三节,属于热化学基础知识。热化学是研究化学反应热现象的科学,曾为建立热力学第一定律(能量守恒和转教学目标 换定律)提供了实验依据,反过来,它又是热力学第一定律在化学反应中的具体应用。它主要解决各种热效应的测量和计算问题。 在必修化学2中,学生初步学习了化学能与热能的知识,对于化学键与化学反应中能量变化的关系、化学能与热能的相互转化有了一定的认识,本章是在此基础上的扩展与提高。 能源是人类生存和发展的重要物质基础,本章通过化学能与热能转化规律的研究帮助学生认识热化学原理在生产、生活和科学研究中的应用,了解化学在解决能源危机中的重要作用,知道节约能源、提高能量利用率的实际意义。2.内容结构 (1)反应热和焓变概念是本章学习的起点,必须让学生对它们有一个初步的认识,为以后的学习打下基础。由于课程标准对它们的要求不高,因此教科书做了简化处理。 (2)热化学方程式是反应热计算的基础,要求学生较好地掌握。为了提高学生学习的积极性,教科书采用启发式的编写方法,让学生自己分析探讨热化学方程式的书写规则,得出结论后再与章末的―归纳与整理‖对照更正,作为自己学习与归纳能力的一次测试。 (3)化学反应热有多种,其中燃烧热与燃料的品质有关,因而也就与能源有关,所以教科书将燃烧热与能源放在一节来讨论。这一节提供的燃烧热数据,是计算反应热的重要依据。教科书中编写的关于能源的―资料‖和―科学视野‖,对于学生了解我国能源发展状况以及如何节约能源和开发新能源均会有一定的帮助。 (4)化学反应热的计算是本章的重点,因为热化学研究的主要内容之一就是反应热效应的计算。反应热的计算对于燃料燃烧和反应条件的控制、热工和化工设备的设计都具有重要意义。 在第三节中,盖斯定律是个难点,为了便于学生理解,教科书以测山高为例,并用能量守恒定律来论证。学生在掌握了热化学方程式和盖斯定律的基础上,利用燃烧热的数据,就可以进行简单的热化学计算。 本章的内容结构如下图所示: 3.内容特点 通过初中和高中必修化学课程的学习,对于化学反应中的能量变化,学生并不陌生,但系统地研究反应热问题,这还是第一次。像焓变、燃烧热、热化学方程式、盖斯定律等热化学理论概念,学生学习起来会觉得抽象、艰深。为了适应学生的认知水平,能让学生初步理解这些理论概念,编者在不影响科学性的前提下,行文注意把握分寸,力求简明、通俗,回避对热化学理论深入的讨论和严格的数学推导。 三、课时分配建议 第一节 化学反应与能量的变化 2课时 第二节 燃烧热能源 1课时 第三节 化学反应热的计算 2课时 复习机动 1课时 小计 6课时 第一节 化学反应与能量的变化 一、教学设计 通过化学2的学习,学生已经知道物质发生化学反应产生新物质的同时,伴随着能量变化;知道反应物中化学键的断裂和生成物中化学键的形成是化学反应中能量变化的主要原因,并通过探究实验体验了化学能与热能相互之间的转化;同时还定性了解了吸热反应和放热反应,了解了这些能量变化通常表现为热量变化,而目前人类所需能量的绝大部分是由化学反应产生的;了解了能源与人类社会发展的密切关系,并对研究化学反应及其能量变化的意义有了一定的认识。在此基础上,本章将继续引导学生加深对化学反应中物质变化和能量变化的认识,并通过定量地探讨―质‖―能‖关系,来进一步理解化学反应的本质。 教科书密切联系学生原有的知识,首先引出反应热的概念、符号和一般采用的单位等,并以1 mol H2和1 mol Cl2反应生成2 mol HCl为例,结合实验数据从微观的角度定量地讨论该反应中能量的变化,然后介绍热化学反应方程式。这部分内容的呈现方式注意运用简明的图示说明抽象的内容,注重学生的学习过程和知识形成过程,在教学中应予充分利用。 本节教学重点:化学反应中的能量变化,热化学方程式的书写。本节教学难点:焓变,ΔH的―+‖与―-‖,热化学方程式的书写。教学建议如下: 根据教学内容,本节可按两个环节来进行教学。 (一)关于焓变和反应热 在教学中应注意并明确以下几点: 1.教学方法上要充分调动学生利用已有的知识来学习新的内容,可采用讲授与讨论相结合的方法进行,注意启发和问题驱动。 2.教学过程中可围绕下列内容来落实: (1)反应热在特定条件下等于焓变,用ΔH表示,单位为kJ/mol;(2)反应热产生的原因; (3)根据质量守恒定律和能量守恒定律,一特定反应的反应热数值应为生成物分子化学键形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量之差; 13(4)由于反应后放出的热量使反应体系的能量降低(使环境的能量升高),故放热反应的ΔH为―-‖,ΔH<0;而吸热反应使反应体系的能量升高(使环境的能量降低),ΔH为―+‖,ΔH>0。 还需要说明的是:我们研究的对象是在恒定压强的条件下发生的反应,有的反应产生的能量变化可以直接测量,有的尚不能直接测量。 3.由于内容抽象不好理解,在教学手段上,要充分利用好教科书中的两个图示,另外也可以采用电化教学手段,利用多媒体软件进行形象化教学,以利于学生理解ΔH的涵义及与放热反应、吸热反应的关系。 本节教学的关键是反应热的推求,教学设计可按下列流程进行: 对相关旧知识的简单回顾(相关基础)→提出问题(创设问题情景)→数据分析→讨论交流→形成认识→巩固理解 说明: 相关基础:化学反应产生新物质的同时伴随着能量的变化——回忆吸热反应和放热反应,并举出实例。 问题情景:化学键的断裂与形成和化学反应中能量的关系——从化学反应本质来认识。化学反应过程中为什么会有能量变化(以1 mol H2和1 mol Cl2反应生成2 mol HCl的反应为例)?从微观的角度去分析,让学生带着问题去学习。 数据分析:出示H-H、Cl-Cl、H-Cl的键能数据及实验测定的该反应热数据,通过在反应的过程中,原子进行重新组合,旧化学键的断裂和新化学键的形成,从理论上推算出该反应热的值,并与实验值(184.6 kJ/mol)进行比较,说明二者很接近。 最后落实在其宏观表现上。利用教科书中的图1-2巩固理解。 需要指出的是:化学反应中能量变化的多少首先取决于化学键的强弱,对一个特定反应,其能量大小也与物质质量有密切的关系(其认识对于后面正确书写热化学反应方程式以及进行相关计算十分重要)。 (二)关于热化学方程式 教科书针对科学文献上热化学方程式的表示方法提出问题:它与我们熟知的化学方程式有什么不同?进而采用对比的方法启发学生的思维。通过实例教学,学生能够比较容易地理解化学方程式的局限性、介绍热化学方程式的必要性以及热化学方程式的定义。正确书写热化学方程式是教学的难点,一方面要指导学生对化学方程式和热化学方程式进行对比总结,找出它们的区别与联系,使学生理解为什么书写热化学方程式时必须注明物质的聚集状态等,使学生在理解的基础上正确书写热化学方程式。另一方面,要加强练习,及时巩固,形成良好的书写习惯。 建议本部分内容的学习采用自学的方法完成。具体办法如下: 教师提出课题→学生自学教材→用对比的方法找出与化学方程式的异同点→归纳整理→交流(可列表汇报)。 提出课题:如何在化学方程式中正确反映其热量变化? 教师还可提出一些问题以强化正确规范的书写。如: 1.书写热化学方程式是否要注明反应的温度和压强?(温度压强不同时,其ΔH也不同,如不注明,则一般是指101 kPa和25 ℃) 2.对于相同的物质的反应,当物质的聚集状态不同时,其ΔH是否相同? 3.热化学方程式各物质前的化学计量数是否表示分子个数?当化学计量数不同时,其ΔH是否相同? 4.放热反应、吸热反应与ΔH的―+‖与―-‖的表示是如何对应的? 二、活动建议 化学反应所释放的能量是能量的主要来源之一。实际上反应热不仅与我们的生活密切相关,研究反应热对化工生产也有重要意义。为使学生加深对学习反应热重要性的了解,体会知识在实际中的应用,建议学生查阅资料,进行交流,如出一期墙报等。【实践活动】 1.作为量热器的仪器装置,其保温隔热的效果一定要好。可以用保温杯来做,也可用块状聚苯乙烯泡沫塑料制成与小烧杯外径相近的绝热外套来做,以保证实验时的保温隔热效果。如果按教材中的方法做,一定要使小烧杯杯口与大烧杯杯口相平,这样可以减少热量损失。 2.盐酸和NaOH溶液浓度的配制须准确,且NaOH溶液的浓度须稍大于盐酸的浓度。为使测得的中和热更准确,所用盐酸和NaOH溶液的浓度宜小不宜大,如果浓度偏大,则溶液中阴、阳离子间的相互牵制作用就大,表观电离度就会减小,这样酸碱中和时产生的热量势必要用去一部分来补偿未电离分子的离解热,造成较大误差(偏低)。 3.宜用有0.1分刻度的温度计,且测量时应尽可能读准,并估读到小数点后第二位。温度计的水银球部分要完全浸没在溶液中,而且要稳定一段时间后再读数,以提高所测温度的精度。 4.实验操作时动作要快,以尽量减少热量的散失。 三、问题交流 【思考与交流】 建议组织学生认真思考,做出答案,进行小组交流,然后与本章―归纳与思考‖进行对比,加以补正。 四、习题参考 (一)参考答案 1.化学反应过程中所释放或吸收的能量,叫做反应热,在恒压条件下,它等于反应前后物质的焓变,符号是ΔH,单位是kJ/mol。例如1 mol H2(g)燃烧,生成1 mol H2O(g),其反应热ΔH=-241.8 kJ/mol。 2.化学反应的实质就是反应物分子中化学键断裂,形成新的化学键,重新组合成生成物的分子。旧键断裂需要吸收能量,新键形成需要放出能量。当反应完成时,若生成物释放的能量比反应物吸收的能量大,则此反应为放热反应;若生成物释放的能量比反应物吸收的能量小,反应物需要吸收能量才能转化为生成物,则此反应为吸热反应。 (二)补充习题 1.下列说法不正确的是()。A.放热反应不需加热即可发生 B.化学反应过程中的能量变化除了热能外,也可以是光能、电能等 C.需要加热才能进行的化学反应不一定是吸热反应 D.化学反应热效应数值与参加反应的物质多少有关 2.将铁粉和硫粉混合后加热,待反应一发生即停止加热,反应仍可持续进行,直至反应完全生成新物质硫化亚铁。该现象说明了()。A.该反应是吸热反应 B.该反应是放热反应 C.铁粉和硫粉在常温下难以发生反应 D.生成物硫化亚铁的总能量高于反应物铁粉和硫粉的总能量 3.沼气是一种能源,它的主要成分是CH4。0.5 mol CH4完全燃烧生成CO2和H2O时,放出445 kJ热量,则下列热化学方程式中正确的是()。 4.下列关系式中正确的是 A.a<c <0 B.b>d>0 C.2a=b<0 D.2c=d>0 参考答案 1. A;2.B、C;3.C;4. C。 第二节 燃烧热能源 一、教学设计 本节分为两部分,第一部分简单介绍了燃烧热,其中突出了对燃烧热定义的介绍,并引导学生从诸多因素出发讨论选择燃料的标准,培养学生综合考虑问题的能力;第二部分,结合燃烧热的利用介绍了能源的开发与利用,特别是化石燃料的利弊以及能源与人类生存和发展的关系。 在第一部分内容中,教科书对燃烧热的定义做了介绍,并通过实例对其定义进行了说明,进而说明由于燃烧热的定义规定,燃烧热是以燃烧1 mol纯物质作为标准来进行测量的(故而表示燃烧热的热化学方程式里的化学计量数常需用分数表示),同时还特别指出:―物质完全燃烧而生成的稳定化合物就意味着不能再燃烧了‖。 在第二部分内容中,教科书从人类对能源的需求以及如何合理利用并开发新能源的角度,通过资料展示介绍了能源在国民经济和社会发展中的重要地位和作用,同时结合新能源的开发,通过科学视野简单介绍了最有希望的太阳能、风能和氢能等能源,以开阔学生的眼界,加强化学与社会的联系。特别指出:我们所使用的主要能源是化石燃料,而化石燃料是经过亿万年才形成的蕴藏量有限的非再生能源,社会的发展使得人类对能源的需求量越来越大,这是对人类的严峻考验,同时也为我们提出了极具研究价值的课题。 本节教学重点和难点:燃烧热的概念。教学建议如下: 1.对燃烧热的学习要突出该定义中的―25 ℃、101 kPa‖——研究的条件,―1 mol物质‖——燃烧物的量,和―完全燃烧生成稳定的化合物‖——反应的程度等关键词,并加以举例说明,以明确研究燃烧热的限定条件。因此,①燃烧热其ΔH<0;②其热化学方程式中可燃物的化学计量数为1,则以此为标准配平,其他反应物、生成物的化学计量数既可用整数表示,也可用分数表示;③燃烧热是1 mol可燃物完全燃烧生成稳定化合物所释放的热量,是特殊条件下的反应热。教学中应多举实例。 2.资源、能源、环保是当今社会的重要热点问题,教学中应结合教科书渗透资源、能源和环保的意识,激发学生学习化学的兴趣,教育学生关心能源、环境等与现代社会有关的化学问题,以培养学生的社会责任感、使命感。教学中应尽量采用投影、录像、多媒体等现代教学手段,以激发学生的学习兴趣,通过自主学习、讨论交流、分析评价等教学方法,培养学生的阅读能力、调查研究能力、交流与合作的能力、综合分析能力等。 3.在教学方法上,本节可以采用研究性学习的方式来进行。如课前布置学生结合教科书的【思考与交流】、【资料】及【实践活动】等内容展开讨论,然后课上进行交流。也可以以小组为单位,由学生自学教科书内容并设计相关的研究课题,经过教师和学生共同筛选,确定课题内容、研究目标,通过查阅资料、小组学习讨论,然后各组派代表在课上汇报各自的研究成果。教师还可结合当地的实际情况,适当补充一些资料,或组织学生参观等。通过联系实际的学习讨论,不仅可强化学生课外阅读的意识和自学能力,也可培养学生对国家能源政策制订的参与意识、经济效益观念以及综合分析问题的能力。 4.在化学2中学生对中和热已经有了一定的认识,并通过实验感受了中和热,知道它是反应热的一种形式,在此可将其与燃烧热进行比较,以加深对概念的理解。 二、活动建议 可就如何充分利用能源、节约能量、开发新能源、能源与我们的生存环境等内容进行讨论、研究。如: 1.讨论:煤作为燃料的利弊;从节约能源、提高燃烧效率的角度,阐述研究燃料充分燃烧的重要性。 2.研究:提高煤炭利用率及减少污染物排放的重要途径。 3.调查:就家庭所用燃料问题进行专题调查,如市民对能源的认识和利用(可选择某一社区进行)。 【实践活动】 可查阅《中国经济年鉴》《中国统计年鉴》和其他有关书籍或上网查询。教科书上列出的4个题目,学生可任选一个,小论文可在班上交流。 以下是这些题目的参考答案。 1.关于国民生产总值与能源消耗的关系,可以研究以下数据表: 从以上数据可以看出,国家国民生产总值与能源消耗成正相关关系,即国民生产总值越高,消耗的能源越多。但二者不是严格的正比关系,因为随着生产技术水平的提高,每创造一定量国民生产总值所消耗的能源将会逐步减少。这从1995年至2001年的数据可以看出,国民生产总值由58 478.1亿元增加至95 933.3亿元,增长了39%,而能耗由131 176万吨标准煤增加至132 000万吨标准煤,只增加了0.62%。说明在这7年里我国生产技术水平有了很大的提高。 2.人民的衣、食、住、行、文化娱乐都需要消耗能源,我国人民生活消耗的能源占总能源消耗的12%~17%。随着人民生活水平的提高,生活消费能源总量会增大;随着科学技术的进步,人均生活消费能源量又可能逐步降低。这可以从下表的数据看出。 3.能源与国防关系极为密切。现代化的军队是机械化、信息化的军队,开动坦克、军车、舰艇、飞机均需要燃油;发射导弹、火箭需要高能燃料;开动核动力舰艇需要核燃料;开动雷达、通讯设备或使用激光武器需要电能,等等。因此说,现代化的国防是需要充足的能源作保证的。 4.节约现有能源的一个重要措施是科学地控制燃烧过程,使燃料充分燃烧,提高能源的利用率,开发新能源,如氢能、生物质能等,均是化学科学研究的重要课题。理想地解决这些问题,均需要化学科学去攻关,去创新。因此说,化学在节约现有能源和开发新能源中均能起到重要作用。 三、问题交流 【思考与交流】 书中已给出提示,但需要学生进一步举例说明。学生个人能举出的实例有限,大家可互相交流、补充。 四、习题参考 (一)参考答案 1.在生产和生活中,可以根据燃烧热的数据选择燃料。如甲烷、乙烷、丙烷、甲醇、乙醇、氢气的燃烧热值均很高,它们都是良好的燃料。 2.化石燃料蕴藏量有限,不能再生,最终将会枯竭,因此现在就应该寻求应对措施。措施之一就是用甲醇、乙醇代替汽油,农牧业废料、高产作物(如甘蔗、高粱、甘薯、玉米等)、速生树木(如赤杨、刺槐、桉树等),经过发酵或高温热分解就可以制造甲醇或乙醇。由于上述制造甲醇、乙醇的原料是生物质,可以再生,因此用甲醇、乙醇代替汽油是应对能源危机的一种有效措施。 3.氢气是最轻的燃料,而且单位质量的燃烧热值最高,因此它是优异的火箭燃料,再加上无污染,氢气自然也是别的运输工具的优秀燃料。在当前,用氢气作燃料尚有困难,一是氢气易燃、易爆,极易泄漏,不便于贮存、运输;二是制造氢气尚需电力或别的化石燃料,成本高。如果用太阳能和水廉价地制取氢气的技术能够突破,则氢气能源将具有广阔的发展前景。 4.甲烷是一种优质的燃料,它存在于天然气之中。但探明的天然气矿藏有限,这是人们所担心的。现已发现海底存在大量水合甲烷,其储量约是已探明的化石燃料的2倍。如果找到了适用的开采技术,将大大缓解能源危机。 5.柱状图略。关于如何合理利用资源、能源,学生可以自由设想。在上述工业原材料中,能源单耗最大的是铝;产量大,因而总耗能量大的是水泥和钢铁。在生产中节约使用原材料,加强废旧钢铁、铝、铜、锌、铅、塑料器件的回收利用,均是合理利用资源和能源的措施。 6.公交车个人耗油和排出污染物量为私人车的1/5,从经济和环保角度看,发展公交车更为合理。 (二)补充习题 1.下列性质中,能说明乙醇宜作燃料的是()。①燃烧时发生氧化反应②充分燃烧的产物不污染环境 ③乙醇是一种再生能源④燃烧时放出大量的热 ①②③ B.①②④ C.①③④ D.②③④ 2.1.5 g 火箭燃料二甲基肼(CH3-NH-NH-CH3)完全燃烧,放出50 kJ热量,则二甲基肼的燃烧热为()。 C.2 000 kJ/mol D.3 000 kJ/mol 3.甲醇属于可再生能源,可代替汽油作为汽车燃料。下列热化学方程式中的反应热能正确表示甲醇燃烧热的是()。 4.家用液化气中主要成分之一是丁烷,当10 kg丁烷完全燃烧并生成二氧化碳和液态水时,放出热量5×105 kJ。试写出丁烷燃烧的热化学方程式。 5.为减少大气污染,一些城市公共汽车逐步使用CNG(压缩天然气)清洁燃料,实验测得0.16 g该气体燃料,完全燃烧生成224 mL CO2(标准状况)和0.36 g液态水,并放出8.903 kJ的热量。请写出:CNG的化学式,其完全燃烧的热化学方程式。参考答案 1.D;2.C;3.B。 第三节 化学反应热的计算 一、教学设计 前面学生已经定性地了解了化学反应与能量的关系,通过实验感受到了反应热,并且了解了物质发生反应产生能量变化与物质的质量的关系,及燃烧热的概念。在此基础上,本节介绍了盖斯定律,并从定量的角度来进一步认识物质发生化学反应伴随的热效应。 本节内容分为两部分: 第一部分,介绍了盖斯定律。教科书以登山经验―山的高度与上山的途径无关‖,浅显地对特定化学反应的反应热进行形象的比喻,帮助学生理解盖斯定律。然后再通过对能量守恒定律的反证来论证盖斯定律的正确性。最后通过实例使学生感受盖斯定律的应用,并以此说明盖斯定律在科学研究中的重要意义。 第二部分,利用反应热的概念、盖斯定律和热化学方程式进行有关反应热的计算,通过三道不同类型的例题加以展示。帮助学生进一步巩固概念、应用定律、理解热化学方程式的意义。 本节教学重点:盖斯定律,反应热的计算。本节教学难点:盖斯定律的应用。教学建议如下: (一)盖斯定律的教学设计 1.提出问题在化学科学研究中,常常需要知道物质在发生化学反应时的反应热,但有些反应的反应热很难直接测得,那么如何获得它们的反应热数据呢? 2.创设情景例如,我们可以让碳全部氧化成CO2,却很难控制碳的氧化只生成CO而不继续生成CO2,那么,C(s)+1/2 O2(g)== CO(g)的反应热如何获得呢? 3.引出定律盖斯定律是本节的重点内容,可以从能量守恒的角度出发来介绍,说明盖斯定律是能量守恒定律的必然结果,也是能量守恒定律在化学过程中的应用。由于这部分内容比较抽象,从课程标准中的要求和学生的认知水平来看,宜于简化处理,重在应用。 4.问题研究经过讨论、交流,设计合理的―路径‖,根据盖斯定律解决上述问题。5.归纳总结 (1)反应物A变为生成物D,可以有两个途径:①由A直接变成D,反应热为ΔH;②由A经过B变成C,再由C变成D,每步的反应热分别是ΔH1、ΔH2、ΔH3。如下图所示: 21(2)盖斯定律在科学研究中的重要意义。 (二)有关反应热计算的教学设计 化学计算是运用数学工具从―量‖的方面来研究物质及其变化的规律,化学知识是化学计算的基础。通过前面的学习,学生已经知道了化学反应中反应物和生成物之间的质量关系、物质的量的关系等,在这一节里,将进一步讨论在特定条件下,化学反应中能量变化以热效应表现时的―质‖―能‖关系,这既是理论联系实际方面的重要内容,对于学生进一步认识化学反应规律和特点也具有重要意义。 这一节的内容实际上是前面所学知识和技能的综合运用,涉及了有关的物理量及各物理量间的换算,综合性较强,但属基础知识的综合,与课程标准的要求是一致的。【例1】是依据反应热的概念、钠的摩尔质量,利用热化学方程式即可求解。【例2】要求理解燃烧热的计量是以燃烧1 mol可燃物作为标准的,并将1 kg C2H5OH转换成物质的量,通过逆向思维来求解。【例3】是对盖斯定律的应用。 教学中应注意以下问题: 1.要注意引导学生准确理解反应热、燃烧热、盖斯定律等理论概念,熟悉热化学方程式的书写,重视概念和热化学方程式的应用。 2.进行有关燃烧热计算时,要强调燃烧热规定以1 mol纯物质为标准,因此须注意热化学方程式中物质的化学计量数和反应的ΔH相对应(物质的化学计量数常出现分数的形式)。同时还要注意物质的量、物质的质量、气体的体积等之间的换算关系,但关键还是应强调以1 mol物质完全燃烧作标准来进行计算。 3.有关反应热的计算与有关物质的量的计算联系很紧密,在计算过程中要注意培养学生综合运用知识的能力。 4.可适当补充一些不同类型的习题作为课堂练习,发现问题并及时解决。如以煤、汽油和天然气的主要成分发生燃烧的反应为例,不仅巩固、落实了知识和计算技能,还能通过计算的结果说明这些物质燃烧时,其ΔH的数值都很大,进一步认识煤、石油、天然气是当今世界上最重要的化石燃料。唤起学生资源利用和环境保护的意识和责任感。 5.在教学中还应注意以下几点:(1)明确解题模式:审题→分析→求解。(2)有关热化学方程式及有关单位书写正确。(3)计算准确。 (4)反思解题关键处及错误易发处。 二、习题参考 (一)参考答案 1.C(s)+O2(g)== CO2(g)ΔH=-393.5 kJ/mol 2.5 mol C完全燃烧,ΔH=2.5 mol×(-393.5 kJ/mol)=-983.8 kJ/mol 2.H2(g)的燃烧热ΔH=-285.8 kJ/mol 欲使H2完全燃烧生成液态水,得到1 000 kJ的热量,需要H2 1 000 kJ÷285.8 kJ/mol=3.5 mol 3.设S的燃烧热为ΔH S(s)+O2(g)== SO2(g)32 g/mol ΔH 4 g-37 kJ ΔH=32 g/mol×(-37 kJ)÷4 g =-296 kJ/mol 4.设CH4的燃烧热为ΔH CH4(g)+O2(g)== CO2(g)+2H2O(g)16 g/mol ΔH 1 g-55.6 kJ ΔH=16 g/mol×(-55.6 kJ)÷1 g =-889.6 kJ/mol 5.(1)求3.00 mol C2H2完全燃烧放出的热量Q C2H2(g)+5/2O2(g)== 2CO2(g)+H2O(l)26 g/mol ΔH 2.00 g-99.6 kJ ΔH=26 g/mol×(-99.6 kJ)÷2.00 g =-1 294.8 kJ/mol Q=3.00 mol×(-1 294.8 kJ/mol)=-3 884.4 kJ≈-3 880 kJ(2)从4题已知CH4的燃烧热为-889.6 kJ/mol,与之相比,燃烧相同物质的量的C2H2放出的热量多。 6.写出NH3燃烧的热化学方程式 NH3(g)+5/4O2(g)== NO2(g)+3/2H2O(g)将题中(1)式乘以3/2,得: 3/2H2(g)+3/4O2(g)== 3/2H2O(g)3/2ΔH1=3/2×(-241.8 kJ/mol)=-362.7 kJ/mol 将题中(2)式照写: 1/2N2(g)+O2(g)== NO2(g)ΔH2=+33.9 kJ/mol 将题中(3)式反写,得 NH3(g)== 1/2N2(g)+3/2H2(g)-ΔH3=46.0 kJ/mol 再将改写后的3式相加,得: 7.已知1 kg人体脂肪储存32 200 kJ能量,行走1 km消耗170 kJ,求每天行走5 km,1年因此而消耗的脂肪量: 170 kJ/km×5 km/d×365 d÷32 200 kJ/kg=9.64 kg 8.此人脂肪储存的能量为4.2×105 kJ。快速奔跑1 km要消耗420 kJ能量,此人脂肪可以维持奔跑的距离为:4.2×105 kJ÷420 kJ/km=1 000 km 9.1 t煤燃烧放热2.9×107 kJ 50 t水由20 ℃升温至100 ℃,温差100 ℃-20 ℃=80 ℃,此时需吸热: 50×103 kg×80 ℃×4.184 kJ/(kg·℃)=1.673 6×107 kJ 锅炉的热效率=(1.673 6×107 kJ÷2.9×107 kJ)×100% =57.7% 10.各种塑料可回收的能量分别是: 耐纶5 m3×4.2×104 kJ/m3=21×104 kJ 聚氯乙烯50 m3×1.6×104 kJ/m3=80×104 kJ 丙烯酸类塑料5 m3×1.8×104 kJ/m3=9×104 kJ 聚丙烯40 m3×1.5×104 kJ/m3=60×104 kJ 将回收的以上塑料加工成燃料,可回收能量为 21×104 kJ+80×104 kJ+9×104 kJ+60×104 kJ=170×104 kJ=1.7×106 kJ (二)补充习题 1.已知25 ℃、101 kPa下,石墨、金刚石燃烧的热化学方程式分别为 C(石墨)+O2(g)=CO2(g)ΔH=-393.51 kJ/mol C(金刚石)+O2(g)=CO2(g)ΔH=-395.41 kJ/mol 据此判断,下列说法中正确的是()。A.由石墨制备金刚石是吸热反应;等质量时,石墨的能量比金刚石的低 B.由石墨制备金刚石是吸热反应;等质量时,石墨的能量比金刚石的高 C.由石墨制备金刚石是放热反应;等质量时,石墨的能量比金刚石的低 D.由石墨制备金刚石是放热反应;等质量时,石墨的能量比金刚石的高 2.已知2H2(g)+O2(g)=2H2O(l)ΔH=-571.6 kJ/mol,CO(g)+1/2O2(g)=2CO2(g)ΔH=-283.0 kJ/mol。 某H2 和CO的混合气体完全燃烧时放出113.74 kJ热量,同时生成3.6 g液态水,则原混合气体中H2和CO的物质的量之比为()。A.2∶1 B.1∶2 C.1∶1 D.2∶3 3.由氢气和氧气反应生成1 mol水蒸气放热241.8 kJ,写出该反应的热化学方程式:_______。若1 g水蒸气转化成液态水放热2.444 kJ,则反应H2(g)+1/2O2(g)=H2O(l)的ΔH =____ kJ/mol。氢气的燃烧热为____kJ/mol。 4.火箭发射时可用肼(N2H4)为燃料,以二氧化氮作氧化剂,它们相互反应生成氮气和水蒸气。已知:N2(g)+2O2(g)=2NO2(g)ΔH=+67.7 kJ/mol N2H4(g)+O2(g)=N2(g)+2H2O(g)ΔH=-534 kJ/mol 则N2H4和NO2反应的热化学方程式为_____________________。 5.已知CH4(g)+2O2(g)=CO2(g)+2H2O(l); ΔH=-890 kJ/mol,现有CH4和CO的混合气体共0.75 mol,完全燃烧后,生成CO2气体和18 g液态H2O,并放出515 kJ热量,CO燃烧的热化学方程式为______________,写出求算过程。参考答案 1.A;2.C。 3.H2(g)+1/2O2(g)=H2O(g)ΔH=-241.8 kJ/mol,-285.8 提示:可将反应H2(g)+1/2O2(g)=H2O(l)看成两步:H2(g)+1/2O2(g)=H2O(g)和H2O(g)=H2O(l),问题就迎刃而解。 4.2N2H4(g)+2NO2(g)=3N2(g)+4H2O(g); ΔH=-1 135.7 kJ/mol 5.解:由于CO燃烧只生成CO2,故18 g液态水均由CH4燃烧产生,若生成18 g液态水放出的热量为x,用去CH4 的量为y,则有: CH4(g)+2O2(g)=CO2(g)+2H2O(l)ΔH=-890 kJ/mol 1 mol 2×18 g 890 kJ/mol y 18 g x x=445 kJ/mol 故由CO燃烧放出的热量为:515 kJ-445 kJ=70 kJ y=05 moln(CO)=0.75 mol-0.5 mol=0.25 mol 则CO燃烧的热化学方程式为: 2CO(g)+O2(g)=2CO2(g)ΔH=-560 kJ/mol 第二章 化学反应速率和化学平衡 本章介绍 一、教学目标 1.知道化学反应速率的概念及表示方法;认识浓度、压强、温度和催化剂等对化学反应速率的影响。 2.了解化学平衡的建立,知道化学平衡常数的涵义,并能利用化学平衡常数进行简单的计算,了解影响化学平衡的因素,认识化学反应速率和化学平衡的调控在生活、生产和科学研究领域中的重要作用。 3.初步了解焓变和熵变与反应进行的方向之间的关系。 4.结合实验培养学生的观察能力、记录实验现象及设计简单实验的能力,培养学生实事求是的科学态度。教学中注意提高学生分析问题、解决问题、交流和表达的能力。 二、内容分析 1.地位和功能 化学反应速率、化学平衡和反应进行的方向等化学反应原理知识,是在学习了化学反应与能量、物质结构、元素周期律等知识的基础上学习的中学化学的重要理论之一,有助于加深理解以前所学的元素化合物知识及化学反应,后续学习的电离平衡、水解平衡等,实际上是化学平衡知识的延续,因此它还是后一章内容学习的基础。2.内容结构 本章内容是按照如下顺序安排的:化学反应速率→化学平衡→化学平衡常数→化学反应进行的方向。 化学反应速率属于化学动力学的范畴。为了让学生在研究化学反应进行的快慢及如何定量表述上有感性知识,教科书安排了简单易行的实验。在实验过程中使学生体会到,要想准确表达化学反应进行的快慢,就必须建立起一套行之有效的方法:确定起点,确定时间单位,找出易于测量的某种量或性质的变化。要明确反应物的本质决定了反应速率,在影响速率的因素方面着重介绍浓度、压强、温度及催化剂等外界条件对化学反应速率的影响;通过实验和理论分析,使学生由感性认识上升到理性认识。 化学平衡属于化学热力学的范畴。当化学反应的正反应速率和逆反应速率相等时,反应就达到在该条件下的最大限度,即达到了化学平衡状态。化学平衡是一种动态平衡,它只与起始状态和终了状态有关,与变化途径无关。这就为我们在思考问题时提供了灵活利用所学知识的可能,在始态和终态保持不变的前提下,我们可以设计不同的途径来达到同一个平衡,从而使问题简化。教科书通过实验,介绍浓度、压强(气体反应)、温度等外界条件对化学平衡的影响。由于有了化学反应速率的知识做基础,学生可以通过实验及相应的【思考与交流】、【学与问】等栏目的引导推理,得出正确的结论,认识化学平衡移动,是正反应速率和逆反应速率发生变化的结果,化学平衡总是向着反应速率变化幅度最大的方向移动。本章虽然没有具体的化工生产内容,但选择化工生产最适宜的条件必然涉及化学反应速率和化学平衡等理论的应用。可以引导学生学习分析具体反应的特点,如反应物的聚集状态,气体体积的变化,能量变化等,进而利用所学理论知识进行合理选择。同时要学习全面思考问题,兼顾各种条件的相互影响,如温度对平衡和速率的影响,高压对平衡的影响及对设备材料的要求,在比较中趋利避害,取得最优化的条件。使学生了解化学理论对生产实际的指导作用。 化学平衡常数有利于从定量角度加深对化学平衡的认识理解,教科书利用某一反应体系的一组浓度数据,导出化学平衡常数以及化学平衡常数只随温度变化、不随浓度变化的结论。 化学反应进行的方向涉及到反应的自由能变化(ΔG),要用到焓变和熵变知识,需要对化学反应的实质有更多的领悟,所以把它放在本章的最后(第四节),以知识介绍的方式呈现出来,让学生了解决定反应进行方向的因素不是单一的焓变,熵变也是决定因素之一。教材通过生活中的实际事例,力争使知识浅显易懂,使学生从混乱度的角度形成对熵的概念的粗浅认识。只要求学生能利用化学反应原理知识解释日常生活中某些现象,思考问题时能够更加全面。 本章知识的内容结构如下图所示: 3.内容特点 本章内容既抽象又具体。抽象在它的理论解释对学生来说是全新的,有些反应的深层本质学生是接触不到的,只能凭思考,想象,增大了学习的难度;说它具体,是在生活中有大量鲜活的事实。教科书利用数据、图片等引发学生思考,把抽象的知识适度地直观化,引发学生联想,从而培养学生的思维能力和知识迁移能力。 三、课时建议 第一节 化学反应速率 1课时 第二节 影响反应速率的条件 2课时 第三节 化学平衡 5课时 第四节 化学反应进行的方向 1课时 复习机动 2课时 小计 11课时 1.热化学简介 (1)热化学的研究对象 热力学第一定律是自然界的一条普遍规律,它是人们在生产实践和科学实验的基础上总结出来的,它又叫做能量守恒和转化定律,恩格斯将它誉为19世纪自然科学中具有决定意义的三大发现之一。这个定律的主要内容是:能量有各种不同的形式,能从一种形式转化为另一种形式,从一个物体传递给另一个物体,而在转化和传递中,能量的数值保持不变。 把热力学第一定律具体运用到化学反应上,用实验测定和计算化学反应的热量,研究这方面问题的科学称为热化学。 热化学主要是研究化学反应中的热量转化问题的。化学反应除了以热的形式与外界环境进行能量交换外,往往还以功的形式进行交换。例如,火药爆炸产生膨胀功,化学电池在电动势作用下输送电荷而作电功等。教科书提到―在化学反应过程中,不仅有物质的变化,还有能量的变化,这种能量变化,常以热能、电能、光能等形式表现出来‖,其中―常以‖是指除了以热、电、光的形式外,还以功的形式进行能量交换。应当指出,热化学里所讨论的化学反应,都是在一定条件下只作膨胀功,而不作非膨胀功(如电功)的反应。 同一反应,在不同条件下热量的变化不同。如果不指明反应条件而谈热量的多少,是没有意义的。同时,要想比较不同的化学反应的反应热,必须规定反应在同样的条件下进行。为此,规定在压强为101 kPa和25 ℃的条件下的反应热为标准反应热,以便于比较。按状态变化过程的不同,反应热可分为等压反应热、等容反应热;按化学变化的类别不同,反应热可分为生成热、燃烧热、中和热等等。(2)热化学发展简史 化学作用的本质是什么?古希腊人认为它是导致物质化合和分解的―爱‖和―憎‖。早期化学家们接受了这种观点,把导致化学反应得以发生的力称为化学―亲合力‖。近代有较大影响的亲合力理论不下十几种。用化学反应的热效应来量度亲合力的研究促进了化学与热力学的结合。 早在1780年,拉瓦锡(A.L.Lavoisier 1743—1794)和拉普拉斯(P.Laplace 1749—1827)就在他们的论文中报道了他们关于化学反应热的研究。他们设计了一台简陋的量热计,想用它来 测定参加反应的热量。由于受到热质论的影响,这方面的研究中断了五十多年,而且也未和当时热力学研究的热潮结合起来。 1836年,瑞士化学家盖斯(G.H.Hess,1802—1850)在俄国测量了许多反应的热效应,总结出一条规律:一个化学反应,不论是一步完成或经过几个中间步骤完成,其总的热效应是相等的。1840年他在圣彼得堡发表了他的研究结果,并将其称为―总热量守恒定律‖,后来人们以他的名字将这个规律命名为―盖斯定律‖。这是热化学领域发现的第一个定律,也是自然科学上首先得出的能量守恒和转化的规律性结论。 19世纪50年代,法夫尔(R.A.Farue,1813—1880)和西尔伯曼(T.Silbermann,1806—1865)进行了热化学研究工作,得到了比较精确的反应热效应的数据。 丹麦物理学家汤姆生(J.Thomson,1826—1909)的研究工作在发展热化学方面占有重要地位。他在1882~1886年间出版了四卷本的《热化学》著作,提出吸热和放热概念,把反应热作为反应物化学亲合力的量度。 贝特罗(M.Berthelot)发明了精确测定燃烧热的方法。他在发挥汤姆生关于反应热是化学亲合力的量度的原理时指出,只有伴随着放热过程的反应才能自发产生,在几个可能发生的反应中,只有放出最大热量的反应才能发生。这一原理被叫做贝特罗—汤姆生最大功原理。亥姆霍兹(H.V Helmholtz,1821—1894)对贝特罗的观点提出质疑,引起了很大争论,促进了热力学的发展。 在化学家们研究反应热效应的前后,热力学接连取得许多成就,其中特别重要的是确立了热力学第一定律(1842年)和热力学第二定律(1865年)。 热力学第一定律和第二定律的确立,为科学的发展提供了新的思想。第一定律强调的是能量转化时的守恒性和等值性,它要求从能量的转化恒等性上把握运动形式的变化,突破了仅用物质要素和成分解释世界的僵化模式,为边缘学科的形成提供了基础。第二定律强调的是能量实际转化的不可逆性(即变化有一定的方向与限度),否定了牛顿理论中衍生出来的用可逆反应的观点处理一切问题的简单方法。这两个定律在学术界的影响越来越大。直到1869年由霍斯特曼的工作开始,化学家们才逐步把热力学的成果引入化学研究之中。霍斯特曼用热力学第二定律研究了热分解反应中分解压力与温度的作用,研究了升华过程的热力学,建立了最大功与反应热之间的关系。随后,越来越多的物理学家和化学家走进了热力学和化学结合的领域,形成了物理化学的重要分支——化学热力学。2.焓与焓变 焓的定义是 H=U+PV 即焓是体系内能加上体系的压强与体积乘积的一个物理量,无明确的物理意义。但是它具有以下性质: (1)焓是状态函数。因为U、P、V均为状态函数,它们的组合(U+PV)也必然是状态函数。体系的焓值仅与体系所处的状态有关,与通过什么途径达到这个状态无关。 (2)焓具有能量的量纲,因为U和PV的量纲都是能量的量纲。 当体系经受一个只作体积功的等压变化过程,从状态1变到状态2时,体系的焓变为: ΔH=H2-H1 此时ΔH数值正好等于这个过程的热效应Qp。这样这个等压过程的焓变就有了一个明确的物理意义: Qp=H生成物-H反应物=ΔH ΔH<0时,为放热反应;ΔH>0时,为吸热反应。3.反应进度 我们知道,H2(g)与O2(g)反应生成H2O(g)时,其焓变ΔH与化学方程式的写法有关,即: H2(g)+1/2O2(g)== H2O(g)ΔH=-241.8 kJ/mol(1)2H2(g)+O2(g)==2H2O(g)ΔH=-483.6 kJ/mol(2)也就是说,同一反应体系中各物质的组合方式不同时,摩尔焓变不同。不仅如此,在同一反应体系,当选择不同的物质(如H2或 O2)发生1 mol 变化为基准时,其焓变也不一定相同。 为了处理化学反应的焓变,1922年唐德尔(Domder)引入了化学反应进度这个参量。反应进度是描述化学进展程度的状态参变量。符号为ξ,单位是mol。 通常我们可以把任何化学方程式写成: 式中νD、νE、νF、νG等是所给化学方程式中各物质的计量系数,是无量纲的量。对反应物,ν取负值,对生成物,ν取正值。 设某反应 将反应进度ξ定义为 式中下标B代表任一组分,n°B是任一组分B在反应起始时(即ξ=0时)的物质的量,nB是B组分在反应进度为ξ时的物质的量。 引入反应进度这个量的最大优点是在反应进行到任意时刻时,可用任一反应物或任一生成物来表示反应进行的程度,所得值总是相等的。即 当反应按所给化学方程式的系数比例进行了一个单位的化学反应时,即ΔnB/mol=νB,这时反应进度ξ就等于1 mol。 假定O2和H2的混合体系在某个时刻发生的净变化为: ΔnO2=-0.2 mol ΔnH2=-0.4 mol ΔnH2O=0.4 mol 若按反应式(1)计算,反应进度为: 比较上述结果: (1)Δξ1与Δξ2及Δξ′1与Δξ′2不相等,表明反应进度与化学计量反应式写法有关。(2)同一反应,Δξ=ΔnB/ΔνB,说明ξ或Δξ与物质的选择无关。 (3)Δξ′1>Δξ1,Δξ′2>Δξ2, 这表明,在不同的时刻反应进度不同,反应进度可量度反应的进展程度。Δξ越大,反应完成的程度越大。 (4)对于指定的反应,计量反应式中的计量系数的绝对值不同,则各物质变化的量ΔnB的绝对值也不相等。这说明,不能直接用一种物质的―Δn‖来表示所有物质或整个反应的进展情况。 (摘自刘士荣杨爱云《物理化学概念辨析》) 4.热化学方程式 对于热化学方程式如: 焓(H)左下角的r代表化学反应(reaction);右下角m代表摩尔(mol);右上角的(?)代表热力学标准状态(简称标态);括号内的数字代表热力学温度,单位为K;ΔH则为焓变。气态物质的标态用压力表示,用101 kPa。溶液的标态则指溶质浓度或活度为1 mol·kg-1,对稀溶液而言,也可用1 mol·dm-3。液体和固体的标态则指处于标准压力下的纯物质。最常用的焓变值是298 K(25 ℃)的,严格地说焓变值是随温度变化的,但在一定温度范围内变化不大,凡未注明温度的ΔH 就代表在298 K及标态时的焓变,也可以简写为 (T)代表压力,随后数值的单位用 kJ·mol-1。总之ΔH泛指任意状态的焓变,在标态、温度为T时化学反应的摩尔焓变的完整符号,而ΔH焓变的简写符号。 则为在标态和298 K时摩尔ΔH的单位用kJ·mol-1。焓是容量性质,ΔH的大小与物质的量成正比。书写化学反应方程式时须注意焓变值应该与一定的反应式相对应(如在298 K)。 在此mol-1已不是指1 mol H2或1 mol O2,而是指―1 mol反应‖。所谓1 mol反应可以是1 mol H2和1/2 mol O2起反应,也可以是2 mol H2和1 mol O2起反应,前者放热286 kJ,后者放热572 kJ。这种单位表示方法是1977年国际纯粹与应用化学联合会(IUPAC)物理化学分会所推荐的。所以ΔH值应和化学方程式相对应,以使―1 mol反应‖有明确的含义,笼统地说反应热是多少kJ·mol-1容易引起误解。 由于物质状态变化时总伴随焓变,所以书写热化学方程式时应注明物态,如下列两个反应 两个ΔH值的不同在于:在标态及298 K下H2O(l)和H2O(g)的焓值不同,液态H2O变为气态的H2O要吸热,所以H2(g)和1/2O2(g)化合生成H2O(g)的放热量要比生成H2O(l)的小些。5.关于反应热的测量 有些化学反应的热效应可以用实验方法测得,用来测量反应热的仪器被称为―量热器‖,测量操作是:将反应器置于充满水的绝热容器中,当反应放热时,其热量即传入水中,根据水的质量、比热,和水温的变化求出反应所放出的热量。一般,由于测量反应热时,很难保证没有热的散失(如热传导或辐射等),故要准确测量反应的热效应比较困难。如许多化学反应由于速率过慢,测量时间过长,因热量散失而难于测准反应热,也有一些化学反应由于条件难于控制,产物不纯,也难于测准反应热。于是如何通过热化学方法计算反应热,成为化学家关注的问题。6.生成焓 化学反应的焓变虽然是重要的、常用的数据,但任何一种化学手册不可能记载成千上万化学反应的ΔH值,因为化学反应种类太多,不胜刊载。能从手册查到的仅是几千种常见纯净物的标准生成焓。在标态和T(K)条件下由稳定态单质生成1 mol化合物(或不稳定态单质或其他形式的物种)的焓变叫作该物质在T(K)时的标准生成焓,简称生成焓(也称生成热),符号是符号可以简写为 (T),其中H的左下标―f‖表示生成,在298 K的标准生成焓的,例如在298 K 生成焓并非另一个新概念,而只是一种特定的ΔH。一种物质焓的绝对值H无法测定,生成焓是一种相对值,有些是实验测定的,有些则是间接计算得到的。当知道了各种物质的生成焓后,我们就可以很容易地计算出许多化学反应的焓变。 任何一个反应的焓变等于生成物生成焓之和减去反应物生成焓之和: 这是一个非常有用的关系式,式中νi表示化学计量数。例如,对于反应: 下表列出的是一些常见化合物在298 K时的标准生成焓。 7.中和热 发生中和反应时,由于所用的酸和碱有强弱不同,又有一元、二元或多元之分,因而中和热各不相同。 (1)一元强酸与一元强碱的中和热 一元强酸跟一元强碱中和时,中和热为-57.3 kJ/mol。(2)一元强酸与一元弱碱或一元弱酸与一元强碱的中和热 如果有一元弱酸或弱碱参加中和反应,其中和热所放出热量一般都低于57.3 kJ/mol,也有个别高于 57.3 kJ/mol的。这主要取决于弱酸或弱碱电离时吸热还是放热。 一般地说,弱酸或弱碱的电离是吸热的,因此,中和反应所放出的热量还要扣除电离时吸收的那部分热量,中和热也就低于57.3 kJ/mol。例如,1 mol CH3COOH与1 mol NaOH溶液反应时,中和热是56.0 kJ/mol。 有的弱电解质电离时是放热的。例如,1 mol氢氟酸电离时放出10.4 kJ/mol热量。当它与l mol NaOH溶液反应时,中和热是67.7 kJ/mol。 (3)二元酸与一元强碱的中和热 二元酸的电离是分两步进行的,两个H+的中和热各不相同。中和第一个H+的中和热,等于57.3 kJ/mol减去二元酸电离出第一个H+所吸收的热量ΔH1;中和第二个H+的中和热,等于57.3 kJ/mol减去二元酸电离出第二个H+所吸收的热量ΔH2。因此,二元酸与一元强碱的中和热ΔH可用下式表示: ΔH=-[2×57.3 kJ/mol-(ΔH1+ΔH2)] (4)多元酸与一元强碱的中和热 三元酸与一元强碱的中和热为ΔH,三元酸里的三个H+电离时所吸收的热量依次是 ΔH1、ΔH2、ΔH3,则得:ΔH=-[3×57.3 kJ/mol-(ΔH1+ΔH2+ΔH3)] 8.反应热与化工生产的关系 化学反应中的热量问题,对于化工生产有重要意义。例如,合成氨反应是放热的,如果不设法将这些热量移走,反应器内的温度就会过高。这样,不仅会破坏催化剂,使产量降低,还可能发生爆炸事故。在制造水煤气的反应中,需要吸收大量的热,如果不及时供应所需要的热量,反应就不能顺利进行,甚至停止。因此,在进行化工设计时,为了保证生产的正常进行,必须事先获得准确的反应热数据,作为制造热交换设备和规定工艺操作条件的依据。 在化工生产中,热能的综合利用问题,不但直接关系到产品成本的高低,而且影响产率的大小。化工设备中的热交换器、余热锅炉、热风炉等的设计和使用,都是为了综合利用热能,以便提高产品产率,降低成本。 综上所述,研究反应热,对于化工生产适宜条件的选择,设备的设计和使用,以及对热能的综合利用,都有很大的意义。9.节约能源是我国的一项基本国策 国民经济的发展要求能源有相应的增长,人口的增长和生活条件的改善也需要消耗更多的能量。可以说现代社会是一个耗能的社会,没有相当数量的能源是谈不上现代化的。现代 主要能源是煤、石油和天然气,它们都是短期内不可能再生的化石燃料,储量都极其有限,因此必须节能。节能不是简单地指少用能量,而是指要充分有效地利用能源,尽量降低各种产品的能耗,这也是国民经济建设中一项长期的战略任务。节能问题现已受到各国的普遍重视,作为能源经济发展的重要政策。自1973年和1979年石油输出国组织(OPEC)两次大幅度提高石油价格以来,工业发达国家不可能再依靠廉价石油来发展经济,美国、日本率先积极开展各种节能技术研究以缓解―能源危机‖的冲击,使单位产品的能耗有明显降低。例如国际先进水平是每炼1 t钢需消耗0.37 t~0.9 t标准煤,而我国目前每吨钢的能耗约为1.3 t标准煤,也就是说我国炼钢的能耗是国际水平的1.6倍,所以在我国节能应该有很大的潜力可挖。 一个国家或一个地区能源利用率的高低一般是按生产总值和能源总消耗量的比值进行统计比较的,它与产业结构、产品结构和技术状况有关。如在80年代末,上海市每万元国民经济生产总值要消耗5.08 t标准煤,浙江省是5.38 t,而有的省却高达26 t,可见它们之间能源利用率差别很大。和国际相比,我国的能耗比日本高4倍,比美国高2倍,比印度高1倍,所以若能赶上印度的能源利用率,要实现生产翻一番,似乎不必增加能源消费量。要实现国民经济现代化,既要开发能源,又必须降低能耗,开源节流必须同时并举,并且要把节流放到更重要的位置。 能耗高的原因是复杂的,从化学变化释放能量的角度看,无非一是燃烧是否完全,二是释放的能量是否充分利用。我国的工业锅炉和工业窑炉耗费全国总能源的65%,它们是节能潜力最大的行业。设计节能的炉型、选择节能的燃气比(燃料和空气的比例)、控制锅炉进水温度、及时清理锅炉积垢、积灰等等都可以节能。供电系统和电能利用系统也是能源消耗量大而能量利用率低的领域,节能潜力较大。火力发电是将化学能转化为电能,通过电动机又将电能转化为机械能,可以供机床、水泵、通风、电动车、照明等用,这些能量转化过程中的利用率也大有潜力可挖。例如将发电站的余热与城市供热供暖相结合,组成电热联产,将分散的供热(热损耗很大)改为集中供热,都可有效地提高能源利用率;电动机的材料质量、电机结构的改进可以大大降低损耗;白炽灯的照明效率是荧光灯的一半,研制高效节能灯,并推广使用,也是节能措施之一。总之围绕着节能工作有许多科学技术问题亟待研究,但要使节能工作真正落到实处,不是单纯的技术问题,还要涉及行政管理、能源政策、节能法规、能源价格等各方面的因素。 我国长期面临能源供不应求的局面,人均能源水平低,同时能源利用率低,单位产品能耗高。所以必须用节能来缓解供需矛盾,促进经济发展,同时也有利于环境保护。因此节能是我国的一项基本国策。 (摘自浙江大学普通化学教研组编《普通化学》第4版) 第一节 化学反应速率 一、教学设计 在学生已有的物体运动速度的基础上,引入化学反应速率的概念不会给学生带来太大的困难,但化学反应速率的表示方法却将是一个难点。为了增加学生的感性认识,用【实验2-1】来引导学生,使他们得出只根据看到的气泡产生的快、慢来表示反应的速率是模糊的、不准确的判断。通过教科书图2-1的提示,学生很容易想到可从测量H2的体积来比较反应 的快慢。这种测量可以是在相同的时间内看H2体积的多少,也可以看产生相同体积的H2所耗时间的多少。如果在相同时间内测量溶液中H+浓度的变化,测量锌粒质量的变化,也都可以定量比较这个反应进行的快慢。学生通过讨论交流,可以发现表示反应速率的方法有多种,因此可以通过多种实验来测定某些化学反应的速率。在交流中得出:反应速率表示方法的共同之处,都是用在单位时间内反应前后的反应物或生成物的量(物质的量)的变化来表示。显然该反应以测量H2的体积最为简便易行。然后,引导学生得出:化学反应速率通常总是用单位时间内反应前后的反应物或生成物的浓度(物质的量浓度)的变化来表示。维果茨基指出:―在游戏中,一个孩子的行为总是超越于他的实际年龄,他的日常行为在游戏中比他本身的实际水平要高出一点‖。充分利用实验教学的功能,可启发引导学生的思维。 【实验2-1】最好以边讲边做的形式进行,在实验中加深学生对知识的理解。也可以让学生分组讨论,列举生活中的事例,由感性认识逐步上升为理性认识。 教学中应注意以下几点: 1.准确把握教学要求,不要过分拓展教学内容,把规定的内容讲透彻,讲明白。2.让学生调动、利用已有的知识储备与新知识嫁接。 3.利用好教科书,给学生阅读和思考的空间,把握化学反应速率表示方法的要点。4.充分利用好【实验 】,让学生讨论清楚实验目的和实验方法,做好实验。 5.准备1~2个练习题,强化化学反应速率是用单位时间内反应前后反应物浓度的减少或生成物浓度的增加来表示的。 本节教学重点和难点:化学反应速率的表示方法。 二、活动建议 图2-1 排水量气装置 【实验2-1】注意检验装置的气密性,尤其是注射器的内外管是否密合得很好。酸的浓度要适中,否则,控制生成H2的速率会发生困难。气体收集可以用排水量气装置代替,如图2-1所示。 三、问题交流 【学与问1】 1.ν(H2)=1.2 mol/(L·min) 2.在同一个化学反应中,反应物浓度的减少和生成物浓度的增加都是按照化学方程式中各物质的计量数关系成比例变化的。当计量数不同时,在相同的时间内浓度变化量是按照其计量数关系增大或减少的,反应速率值自然不同。所以,在同一个化学反应中以不同物质为标准时,速率值可能不同,反应速率之比等于其计量数之比。例如:反应 在一定条件下发生,分别以四种物质表示的反应速率值之比为1∶1∶1∶1,而对反应值之比为2∶1∶2。【学与问2】 对于锌粒和硫酸的反应,测定反应速率的方法不止一种,如测量溶液中H+浓度的变化,测量锌粒质量的变化,甚至使用一些物理仪器测量溶液的电导变化、反应的热量变化等,都可以比较出二者的反应速率的不同。不要限制学生的思路,要鼓励学生敢想,多想,在众多的正确答案中找出最简单易行的方法。 可以考虑设计一些补充思考题,如:(1)化学反应速率是怎样定义的? (2)你是怎样理解化学反应速率定义的?从反应物的聚集状态、生产实际出发,应该如何表示反应速率为好? 四、习题参考 (一)参考答案 1.略。2.1∶3∶2。 3.(1)A;(2)C;(3)B。4.D。5.A。 (二)补充习题 在的反应中,经t秒后C的浓度增加m mol/L,则用B,分别以SO2、O2、SO3表示的反应速率浓度的变化来表示的反应速率是()。 参考答案:C。 第二节 影响化学反应速率的因素 一、教学设计 奥苏伯尔在代表作《教育心理学——认知观点》的扉页上写道:―假如让我把全部教育心理学仅仅归纳为一条原理的话,那么,我将一言以蔽之曰:影响学习的惟一最重要的因素,就是学习者已经知道了什么。要探明这一点,并应据此进行教学。‖ 在学生积累了大量影响化学反应速率现象的感性认识之后,有必要从理论上给以升华,让学生实现从现象到本质,进而利用理论指导实践,完成一次认识的飞跃。为了让学生清楚化学与生活息息相关,教科书列举了生活中的常见事实,让学生在观察、体悟的过程中感受化学。 要明确反应物的本质决定了反应速率。在讨论影响速率的因素时着重介绍浓度、压强、温度及催化剂等外界条件对化学反应速率的影响,并利用绪言中的有效碰撞模型加以解释,其中除活化分子、活化能概念外,还提到了活化分子百分数,虽然这是新出现的概念,但从数学的观点看不是新知识,应不难理解。教学中在利用理论模型加深学生对实验现象的理解的同时,应注意让学生体会理论模型的意义。催化剂在化工生产中是至关重要的,教科书简单提到了它的选择性,以及在寻找良好催化剂的研究上还需要理论上的重大突破,以激发学生努力学习、探究的欲望。 浓度、压强、温度、催化剂对化学反应速率的影响,是本章教学内容的重点。教科书安排了【实验2-2】、【实验2-3】和【实验2-4】,意图是通过实验加深学生对浓度、温度、催化剂对化学反应速率影响的认识,为后续化学平衡移动的学习打下基础;同时通过科学探究激发学生的学习热情,进一步加深他们对知识的理解。 浓度对化学反应速率的影响是教学中的重点。建议在教学中直接应用有关的名词概念,不做进一步的扩展(根据学生情况,可让学生自己查阅相关资料)。适度介绍其他条件对反应速率的影响,进而得出所有能向反应体系中输入能量,增加有效碰撞机会的方法都能提高反应速率的结论。 具体教学建议如下: 1.尽可能采用边讲边实验的方式,增加学生动手的机会,加深体验,有利于他们从中领悟教科书内容。 2.尽可能利用数据、动画等方法进行说明,以使教学深入浅出、生动形象。3.可以自行设计、开发实验,以增强教学效果,如: (1)改变Na2S2O3和H2SO4的浓度,观察出现浑浊所需的时间。 (2)用两张滤纸条蘸FeSO4的浓溶液,其一置于空气中,另一置于O2中,观察纸条颜色变化的快慢。 (3)取30%的H2O2 2 mL于试管中,插入用砂纸打光的铜丝,有气泡迅速生成。2H2O2 == 2H2O+O2↑ 4.也可以设计思考题,如: (1)请列举生活中有关影响化学反应速率的事实。 (2)影响化学反应速率的因素有哪些?是如何影响的?怎样解释? *(3)从化学键角度思考反应物分子中键能的高低对反应的活化能及反应速率的影响。 二、活动建议 【实验2-2】 (1)KMnO4溶液的浓度不要大,否则溶液颜色过重,需要草酸的量及褪色时间都要发生相应变化。配制成0.01 mol·L-1比较合适。KMnO4溶液要用硫酸酸化。 (2)为保证KMnO4溶液的紫红色彻底褪去,本实验中草酸用量分别过量了1倍和3倍,可以调整草酸用量,探求更好的实验效果。 (3)实验开始时溶液褪色较慢,由于反应中生成的Mn2+具有催化作用,随后褪色会加快。【实验2-3】 本实验所用的冷水用自来水即可,若用冰水混合物温度更低,出现浑浊的时间更长,更利于比较。为了便于比较,使浑浊程度相同,可在试管背后做一个黑色标记,以其被遮住为准。最好用体育比赛用的秒表来连续计时。【实验2-4】 MnO2的催化反应,根据H2O2的浓度来调整木条余烬距离液面的高度,直接使用浓度较高的(30%)H2O2时,余烬距离液面远些(3 cm左右),否则会因泡沫过多而使余烬熄灭。开头带余烬的木条悬在液面上没有明显变化(说明H2O2没有明显分解),从漏斗加入MnO2粉末后,立刻看到木条余烬复燃,说明瓶中有大量气体逸出(突显了催化剂的作用)。H2O2浓度较低时余烬离液面应近些(2 cm左右),以免实验现象不明显。实验时要把准备工作做好,当把带余烬的木条放入锥型瓶时,要迅速从漏斗撒入MnO2粉末,不要让余烬在瓶内停留时间过长,以免烟多影响观察。【科学探究1】 1.因为方程式已经给出信息4I-+O2+4H+ == 2I2+2H2O,在不加酸的情况下,O2不能氧化I-,所以,要先向一定体积的KI溶液中滴加淀粉溶液,然后再加入稀硫酸。 2.直链淀粉主要是1,4-α-糖苷型的结合,它们盘旋成一个螺旋,每一圈约含6个葡萄糖单位,每个分子中的一个基团和另一个基团保持着一定的关系和距离。分子的结构不仅取决于分子中原子间的化学键联系,还要看立体形象,而这个立体形象取决于分子中的长链的盘旋情况。直链淀粉形成螺旋后,中间的隧道恰好可以装入碘分子,形成一个蓝色络合物。温度高(近沸)时,淀粉中的氢键作用大大削弱,长链的螺旋结构被破坏,I2分子与淀粉的作用大大削弱,溶液呈无色。冷却后长链的螺旋结构重新形成,又出现蓝色。建议本实验做室温和0 ℃(冰水混合物)时的比较。【科学探究2】 1.向5%的H2O2中滴入FeCl3或CuSO4溶液时都有细小气泡产生,滴入FeCl3溶液产生的气泡更快些,说明催化剂是有选择性的。可以参考【实验2-1】把本实验变成一个定量实验。 2.本实验是【实验2-2】的延续。 由于Mn2+对KMnO4的氧化作用有催化功能,所以加入Mn2+的试液中的颜色褪色明显快些。反应机理可能如下: Mn(Ⅶ)+Mn(Ⅱ)→ Mn(Ⅵ)+Mn(Ⅲ)Mn(Ⅵ)+Mn(Ⅱ)→ 2Mn(Ⅳ)Mn(Ⅳ)+Mn(Ⅱ)→ 2Mn(Ⅲ)Mn(Ⅲ)与C2O42-生成一系列络合物,MnC2O4+、Mn(C2O4)2-、Mn(C2O4)33-等,它们慢慢分解为Mn(Ⅱ)和CO2。MnC2O4+ → Mn2++CO2+ ·CO2-Mn(Ⅲ)+·CO2-→ Mn2++CO2 总反应为:2MnO4-+5C2O42-+16H+ → 2Mn2++5CO2↑+8H2O 3.淀粉在酸的催化下可以水解生成葡萄糖 如果欲达到使淀粉水解完全的目的,需要很长时间;在淀粉溶液中加入碘水后,淀粉溶液变蓝。实验时,把另一支试管中事先备好的唾液倒入淀粉和碘水的混合溶液中,稍加振荡,蓝色迅速褪去。这是由于唾液中含有一种淀粉酶,它在很温和的实验条件下,具有很高的催化活性。 本实验进一步说明了催化剂有选择性。 三、习题参考 (一)参考答案 1.(1)加快。增大了反应物的浓度,使反应速率增大。 (2)没有加快。通入N2后,容器内的气体物质的量增加,容器承受的压强增大,但反应物的浓度(或其分压)没有增大,反应速率不能增大。 (3)降低。由于加入了N2,要保持容器内气体压强不变,就必须使容器的容积加大,造成H2和I2蒸气的浓度减小,所以,反应速率减小。 (4)不变。在一定温度和压强下,气体体积与气体的物质的量成正比,反应物的物质的量增大一倍,容器的容积增大一倍,反应物的浓度没有变化,所以,反应速率不变。(5)加快。提高温度,反应物分子具有的能量增加,活化分子的百分数增大,运动速率加快,单位时间内的有效碰撞次数增加,反应速率增大。 2.A。催化剂能够降低反应的活化能,成千上万倍地提高反应速率,使得缓慢发生的反应2CO+2NO== N2+2CO2迅速进行。给导出的汽车尾气再加压、升温的想法不合乎实际。 (二)补充习题 1.从下列实验事实所引出的相应结论正确的是()。 2.在锌与某浓度的盐酸起反应的实验中,一个学生得到下面的结果: 则下列说法正确的是()。 ①t1=75 s ②t2>200>t3③单位时间内消耗的锌的质量mG>mF>mB A.① B.①② C.只有② D.全部正确 参考答案 1.A、C;2.C。 第三节 化学平衡 一、教学设计 随着化学知识的不断积累和对实验现象的深入观察,学生可能会产生是不是所有的化学反应都能进行完全(达到反应的限度)这样的疑问。教学中可本着温故知新的原则,从学生已有关于溶解的知识,从溶解平衡导入化学平衡。从一个熟悉的内容出发引领学生进行思考,充分利用学生的―最近发展区‖(最近发展区理论强调人的思维是有弹性、有潜力的,在不同 的社会环境中具有伸缩性。这样,对同一内容的学习,在不同时间多次进行,而且每次都是经过改组的,目的不同的,分别着眼于问题的不同侧面,就会使学生的认识逐步深入)。通过对溶解平衡的理解和迁移,让学生建立起化学平衡是个动态平衡的概念。再用颇具启发性的化学实验引导学生得出使化学平衡移动的条件,达到既激发学习兴趣,又启发思维的目的。为了加深学生对化学平衡的认识,教科书列举了H2(g)+I2(g) 2HI反应中的相关数据,从定量角度给以深化,希望学生能够从变化的数据中找出规律,即化学平衡常数,并学会描述化学平衡的建立过程,知道化学平衡常数的涵义,能利用化学平衡常数计算反应物的转化率。 对化学平衡的教学应重视实验,教师应精心准备实验,最好以边讲边实验的形式进行。引导学生认真观察实验现象,启发学生充分讨论,一方面要提供建构理解所需的基础,同时又要留给学生广阔的建构的空间,让他们针对具体情境采用适当的策略,师生共同归纳出平衡移动原理。对于影响化学平衡的条件应重点讲解浓度对化学平衡的影响,启发学生运用浓度变化对化学反应速率的影响来解释浓度变化对化学平衡的影响,进而推及压强变化对化学平衡的影响;要通过实验引导学生得出总是吸热方向的反应速率对温度的变化最敏感,变化幅度最大,从而得出温度变化导致平衡移动的方向;要引导学生从化学平衡状态的定义(各组分的百分含量保持不变)来理解化学平衡常数,学会利用数据,从中分析总结规律。对Kc而言,它只受温度影响,不受浓度影响,不必进一步推导说明。 本节教学的重点和难点是: 1.建立化学平衡的概念。2.影响化学平衡移动的条件。3.勒沙特列原理的归纳总结。建议采用如下模式进行教学: 还可以设计提出下述思考题: 1.反应物浓度的变化如何影响化学平衡?加以理论解释。2.能否把它们用于解释压强对气体反应的化学平衡的影响? 3.通过观察2NO2何种推论? 4.怎样用图形表示浓度、压强、温度、催化剂等对化学平衡的影响? N2O4这个平衡体系在冷水和热水中颜色的变化,你可以得出5.K值的大与小说明了什么?在同一条件下,正、逆反应的化学平衡常数有何关系? 二、活动建议 【实验2-5】 K2Cr2O7是橙红色晶体。 为了使溶液的体积变化忽略不计,加酸和碱的浓度都要大些,以使加入量不多,且可避免生成多酸。可以在滴入酸观察溶液颜色变化后,再滴入碱液,进行颜色对比。使学生留下清晰的印象。【实验2-6】 在0.005 mol/L的FeCl3溶液中加入0.01 mol/L的KSCN溶液,振荡,所得溶液的红色较浅。本实验的关键是第一次获得的Fe(SCN)3溶液浓度要小,然后滴加浓的FeCl3、KSCN溶液时才会有明显的颜色变化。 因为Fe(OH)3的溶解度非常小,滴加NaOH溶液后发生反应Fe3++3OH-== Fe(OH)3↓,使溶液中的Fe3+浓度降低,混合液的颜色变浅。NaOH溶液不要加入过多,只要使溶液的红色变浅即可。【实验2-7】 实验时,可把NO2的平衡球在热水和冰水中交替进行浸泡,观察颜色变化。 三、问题交流 【思考与交流】 1.化学平衡状态发生了改变。当滴加浓的FeCl3或KSCN溶液时,溶液颜色都变得更红,说明Fe(SCN)3的浓度增大,化学平衡向正反应方向移动。当向溶液中滴加NaOH溶液时,红色变浅,说明Fe(SCN)3的浓度变小。 2.通过上述实验结果,可以推知:增大反应物浓度化学平衡向正反应方向移动,减小反应物浓度化学平衡向逆反应方向移动。【学与问】 对于已经达到化学平衡的可逆反应,减小反应物浓度正反应速率减小,平衡向逆反应方向移动;增大反应物浓度,正反应速率增大,平衡向正方反应方向移动。 四、习题参考 (一)参考答案 1.正、逆反应速率相等,反应物和生成物的质量(或浓度)保持不变。 2.3.反应混合物各组分的百分含量,浓度、温度、压强(反应前后气体的物质的量有变化的反应),同等程度地改变正、逆反应,不能使。 4.(1)该反应是可逆反应,1 mol N2和3 mol H2不能完全化合生成2 mol NH3,所以,反应放出的热量总是小于92.4 kJ。 45(2)适当降低温度,增大压强。5.B; 6.C; 7.C; 8.C。9.设:CO的消耗浓度为x。 (二)补充习题 1.某化学反应2A(g) B(g)+D(g)在四种不同条件下进行,B、D起始浓度为零,反应物A的浓度随反应时间的变化情况如下表: 根据上述数据,完成下列填空:(实验序号1以(1)代表,余同)在(1)中,反应在10至20 min内平均速率为____mol·L-1·min-1。在(2)中,A的初始浓度c2=____mol·L-1。 设(3)的反应速率为v3,(1)的反应速率为v1,则v3 ___ v1(填>、=、<)且c3 ___ 1.0 mol·L-1)(填>、=、<)。 (4)比较(4)和(1),可推测该反应是反应(选填吸热、放热)。理由是____。2.某温度下,在一容积可变的容器中,反应2A(g)+B(g) 2C(g)达到平衡时,A、B和C的物质的量分别为4 mol、2 mol和4 mol,保持温度和压强不变,对平衡混合物中三者的物质的量做如下调整,可使平衡右移的是()。A.均减半 B.均加倍 C.均增加1 mol D.均减少1 mol 参考答案: 1.(1)0.013(2)1.0(3)>,>(4)吸热,因为温度升高时,平衡向右移动。【简析】要学会分组对比,(1)和(2)反应温度相同,虽然达到平衡浓度所需时间不同,但平衡浓度相同,只有起始浓度相等才行。为什么(2)达到平衡所需时间短,该反应是一个气体Δn=0的反应,可以理解为(2)反应时的压强较高或是加入了催化剂。(2)、(3)反应温度相同,平衡浓度(3)>(2),只有(3)的起始浓度大才行。(1)和(4)起始浓度相同,但(4)的反应温度高、平衡浓度低,只有吸热反应才行。2.C。【简析】 本题是一个气体物质的量减小的反应,它的特殊条件是:―容积可变的容器‖―保持温度和压强不变‖。在保持温度和压强不变的情况下,把平衡混合物中三者的物质的量―均减半‖或―均加倍‖,容器的容积必须减半或加倍。反应混合物的浓度没有发生变化,对一个气体物质的量减小的反应,改变条件后,反应混合物的浓度不发生变化,平衡是不移动的。 题目给的条件是A、B、C三种物质的物质的量之比为2∶1∶2,若把A、B、C三种物质各增加1 mol拆分为A、B、C,依次为1 mol、、1 mol,使之符合2∶1∶2,在―容积可变的容器‖―保持温度和压强不变‖的条件下,各物质的浓度仍然不变,多余了,就可以判断为增大了反应物的浓度,使平衡向正反应方向移动。若各减少1 mol,思路与之相似,应向左移动。 第四节 化学反应进行的方向 一、教学设计 认识新知识与旧知识之间的联系,并把新知识纳入自己已有的学科知识结构,使知识成为自己的,是学生主动建构知识体系的必经之路。在学生学习了化学反应及其能量变化、化学反应速率、化学反应的限度之后,教科书安排了难度较大的化学反应进行的方向的内容。本节内容要用到自由能知识(ΔG=ΔH-TΔS),这对高中学生来说有一定难度。根据《普通高中化学课程标准》只要求学生―能用焓变和熵变说明化学进行的方向‖,对自由能知识没有相关要求。从学生的知识基础考虑,教材回避了焓判据、熵判据的理论推导,从学生的已有知识和生活经验出发,分四个层次就化学反应的方向进行了介绍。首先,以学生熟悉的自发进行的放热反应为例,介绍化学反应有向能量降低方向自发进行的倾向——焓判据;以生活现象为例,说明混乱度(熵)增加是自然界的普遍规律,也是化学反应自发进行的一种倾向——熵判据。其次,用实例说明单独运用上述判据中的任一种,都可能出现错误,都是不全面的。第三,要正确的判断化学反应进行的方向,需要综合考虑焓变和熵变的复合判据,这一判据的推导是大学化学的内容,需留待以后学习。第四,在【科学视野】中简单介绍了自由能判据的结论性内容。这只是为特别有兴趣的学生准备的,教学中对此不作要求。为了使学生对化学反应方向判据形成科学的认识,教材利用日常生活中的见闻诱导学生得出:根据反应的焓变和熵变的大小,只能判断反应自发进行的可能性,不能确定反应是否一定发生或反应速率的大小。教学中要通过上述知识的介绍,使学生体会事物的发展、变化常常受多种因素的制约,要全面分析问题。 本节教学重点和难点:焓减与熵增与化学反应方向的关系。 教学建议如下:教学中对于化学反应进行方向的问题要充分发挥学生的想象力,在他们的热烈交流中,逐渐得出化学反应总是向着使体系能量降低的方向进行。反应的等压热效应(焓变)与反应热是一致的,不必把焓变与反应的等容热效应联系起来。对熵的教学,建议也只停留在混乱度这个层面上,不必给出严格的熵的定义,以免使问题复杂化。在整个教学活动中要营造一个能让学生展现自我的氛围,充分发展学生的思维,要多向互动,充分交流,为学生主动构建、发展自己的知识体系提供帮助,达到能初步了解焓变和熵变对化学反应方向的影响的教学目的。 二、活动建议 可以提出一些问题、补充一些实验,启发学生思考。如可提出这样的问题: 请列举你所知道的自发进行的过程(酚酞试液在NaOH溶液中的扩散,香水香气的扩散等),由此你能得出何种结论? 可补充气体扩散的实验:充满NO2的集气瓶上倒扣一个空集气瓶,静置,上瓶逐渐出现棕色。NO2自发扩散到空瓶中。 三、问题交流 【学与问】 由于反应中生成气体是熵增大的过程,所以增大了反应的自发性。与之类似的如用浓磷酸与食盐固体反应制取HCl气体,对复分解反应来说看似矛盾,但生成了HCl气体,是熵增大的过程,HCl脱离反应体系,使得反应得以正常进行。在熔融态,用金属钠与KCl反应制取钾,把反应温度控制在金属钾的沸点以上,使钾以气体形式产生,既是熵增大的过程,又是减少生成物浓度平衡向正反应方向移动等,都是利用理论知识使看似不能发生的反应得以进行。 四、习题参考 参考答案 1.铵盐溶解常常是吸热的,但它们都能在水中自发地溶解。把两种或两种以上彼此不发生反应的气体依次通入到同一个密闭容器中,它们能自发地混合均匀。 2.在封闭体系中焓减和熵增的反应是容易自发发生的。在判断化学反应的方向时不能只根据焓变ΔH<0或熵增中的一项就得出结论,而是要全面考虑才能得出正确结论。教学资源1 1.化学反应速率 在等容体系中进行的化学反应,其反应速率通常是用一种反应物或产物的浓度在单位时间内的变化来表示。随着反应的不断进行,反应物的浓度在减小,生成物的浓度在增加,反应速率随时都在变化,正反应速率减小,逆反应速率增大。所以,化学反应速率有平均反应速率和即时反应速率之分。 教科书中的计算方法求出的速率是平均速率,是在某一时间段内反应物或生成物浓度的变化量: 在浓度计算过程中,总是用某一时刻的浓度减去起始浓度来求浓度的变化。为了保证速率值为正值,在求算反应物的浓度变化时,要在差值前加一个负号―-‖,即反应物的浓度变化=-(某一时刻的浓度-起始浓度)。 对于反应 aA(g)+bB(g)cC(g)+dD(g)在进行时,反应物和生成物都是按其计量数比消耗和生成的,如果A的消耗浓度为w,B的消耗浓度则为bw/a,即A、B的消耗浓度之比为a∶b;同理,C、D的生成浓度之比为c∶d,所以在同一个化学反应中以不同物质表示的反应速率其数值可能不同,其关系为 νA∶νB∶νC∶νD=a∶b∶c∶d 表示化学反应的即时速率要用到高等数学中的微分学知识,如反应物A的即时速率为(无限小的浓度变化与无限小的时间变化之比),但其速率大小关系仍为 νA∶νB∶νC∶νD=a∶b∶c∶d 测定化学反应速率的方法一般分为化学方法和物理方法两种。 化学方法利用化学分析方法来测定某时刻反应体系中各物质的浓度。使用这种方法测定反应速率时,必须让取出的样品立即停止反应,否则所测定的浓度值就不准确。使反应立即停止的方法有骤冷、冲稀、加入阻化剂或去除催化剂等。要根据具体反应的特点选择适宜的方法,这种方法可以直接得出不同时刻的浓度数据。 物理方法通过反应物、生成物物理性质的测定来求出其对应的浓度。例如测定体系的旋光度、折光率、电导、电动势、导热率、吸收光谱、压力或体积的变化等。利用这种方法进行测定,必须要先找出物质浓度与被测物理性质之间的关系才行。此类方法快速便捷,可以连续测定,自动记录。2.催化剂加速化学反应的原理 催化作用原理十分复杂。几十年来,有关催化剂的资料积累了许多,也提出过不少的催化理论,但至今还缺乏适用范围广泛的理论来阐明催化剂的作用原理,并指导人们更好地选择催化剂。这是由于催化反应,特别是多相催化反应,是一个十分复杂的问题。它不仅涉及一般的化学反应机理,而且还涉及到固体物理学、结构化学和表面化学等学科,而这些都是人们至今还在探索的科学领域。另一方面,催化理论的研究,还必须借助于先进的实验手段,但目前研究催化剂反应机理的实验工具还不够完善,至今人们还无法洞察催化反应在进行过程中催化剂表面的结构变化,以及反应物在具体催化过程中的转化情况。目前催化理论落后于催化剂在工业生产中所获得的巨大成就,所以必须加强催化学科基础理论的研究。 催化剂与反应物同处于均匀的气相或液相中的催化称为单相催化(又叫均相催化)。单相催化一般认为是反应物与催化剂先生成一定的中间产物,然后催化剂又从这些中间产物中产生出来。反应物与催化剂形成中间产物,再由中间产物变为产物,其总的活化能,要比反应物之间直接反应成为生成物的活化能小得多。例如,乙醛分解为甲烷和一氧化碳的反应: CH3CHO → CH4+CO 49 在518 ℃时,如果没有催化剂,此反应的活化能是190 kJ。但若有碘蒸气作催化剂,此反应分两步进行: CH3CHO+I2 → CH3I+HI+CO CH3I+HI → CH4+I2 两步反应所需的总的活化能为136 kJ。用碘作催化剂后,活化能降低了54 kJ,使反应速率加大约1万倍。 在水溶液中的单相催化,大都是由H+或OH-所引起的。例如,在水溶液中糖的转化、酯的水解、酰胺及缩醛的水解等,都因有H+的参加而加速。 催化剂自成一相(固相),在催化剂表面进行的催化作用叫做多相催化。对于多相催化反应,目前有三种理论:即活性中心理论、活化络合物理论和多位理论。 (1)活性中心理论 活性中心理论认为,催化作用发生在催化剂表面上的某些活性中心。由于这些活性中心对反应物分子产生化学吸附,使反应物分子变形,化学键松弛,呈现活化状态,从而发生催化作用。在固体表面,活性中心存在于棱角、突起或缺陷部位。因为这些部位的价键具有较大的不饱和性,所以具有较大的吸附能力。通常活性中心只占整个催化剂表面的很小部分。例如,合成氨的铁催化剂的活性中心只占总表面积的%。活性中心理论可以解释:为什么微量的毒物就能使催化剂丧失活性(毒物破坏或占据活性中心),为什么催化剂的活性与制备条件有关(制备条件能影响晶体结构,即影响活性中心的形成)。 (2)活化络合物理论 活化络合物理论阐明了活性中心是怎样使反应物活化的,这种理论认为,反应物分子被催化剂的活性中心吸附以后,与活性中心形成一种具有活性的络合物(称为活化络合物)。由于这种活化络合物的形成,使原来分子中的化学键松弛,因而反应的活化能大大降低,这就为反应的进行创造了有利条件。 (3)多位理论 活性中心理论和活化络合物理论都没有注意到催化剂表面活性中心的结构,因而不能充分解释催化剂的选择性。多位理论认为,表面活性中心的分布不是杂乱无章的,而是具有一定的几何规整性。只有活性中心的结构与反应物分子的结构成几何对应时,才能形成多位的活化络合物,从而发生催化作用。这时催化剂的活性中心不仅使反应物分子的某些键变得松弛,而且还由于几何位置的有利条件使新键得以形成。 上述的三种多相催化理论都能解释一些现象,但还有许多事实不能说明。在这三种理论中,有两点是共同的:第一,认为催化剂表面有活性中心存在,催化剂表面结构不是均匀的,催化能力不是各处一样。第二,认为反应物分子与活性中心之间相互作用的结果使化学键发生改组,从而生成产物。至于活性中心的本质和活化络合物的本质,是今后需进一步研究的重要课题。3.化学平衡常数 (1)平衡常数表达式及其意义 对于化学反应 mA+nB 【【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的】推荐阅读: 鲁科版高中化学必修一09-01 高中化学 1.1 走进化学科学教学设计 鲁科版必修08-30 化学选修4知识点总结07-09 人教版选修4化学平衡10-24 选修4化学第二章复习11-04 高中化学选修4教学设计有关pH的简单计算09-12 人教版高中化学选修5教案08-26 课题4化学式与化学价08-25 人教版化学选修5word07-14S(1)>S(s)C.S(g)>S(1)= S(s)D.S(g)>S(s)>S(1)4.已知反应2H2(g)+ O2(g)== 2H2O(1)∆H == 285.8 kJ·mol-1,下列结论中,正确的是()A.E(反应物)>E(生成物)B.E(反应物)6.【化学】鲁科版选修4《化学反应原理》教案:11《化学反应的 篇六