电力系统自动化报告

2024-09-17

电力系统自动化报告(通用8篇)

1.电力系统自动化报告 篇一

电力系统及其自动化实验

电力系统及其自动化实验报告5

一、实验目的

通过参观冯教授的实验室,了解列车运行的时序与牵引传动的原理及其仿真平台系统的组成,对牵引传动系统形成整体认识。

二、实验内容

1.列车运行与牵引传动分布式综合仿真平台系统的组成

列车运行与牵引传动分布式综合仿真平台如图1所示,以“列车运行”与“牵引传动”为核心,基于HLA技术创建的分布式仿真平台,包含总控台、牵引供电系统、地面信号系统、列车运行三维视景、故障诊断、司控台、车载DMI、车载MMI、中央控制单元(CCU)、车载ATP、车载ATO、牵引传动系统、制动系统等子系统。

图1系统的组成

2.HLA技术的认识与各子系统的介绍

HLA(高层体系结构,High Level Architecture)是由美国国防部提出的新型分布式仿真框架。通过提供通用的、相对独立的运行支撑框架(RTI,Run Time Infrastructure),将应用层与其底层支撑环境功能分离,隐蔽各自的实现细节。使用户不需要关注底层通信的细节,只专注于专业方面的应用开发。

电力系统及其自动化实验

图2HLA平台

1)系统数据流图

系统各子节点之间的数据交互如图3所示,总控台负责发送仿真控制指令、管理系统时间推进、监控子系统的仿真运行状态,司控台、车载DMI、车载MMI、中央控制单元(CCU)、车载ATP、车载ATO、牵引传动系统和制动系统等作为车载运行子系统,与牵引供电系统及地面信号系统进行交互。

图3 2)总控台

总控台软件如图4所示,主要负责列车运行综合仿真平台的仿真过程控制,发送仿真同步并开始、仿真结束等指令,监控各个子系统与RTI的连接状态,并在仿真运行过程中向各个子系统发送仿真系统时间校对信号。

电力系统及其自动化实验

图4总控台

3)车载CCU 车载CCU(中央控制单元)如图5所示,负责整车级逻辑控制、牵引/制动力分配,状态数据/故障数据的采集处理和记录等工作,是高速列车的中枢神经。因而,针对CCU的功能细致分析,研究CCU的工作机制,数据/指令接口,设计相应的仿真模块,在对列车开展实验室环境下的仿真研究中有着重要意义。

车载CCU接收司机操纵指令(或ATO指令)、ATP指令,通过逻辑控制进行对列车牵引和制动指令的分配,保证列车的安全运行。

图5车载CCU

电力系统及其自动化实验

图6车载CCU逻辑控制部分仿真图

CCU诊断单元主要包括故障数据采集和分析模块、故障警报模块、故障记录模块以及故障处理措施模块。通过接收外部监测的信息,该单元能够实现故障的实时分析、预警,提供解决方案,是列车故障诊断系统中不可或缺的重要部分。

4)司控台

高速动车组司机控制台如图7所示,是司机室的重要组成部分,是用于人工驾驶时的列车操纵器。司机通过点击相应按钮与改变相关手柄级位,向综合仿真系统的其他子部(如CCU)发送驾驶指令。

图7司控台

电力系统及其自动化实验

5)制动系统

制动系统仿真软件模拟动车组的各级制动效果,并提供与综合仿真平台其他子系统额信息和指令交互接口。

制动系统接收司控台制动手柄级位或ATP/ATO装置发出的制动指令,通过制动控制计算,与牵引传动系统交互再生制动指令和反馈信息,确定列车各项制动参数。

6)牵引供电系统

牵引供电系统分别与综合仿真平台中的总控台、传动系统与车线耦合解算三大子系统产生数据交互。总控台向本模块发布仿真启动、暂停与终止指令;传动系统与车线耦合解算模块向本模块发布线路中运行列车的车型、车次、需求功率、位置、时间与速度;本模块综合以上信息对列车供电电压与实际发挥功率进行解算,并反馈给传动系统子模块。

图8牵引供电系统

7)牵引传动系统

在分布式仿真系统中,牵引传动系统在牵引工况时实现从受电弓获得电能,最后转化为牵引电机的机械能;再生制动工况时,实现牵引电机机械能转换为电能,经牵引变流器变换,输出电能质量合格的电能,回馈牵引供电网。

电力系统及其自动化实验

图9牵引传动系统

8)地面信号系统

地面设备主要功能是为列车的安全行驶提供数据支持和调度运行指令。车站列控中心负责控制轨道电路编码、信号机显示、有源应答器报文的存储和调用以及相邻车站列控中心之间的安全信息传输等。车站联锁根据列车进路信息,控制信号机、道岔等站内信号设备,使之具有一定的制约关系,确保列车在站内的行车安全。轨道电路负责检查列车是否完全进入轨道区段以及区段的空闲/占用情况,并不间断向列车传输前方空闲闭塞分区数量等信息。应答器向列车发送前方线路参数、限速及定位等数据。

9)车载ATP 车载ATP,即自动列车防护。主要接收来自地面信号系统的轨道电路信息、应答器信息。车载ATP根据地面应答器发送的信息实时绘制出前方两个应答器范围内的紧急制动曲线,最大常用制动曲线,和报警曲线。车载ATP将从列车解算模块接收到的车速信息与列车的防护曲线进行比较,如果列车速度超过W曲线,列车会发出警告,提示司机注意车速;若列车速度超过SBI曲线,会触发列车最大常用制动;若列车速度超过EBI曲线,则会触发列车紧急制动,迫使列车制动停车。

10)车载DMI、MMI 司机控制台人机交互界面(DMI)如图10(左一),是列车在运行过程中司机实时监视列车运行各项指标的重要接口。司机根据DMI所显示的各项机车参数,并结合实际情况,向正在运行中的列车下达各项控制指令。

电力系统及其自动化实验

列车人机交互界面(MMI)如图10(右一,右二),是司机监视和控制列车空调、车门等各种部件状态的重要接口,司机可以实时获取列车当前网压、网流、列车工况等信息。

图10车载DMI、MMI

11)三维视景及其驱动程序

三维视景可实现列车实时运行环境的模拟,给司机以真实驾驶体验,是列车运行模拟系统不可或缺的重要组成部分。三维视景主要负责接收来自列车解算模块的列车位置和速度信息,以动态的视景形式展现出来。

视景驱动程序的功能可以分为三个部分,第一部分的作用是驱动程序接收HLA平台的计算结果,如列车速度、列车位置等信息,第二部分的作用是处理从HLA平台接收到的数据,第三部分的作用是将处理后的数据通过UDP网络通信的方式发送给视景,驱动视景往前推进。

3.高速动车组故障诊断系统简介

高速动车组诊断是指对现实情况与理想情况偏差的判定。高速动车组诊断过程图11所示:

图11牵引传动系统

故障诊断系统主要包含: 1)诊断事件

当发生故障时,引发一个诊断事件。诊断事件从故障产生原因来看,可分为如下三类:技术缺陷,操作失误,操作记录。

2)诊断文件系统

诊断文件系统是记录高速动车组故障信息及故障处理方案的知识管理系统,电力系统及其自动化实验

借助于该系统可以实现高速动车组的诊断数据评估和输出目标定位。

三、心得体会

通过这次参观学习实验,对列车运行与牵引传动系统有了一个整体认识。王青云老师的细心讲解,我获益匪浅。

首先,通过对整个系统的了解,我知道该仿真平台是基于HLA技术创建的分布式仿真平台,包含总控台、牵引供电系统、地面信号系统、列车运行三维视景、故障诊断、司控台、车载DMI、车载MMI、中央控制单元(CCU)、车载ATP、车载ATO、牵引传动系统、制动系统等子系统。虽然对里面的具体实现还是不太明白,但已经建立了一个完整的列车牵引传动系统概念模型。同时,老师的耐心讲解在很大程度上让我了解到系统的作用,解决了我的一些认识误差,如牵引系统与传动系统的区别等。

最后,在实验平台的接触中,我看到了仿真运行的各种有趣之处。王老师给我们运行了程序,我觉得像在玩游戏似的,在看的同时我会想这究竟是怎么做到的,让我产生对这仿真的兴趣,在以后的学习中会更多地思考要怎么样才能发现问题、解决问题,激发了我学习的热情。

在此,非常感谢老师提供我们这样的机会,将理论知识与实际系统的认识相结合,开拓了我们的视野,这让我们在以后的学习中能够更加注重理论联系实际,让我们的思路更加开阔,让我们对所学知识有全面的掌握。

2.电力系统自动化报告 篇二

关键词:检测报告,自动生成,电磁兼容

电磁兼容检测报告是电磁兼容实验室依据GJB151A-97《军用设备和分系统电磁发射和敏感度要求》[1]和GJB152A-97《军用设备和分系统电磁发射和敏感度测量》[2]标准进行电磁兼容检测而形成的最终产品, 电磁兼容检测报告应准确、清晰、明确、客观, 相关标准、规范都对检测报告提出了具体要求, 例如:GB/T27025《检测实验室和校准实验室能力的通用要求》[3]。确保电磁兼容检测报告的质量, 减少错误率, 提高报告编制效率, 采用电磁兼容检测报告自动生成系统是一种有效的方法。

在日常的电磁兼容检测工作中, 检测人员需要出具大量的电磁兼容原始记录和检测报告, 这占用了检测人员大量的精力、时间, 同时, 电磁兼容原始记录和检测报告中含有大量的重复信息, 例如一份记录中需要多次填写被检测软件的名称、型号、编号等信息。通过电磁兼容检测报告自动生成系统可以最大限度地降低重复性和差错率, 提高工作效率。

1 系统框架

“电磁兼容检测报告自动生成系统”需要完成的主要功能有:完成各原始数据输入与存储、环境条件记录、检测报告的自动生成系统。操作界面简单、友好。

为了满足功能的要求, 系统框架如图1所示。

2 系统实现

电磁兼容检测报告自动生成系统主要基于Microsoft Office Word文字编辑软件和Microsoft Office Access数据库来实现, 通过Visual Studio NET开发环境来实现。这三个软件都源自同一个公司, 因此三者之间的交互相对来说会比较简易快捷。

2.1 Word对象模型

在Word中, 凡是手工可以完成的工作, 包括对文档的操作、对文字的处理等, 都可以通过编写程序来自动完成。通过提供必需的软件输入界面, 通过编程就能自动生成想要的输出。整个Word应用软件能被看成一个Application对象。在该Application对象中包括了Word软件的各个组成部分, 如图2所示。

通过使用Application对象所包含的对象可以访问Word软件的各个组成部分, 使用并增强Word的功能;通过使用Documents对象包含的各种对象可以访问文档中的任何组成部分, 并对文档进行编辑。这两者结合使用能实现报告或记录的自动生成。

Word定位主要通过Word的书签和Tables对象来实现。

2.2 Access数据库

考虑到仅是文本的储存, 且该软件为小型单机软件, 占用空间较小, 所以我们选择了Access数据库。此举不仅节约了空间, 降低了开发成本, 也提高了软件的性能。

Access数据库是一种关系型数据库, 所以记录表都存储在一个后缀名为MDB文件中, 记录表为记录行集合, 一个记录行包含一个或多个“字段”。如果将记录集看作二维网格, 字段将排列构成“列”。每一字段 (列) 都分别包含有名称、数据类型和值的属性, 在该值中包含了来自数据源的真实数据。要修改数据源中的数据, 可在记录中修改Field对象的Value值, 对记录的更改最终被传送给数据源。

2.3 软件配置

为了提高软件的使用效率, 通过配置Combo Box控件的下拉列表, 可大大提高软件信息输入的效率, 例如委托单位的名称, 一般一个委托单位会多次对不同产品到电磁兼容实验室进行电磁兼容检测, 那么, 提前配置好委托单位名称的下拉列表, 实际使用时, 只需要通过点选即可, 提高了数据录入的速度和准确性, 大大节省输入的时间, 提高输入效率, 如图3所示。

事先分别建立每个电磁兼容项目的报告模板, 把这些报告模板放在一个文件夹下以方便软件调用。在自动生成某产品电磁兼容检测报告时, 根据产品所检测的电磁兼容项目在报告模板文件夹中选择相应的模板, 并根据已经输入的信息, 根据报告模板中的书签和表格等样式定位位置, 自动生成电磁兼容检测报告。这样可以避免由于人工书写检测报告时由于个人因素编制不慎出现的错误, 也提高了报告编制的工作效率。通过电磁兼容检测报告自动生成功能, 可以避免由于人员水平参差不齐导致的检测报告不规范, 从而满足检测报告的质量要求。

2.4 检测信息的输入

电磁兼容检测报告需要输入的主要信息, 如下所示:

1) 委托单位名称、地址;

2) 产品名称、型号、编号、生产单位;

3) 军用平台、电压类型、工作状态、敏感判据;

4) 检测日期、检测地点;

5) 环境条件、报告编号、密级;

6) 检测人员、参试人员;

7) 检测结论;

8) CE101、CE102、CS101、CS114、CS115、CS116等项目模板。

2.5 报告生成

通常一个产品的电磁兼容实验涉及到多个电磁兼容项目, 而每个电磁兼容项目都需要原始记录和检测报告。而不少信息是需要重复输入的, 例如原始记录的表头信息, 表头都是重复的, 完全可以通过编程的方法来自动生成。

报告的基本要素相同, 通常情况下只需要修改其中的数据, 为了避免反复输入相同的信息或作重复性的格式修改, 采用模板技术, 即事先分别建立每个电磁兼容项目的报告模板, 把这些报告模板放在一个文件夹下以方便软件调用。在自动生成某产品电磁兼容检测报告时, 根据产品所检测的电磁兼容项目在报告模板文件夹中选择相应的模板, 并根据已经输入的信息, 根据报告模板中的书签和表格等样式定位位置, 自动生成电磁兼容检测报告。

3 结束语

通过Visual Studio NET面向Word和Access编程实现自动生成电磁兼容检测报告, 可以提高电磁兼容检测报告的质量、提高报告编制的效率。该方法比传统的手工书写检测报告错误率低、效率高, 起到了事半功倍的效果, 而且对于其他行业检测报告同样有效, 值得推广。

参考文献

[1]GJB 151A-97.军用设备和分系统电磁兼容发射和敏感度要求[S].国防科技工业委员会, 1997.

[2]GJB152A-97.军用设备和分系统电磁发射和敏感度测量[S].国防科技工业委员会, 1997.

3.浅谈电力系统电力调度自动化 篇三

【关键词】电力系统;电力调度;自动化

0.引言

电力调度自动化系统是指直接为电网运行服务的数据采集与监控系统,包括在此系统运行的应用软件。是在线为各级电力调度机构生产运行人员提供电力系统运行信息、分析决策工具和控制手段的数据处理系统。电力调度自动化系统是保证电网安全和经济可靠运行的重要支柱手段之一。随着电网不断的发展,电网的运行和管理需求在不断地变化,要保证电力生产的安全有序进行,作为重要支柱的调度自动化系统要适应电网需求的发展。

1.电力调度自动化的主要功能

电力调度自动化系统采用成熟的计算机技术、网络技术及通讯技术等,符合相关的国际和工业标准。电力调度自动化系统的主要功能包括数据采集、信息处理、统计计算、遥控、报警处理、安全管理、实时数据库管理、历史库管理、历史趋势、报表生成与打印、画面编辑与显示、web浏览、多媒体语音报警、事件顺序记录、事故追忆、调度员培训模拟等。重要节点采用双机热备用,提高系统的可靠性和稳定性。当任一台服务器出现问题时,所有运行在该服务器上的数据自动平滑地切换到另一台服务器上,保证系统正常运行。系统有健全的权限管理功能。能快速、平稳地自动或人工切除系统本身的故障,切除故障时不会影响系统其他正常节点的运行。调度主站是整个调度自动化监控和管理系统的核心,从整体上实现调度自动化的监视和控制,分析电网的运行状态,协调变电站内rtu之间的关系,对整个网络进行有效的管理使整个系统处于最优的运行状态。电力调度自动化系统是监控电网运行的实时系统,具有很高的实时性、安全性和可靠性。

2.电力调度自动化系统应用现状

目前我国投运的系统主要有CC-2000,SD-6000.OPEN-2000.这些系统都采用RISC工作站和国际公认标准:操作系统接口用POSIX:数据库接口用SQL结构化访问语言;人机界面用OSF/MOYIF,X-WINDOWS;网络通信用TCP/IP,X.25.应用表明这些系统基本功能均达到国内外同类系统的水平,且各有特点。

(1)CC-2000系统采用开放式系统结构设计,采用面向对象的技术,利用事件驱动和封装的思想为应用软件提供了透明的接口。采用面向对象技术,并引进了一个大对象的概念,以适应封装性、继承性以及事件驱动的要求。支撑系统专用性和通用性的有机结合。既适应电力系统的需要,又兼顾其它行业实时应用的要求。按照软件工程的规律进行开发,达到软件工程产品化。技术鉴定认为,按照开放式系统设计和采用面向对象等技术,都属于国际先进或领先范畴。现结合东北电网,由电科院、电自院、清华大学、东北电力集团公司、北京科东公司在统一协调下,共同在CC-2000支持系统平台上开发电网应用软件,从而实现完整的EMS系统。

(2)SD-6000系统SD-6000系统是电力部重点项目,由电自院南瑞系统控制公司和淄博电业局联合开发的具有统一平台的开放式分布式能量管理系统,1994年投运,1996年通过测试和鉴定。该系统集成了超大规模的调度投影屏、调度电话自动拨号、气象卫星云图等新技术。该系统特点是:具有开放式和分布式的支撑系统平台。具有面向对象的人机界面管理系统。其中较突出的是厂站单线图、电网元件模型、电网拓扑结构、数据库同期生成技术。EMS支撑软件与管理系统的商用数据库采用SQL标准接口。便于用户自行开发和由第三方开发应用软件。有较高的稳定性和可靠性,前置机应用软件设计合理,实用。

(3)系统OPEN-2000系统是江苏省立项的重大科技项目,是由电自院南瑞电网控制公司开发的新一代EMS系统。OPEN-2000系统是南瑞公司于1998年开发成功的一套集SCADA、AGC、PAS、DTS、DMS、DMIS于一体,适用于网、省调和大中型地调的新一代能量管理系统。是国内外发展速度快、适用面广、性能完善、成熟性好、可靠性高的能量管理系统,是国内首套将IEC870-6系列TASE.2协议集成于软件平台的系统。OPEN-2000系统采用100M平衡负荷的双网机制,流量更大。可靠性更高。完全基于商用数据库开发的、具有客户/服务器模式的全新的能量管理系统。采用面向对象技术,以电力设备为对象建立数据存取模式和电力系统模型,软件设计全部采用面向对象方法和面向对象语言。

3.电力调度自动化技术

电力调度自动化系统对电力系统的安全经济运行起着不可或缺的作用。到目前为止,电力调度自动化系统的发展已经历了4代。为了适应特高压和全国互联大电网的发展需要,新一代调度自动化系统在现有技术的基础上,目前正朝着以下几个方向发展。

3.1数字化

随着信息化的普及和深入,越来越多的目光投向了数字化变电站和数字化电网的研究开发。实行数字化的目标是利用电网运行数据采集、处理、通信和信息综合利用的框架建立分区、分层和分类的数字化电网调度体系,实现电网监控分析的数据统一和规范化管理,以及信息挖掘和信息增值利用,实现电力信息化和可视化、智能化调度,提高决策效率和电力系统的安全、稳定、经济运行水平。

3.2集成化

集成化是指要形成互联大电网调度的二次系统,这种系统需要综合利用多角度、多尺度、广域大范围的电网信息及目前分离的各系统内存在的各种数据。调度数据集成化就是要实现调度数据的整合,实现数据和应用的标准化,实现相关应用系统的资源整合和数据共享,实现电网调度信息化和管理现代化。

3.3网格化

网格技术是近年来国际上兴起的一种重要信息技术。网格技术对于网络上各种资源具有巨大的整合能力,如果将其应用到电力系统中,可以为不同调度系统之间信息和资源的共享带来方便,并最终成为支撑广域电网分布式电力系统计算和仿真的支撑平台,可实现各级电网调度自动化系统和调度员培训仿真(dts)、系统动态形成虚拟的大ems、共享资源和协同分析、保证电网的安全稳定运行和控制。

3.4智能化

智能调度是未来电网发展的必然趋势。智能调度技术采用调度数据集成技术,能有效整合并综合利用电力系统的稳态、动态和暂态运行信息,实现电力系统正常运行的监测与优化、预警和动态预防控制、事故的智能辨识、事故后的故障分析处理和系统恢复,紧急状态下的协调控制,实现调度、运行和管理的智能化、电网调度可视化等高级应用功能。

4.电力调度自动化系统应用

近几年,电网的发展对调度自动化系统提出了更多、更高的要求,变电所综合自动化、无人值班变电所的实现,使调度自动化系统成为集电网测量、控制、保护、经济运行、指标考核等多方面的综合性管理系统。

调度自动化系统是一个技术不断发展、功能不断扩充的系统,在发展中总会碰到新的问题,现行的一些标准已明显不能满足实际的需要。工程实施中常常碰到系统满足实用化指标,但不能满足实际要求。如:通道不可靠、监视不完善(烟火报警、发热部位温度、视频系统等)、一次设备开关机构分合不可靠等。随着电力系统的发展,县级电网调度自动化已经成为县级电力企业的“心脏”,这就是说:未来的县级电网调度自动化将起一个心脏的作用,县级电力企业的活力就决定于它,如提高县级电网本身安全经济分析能力和负荷预测的准确度,为未来的数字化电网打基础等。总之,新一代县级电网调度自动化对电网的运行作用越来越大,而对计算机及其网络技术、通信技术的依赖性也越来越强。

5.结论

随着电力市场的引入,更多的市场参与者要求能够使用调度自动化系统进行信息上报和查询等操作,这就对智能调度系统的信息安全防护能力提出了更高的要求,“智能调度”系统将能够满足客户在信息安全防护能力方面更高的需求。 [科]

【参考文献】

[1]何岩,吴发旺.svg在电力调度自动化中的应用分析[J].黑龙江电力,2008,(3).

4.电力系统自动化报告 篇四

题 目 智能电网技术 专 业 电力系统及其自动化 班 级 研1015 学 生 杨晓玲 学 号 1043010983

2011 年

智能电网技术

--关于15kV SiC IGBT的发展及其对电力应用的影响

摘要: 虽然硅晶体电力设备应用于电力电子工业已经有50多年,但是以硅为基础的技术在功率处理和频率转换方面已受到限制。SiC有着击穿电场特别强,电子饱和漂移速度快,热导率高,耐高温等优势,特别适于制作高频、高速、高压、高功率器件。本文详细介绍了具有高压高频耐高温的SiC IGBT的出现将会对电力应用产生巨大的影响,并着重介绍了基于15kV SiC IGBT的固态变压器的优点。

引言

Si功率半导体器件的发展经历了如下三代[1]:

第一代——Si双极晶体管(BJT)、晶闸管(SCR)及其派生器件。

功率晶闸管用来实现大容量的电流控制,在低频相位控制领域中已得到广泛应用。但是,由于这类器件的工作频率受到dV/dt、di/dt的限制,目前主要用在栅关断速度要求较低的场合(在kHz范围)。在较高的工作频率,一般采用功率双极结晶体管,但是对以大功率为应用目标的BJT,即使采用达林顿结构,在正向导通和强迫性栅关断过程中,电流增益P值一般也只能做到

第二代——功率MOSFET。

MOSFET具有极高的输入阻抗,因此器件的栅控电流极小(IG—100nA数晕级)。MOSFET是多子器件,因而可以在更高的频率下(100kHz以上)实现开关工作,同时MOSFET具有比双极器件宽得多的安全工作区。正是因为这些优点,使功率MSOFET从80年代初期开始得到迅速发展,已形成大量产品,并在实际中得到广泛的应用。

但是,功率MOSFET的导通电阻以至于跨导gm比双极器件以更快的速率随击穿电压增加而变坏,这使它们在高压工作范围处于劣势。

第三代——绝缘栅双极晶体管(IGBT)。

它是一种包括MOSFET以及双极晶体管的复合功率半导体器件,兼有功率MOSFET和双极晶体管的优点。自1982年由美国GE公司提出以来,发展十分迅速。

商用的高压大电流1GBT器件仍在发展中,尽管德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,但其电压和电流容量还不能完全满足电力电子应用技术发展的需求,特别是在高压领域的许多应用中,要求器件的电压达到10kV以上,目前只能通过IGBT串联等技术来实现。

1、SiC IGBT的优势

SiC是一种具有优异性能的第三代半导体材料,与第一,二代半导体材料 Si和GaAs相比,SiC材料及器件具有以下优势:

(1)SiC的禁带宽度大(是Si的3倍,GaAs的2倍),本征温度高,由此SiC功率 半导体器件的工作温度可以高达600℃。

(2)SiC的击穿场强高(是Si的10倍,GaAs的7倍),SiC功率半导体器件的最高工作电压比Si的同类器件高得多;由于功率半导体器件的导通电阻同材料击穿电场的立方成反比,因此SiC功率半导体器件的导通电阻比s i的同类器件的导通电阻低得多,结果其开关损耗便小得多。

(3)SIC的热导率高(是Si的2.5倍,GaAs的8倍),饱和电子漂移速率高(是si及GaAs的2倍),适合于高温高频大功率工作。SiC同Si一样,可以直接采用热氧化工艺在表面生长热Si02,由此可以同Si一样,采用平面工艺制作各种SiC MOS相关的器件,包括各种功率SiC MOSFET及IGBT。与同属第三代半导体材料的ZnO,GaN等相比,Sic已经实现了大尺寸高质量的商用衬底,以及低缺陷密度的SiC同质或异质结构材料,它们为Sic功率半导体器件的产业化奠定了良好的基础。

如上所述,尽管Si功率半导体器件经过半个世纪的发展取得了令人瞩目的成绩,但是由于Si材料存在难以克服的缺点,它们使Si功率半导体器件的发展受到极大的限制。首先,Si较低的临界击穿场强Ec,限制了器件的最高工作电压以及导通电阻,受限制的导通电阻使Si功率半导体器件的开关损耗难以达到理想状态。Si较小的禁带宽度Eg及较低的热导率入,限制了器件的最高工作温度(200℃)及最大功率。为了满足不断发展的电力电子工业的需求,以及更好地适应节能节电的大政方针,显然需要发展新半导体材料的功率器件。IGBT的新发展方向之一是SiC IGBT【2】。

具有高压高频耐高温的SiC IGBT的出现将会对电力应用产生巨大的影响,首先,以前认为不切实际的观念现在已经成为可能,例如,固态变压器(SST)的观点取代了传统的60HZ分布式变压器。固态变压器的不仅是一台变压器,而且故障电流限制器,一个无功补偿器,并凹陷恢复。这些优点使固态变压器非常有希望应用在未来的动力系统中。虽然SST有很多优点,比如重量轻,体积小,整功率因数等,但是现在SST已经没有发展空间,因为硅晶体半导体设备的转换频率已受到限制。随着15KV,5KHZ的转换频率SiC IGBT的发展,SST将会成为事实,就像20世纪70年代和80年代,开关式电源取代60HZ变压器成为功率转换的标准。固态变压器关键是减小传统变压器的大小和重量。这要通过增加的DCSiC的经验参数,15-kV SiC电压动态雪崩崩溃发生图5所示。SiC IGBT发生动态崩溃点的功率密度约为7 mW/cm2,这比高电压硅器件的理论值超过了20倍。该动态雪崩击穿和关断I-V轨迹曲线在一个正常的运行状态发生的对比表明碳化硅IGBT具有强大的关断功能。结合了开关损耗低,速度快的优势,SiC IGBT强大的关断能力,使他们更适合在高电压电力电子当中应用。

图5 15kV SiC IGBT的静态雪崩击穿,动态雪崩击穿起始线及其典型的关断电流-电压轨迹曲线的比较

3、总结

在未来的发电和配电系统中,很可能涉及更多可再生能源资源和电网的分布。电力发电和存储互连或微电网并网,需通过一个新的能源分配和能源网络。能源互联网将具有双向的能量流的控制能力,使其能够提供重要的即插即用功能和隔离故障的用户端系统。对于具有高电压,高频和高温操作能力的大功率半导体器件的需求是能源互联网所必需的。

SiC IGBT已经广泛应用于中压牵引电机的驱动和传统配电系统。由于SiC材料的优越性能 作为有广泛应用前景的后硅器件,能够突破硅材料的理论局限。大量研究表明,15kV SiC IGBT与 Si器件相比,具有功耗低、开关速度快和关断可靠等优点。因此,在未来电力电子应用中,高压SiC IGBT 是一项具有应用前景的技术。

4、名词解释

1、固态变压器

固态变压器又称电力电子变压器(Electronic Power Transformer,EPT),是一种将电力电子变换技术和基于电磁感应原理的高频电能变换技术相结合,实现将一种电力特征的电能转变为另一种电力特征的电能的静止电气设备。与常规变压器相比,EPT有很多优点,其突出特点在于可以实现原方电流、副方电压以及功率的灵活控制。EPT应用于电力系统后将会改善电能质量,提高系统稳定性,实现灵活的输电方式以及电力市场下对功率潮流的实时控制。

2、禁带宽度

禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。

3、软开关技术

软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压)按正弦或准正弦规律变化。当电流自然过零时, 使器件关断(或电压为零时, 使器件开通), 从而减少开关损耗。它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。

当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM 技术。它们使用某种形式的谐振软化开关转换过程,开关转换结束后又恢复到常规的PWM 工作方式,但它的谐振电感串联在主电路内, 因此零开关条件与电源电压、负载电流的变化范围有关, 在轻载下有可能失去零开关条件。为了改善零开关条件, 人们将谐振网络并联在主开关管上, 从而发展成零转换PWM 软开关变换器, 它既克服了硬开关PWM技术和谐振软开关技术的缺点, 又综合了它们的优点。目前无源无损缓冲电路将成为实现软开关的重要技术之一, 在直流开关电源中也得到了广泛的应用。

5、我的见解

SiC电力设备可以处理3倍多的功率,同时转换速度比传统的快几倍。在高频率运行时大量功率的损失导致自身发热,使得运行温度更高(大约在225 C左右),所以功率处理和频率转换能力随之提高。因此具有高压高频耐高温的SiC IGBT的出现将会对电力应用产生巨大的影响。

固态变压器具有以下优点:1)体积小,重量轻,无环境污染;2)运行时可保持二次侧输出电压幅值恒定,不随负载变化,且平滑可调;可保证一次侧电压电流和二次侧电压为正弦波形,且一二次功率因数可调;变压器一二次电压、电流和功率均高度可控;兼有断路器的功能,大功率电力电子器件可瞬时(μs级)关断故障大电流,也无需常规的变压器继电保护装置。虽然固态变压器具有很多优点,但是因为硅晶体半导体设备的转换频率已受到限制,固态变压器已经没有什么发展空间,但是随着15kV,5kHZ的转换频率SiC IGBT的发展,SST将会成为事实。

由于SiC功率半导体器件在电力电子应用领域具有节电节能及减小体积方面的巨大优势和应用前景,所以研究其具有极为重要的意义。随着SiC材料及器件工艺的不断进步,SiC功率器件的价将不断下降,SiC功率器件在电力电子工业 中的推用也将是必然的趋势,因此,SiC功率器件的发展前景是十分美好及友人的。

参考文献

【1】SiC功率半导体器件的优势及发展前景,中国科学院半导体研究所,刘忠立 【2】IGBT技术发展综述,南京电子器件研究所,叶小剑,邹勉,杨小慧

5.电力系统自动化报告 篇五

实验名称:单相桥式全控整流电路仿真 实验时间:2018.5.11 班级:自动化2班 姓名:

学号 1.实验目的

利用SIMULINK仿真平台绘制仿真电路,通过设置模型参数,来观测仿真结果。通过改变晶闸管的控制角,可以调节输出直流电压和电流的大小。

2.仿真模型及参数设置

Scope1-+Current MeasurementScope2mInMeanmAC Voltage Source12kk+v-ThyristorggaaThyristor1Mean ValueScope4Voltage MeasurementLinear Transformer+Series RLC Branch1v-Voltage Measurement1Scopemkm0Constantalpha_degABThyristor2gagkThyristor3aBCCApulsesScope30Constant1BlockSynchronized6-Pulse GeneratorTerminator

交流电压源AC,电压为220V,频率为50Hz,初始相位为0°

变压器参数一次电压为220V(有效值)。二次电压为100V(有效值)晶闸管VT1~4直接使用模型默认参数 负载RLC选择RL。R为0.5,L为10e-3 脉冲发生器同步频率为50Hz,脉冲的宽度为10°

3.仿真过程及结果分析 4.4.总结

6.电力系统自动化报告 篇六

自动监控系统联网申请报告

市环保局:

根据环评文件要求(环评报告书、批复、省厅文件——国控企业),芜湖长信科技股份有限公司按照水污染源在线监测系统安装技术规范(试行)(水:水污染源在线监测系统安装技术规范(试行),气:固定污染源烟气排放连续监测技术规范(试行)相关规定于2015年(时间)完成了西区排放口(水、气)污染源自动监控系统的安装工作,现场端建设已经完成,具备联网条件,申请对西区排放口(水、气)污染源自动监控系统进行联网。

特此报告。

附:污染源在线监控基本信息表

7.电力系统中配电自动化系统的研究 篇七

1 分析电力自动化系统现状

1.1 配电自动化技术目前情况

配电自动化分三个发展阶段:

第一阶段是基于彼此的自动开关设备的配电自动化的阶段, 主设备为重合和分割等, 不要求通信网络和计算机系统的结构。配电自动化系统的这一阶段只限于自动重合器和备用电源自动投入装置。

第二阶段是根据通信网络, 终端单元和计算机网络的配电自动化系统, 在正常操作中, 分配网络也可以与电网监测和远程控制播放来改变动作, 通过远程故障隔离区域调度员恢复健全。

第三阶段是在增加配电自动化系统的基础上自动控制功能, 形成了一套分销网络的SCADA系统, 配电地理信息系统, 需求侧管理 (DSM) , 调度员仿真调度, 故障呼叫服务系统和工作管理, 集成综合自动化系统, 形成了一套变电站自动化的开关和控制, 电容器组调节和控制, 用户负荷控制系统和远程抄表的分销网络管理系统 (DMS) 之一, 具有多达140余种。

1.2 变电、配电自动化的问题

配电网络的建设工作应该从以往的繁琐复杂电学元件配合输电线路变化成现在的自动化控制集成电子信息元件, 利用电子集成技术配合电脑的信息技术进行统一的电力调配运输供给工作, 并且在配电线路上进行相关的改造, 是自动化进程更加快速全面, 建立全方面的自动配电信息化配电网络。通过电脑进行整个自动的电力网络控制达到配电自动化信息化的电力调配控制目的。

随着电力科技的日新月异, 变电技术也不断更新变化, 由原来的繁琐程序到现在的系统自动化, 给人们带来了方便快捷的生活方式。变电自动化技术在今天也开始广泛应用, 变电站通信体分为两层:一是分隔层, 二是变电站层。两者是相辅相成的, 变电站层通过分隔层来对数据进行收集和分析, 完成监管和控制。随着科技的发展, 变电自动化系统对电力系统有着监督的作用, 使管理者方便管理与维修机械设备, 减少工作人员的工作量, 一体化、现代化的科学应用减少操作失误。一套变电自动化系统设计研究有着广阔的发展前景, 设计人员应利用现有的科学知识以及计算机应用发展, 设计适用于我国电力系统发展的变电自动化系统。

2 运行设备管理

2.1 运行维护管理

在电力自动化网络设备的运行过程中是必须要严格按照巡检的规章制度来进行巡检, 并且对于出现问题的部分设备的维修要及时维护, 并且在日常运行过程中要注意巡检力度, 对于一些不容易发现的隐患问题也要及时发现处理, 对于一些细节处的小问题在管理上要进行常规管理和特殊措施两方面的维护管理, 对于维护设备的人员专业知识素养也要过硬, 并且定期对电学新兴技术的维护维修工作进行学习, 负责运营和维护每个阶段的人, 继续实现安全的输出功率和稳定性。

为了使长的管线和设备能够维持稳定的操作, 除了注意定期负载, 在运行时间, 增加定期维护。如果周围环境严重污染, 雷电和更多的极端气候的存在, 比如雪或洪水等自然灾害, 或者有恶劣的地质条件等, 来检查能源的合理分配, 根据地形条件, 对于安全有关的细节, 也能保证始终把握动态, 并排除隐患。

2.2 运行程序管理

对于检查线路和设备的长期监测结果, 被用来作为参考的数据线维修计划, 季度或年为周期, 根据线路和设备的运行情况, 对有关问题进行分析, 并提出项目。在一般情况下, 销售网络提出的并报上级单位批准每月详细的维护计划。当该计划已发回原来的单位, 要组织按照规划工作, 在线路维护工作中落实。

2.3 施工与质量管理

在线路维护过程中, 建设单位应当在工程建设计划前准备, 安全操作流程, 人员管理等基础工作, 划分工作区域边界, 并分别为每个区域确定的施工队的责任, 质量计划和施工图设计文件的编制, 为施工阶段的监督和管理提供可靠的依据。仔细检查建设工程质量和施工现场发生及时处理问题的进度实施, 坚持做巡逻日志, 可以有效地把握建设的各个方面的细节, 以达到及时完成施工进度的要求。

为了确保施工单位的管理机构应进行审查, 以确保环境安全, 应加强安全教育, 员工应落实安全措施。施工期间在现场跟踪指导, 严禁违章作业, 对施工方案, 合理安排, 以消除安全隐患。根据安全措施的条件建设, 可能需要在如火如荼的保障措施, 消除一切安全隐患。签订有效施工合同或协议下的正式验收的工程, 并切换完成报告撰写的条款。

2.4 运行维护管理

电力系统设备一般是大型设备, 高价回收成本, 应尽量提高在日常使用中的运营效率, 延长了使用寿命, 降低了爆发的故障率。必须认真落实维护制度, 加强经营管理, 严格控制维修作业的过程。对于线路和设备的维护操作, 还是要坚持在操作和维护过程中设备检修的准则, 以减少线的数量确保稳定的电源。大修时, 最大限度地提高电源的效率。先进的维修设备和利用现代科学技术方法, 确保维修工作质量, 延长线的使用寿命。

我们的信息技术能力和一些国家的发展相对较晚比较稚嫩, 但随着新技术的发展, 企业电力信息化发展的力量来维持安全运行和管理的信息化已经演变。信息技术的发展, 涉及创新、业务流程优化, 系统规划、方案设计、系统选型实施, 运行和维护的各个环节的管理一个复杂的系统工程。其核心是由一个完整的体系结构的制度建设的各个方面的内容。该架构是基于具体情况需要不同的企业, 从企业需求出发, 以服务于企业发展战略为目标, 结合同类企业信息化和IT最佳实践构建的趋势, 包括功能架构的应用, 信息资源架构, 应用架构, 系统平台架构, 网络和基础架构, 信息安全架构, 信息技术的组织。

3 结束语

加强制度建设和有效管理, 有利于保证输配电线运行, 提高配电网络的使用效率, 稳定电力质量。从工作人员的责任意识、业务规程、岗位习惯等抓起, 有效保证电力正常传输。

参考文献

[1]董军.浅谈我国配电自动化的发展[J].发展, 2008 (02) .

[2]谢华.配电自动化的现状和发展趋势[J].水利科技, 2007 (01) .

8.试析电力系统自动化技术 篇八

【关键词】电力;自动化;技术应用

电力系统综合自动化基本工作流程是,在相对中心地带的调控中心装置现代化的计算机,以此向四周辐射网络系统,围绕这一中心的发电厂、变电站之间则设置信息服务和反馈的远方监视控制装置,并时时进行监控,从而形成了一个立体化的网络覆盖面,形成全面的畅通的信息传达和指令传输,按所管辖功能范围分担和综合协调控制功能,以达到系统合理经济可靠运行目的的控制系统。

1.电力系统自动控制的基本要求

(1)迅速而正确地收集、检测和处理电力系统各元件、局部系统或全系统的运行参数。

(2)根据电力系统的实际运行状态和系统各元件的技术、经济和安全要求,为运行人员提供调节和控制的决策,或者直接对各元件进行调节和控制。

(3)实现全系统各层次、各局部系统和各元件间的综合协调,寻求电力系统优质供电、经济性和安全性的多目标的最优运行方式。

(4)电力系统自动控制不仅能节省人力,减轻劳动强度,而且还能减少电力系统事故,延长设备寿命,全面改善和提高运行性能,特别是在发生事故情况下,能避免连锁性的事故发展和大面积停电。

2.电力系统自动化技术探讨

(1)主动的对象数据库技术及其在电力系统自动监视与控制中的运用面向对象技术在软件的重用性、继承性、封装性、开放性及软件工程等方面带来革命性的影响,已经深刻影响软件系统开发与设计的各方面,如面向对象的分析、面向对象的设计、面向对象的编程等。新一代的电网调度自动化系统应该全面地采用面向对象技术,支持面向对象的标准。主动的对象数据库与一般的关系数据库相比,主要的优势在于主动功能以及对对象技术的支持。关系数据库要实现数据的判断(如数据发生变化,数据越限)以及数据的分析都是由外来程序完成的。而在主动的对象数据库中,利用数据库的触发子可以实现系统的监视功能,利用数据库中对象的函数可以实现系统的控制功能。由于引入触发机制以及对象技术,这就可以在数据库中实现自动监控,在节省数据读出和写入时间的同时,又充分地利用数据库对数据的管理功能,提高数据可靠性,维护数据的一致性,便于数据的共享等。随着数据库技术的发展,以及对监控系统中触发子和对象的函数功能的进一步研究,有望实现电力系统自动监视与控制的更加复杂的功能。

(2)现场总线控制系统。现场总线技术(FCS)实际上是将安装在工业过程现场的智能自动化仪表和装置与设置在控制室内的仪表和控制设备连接起来的一种数字化、串行、双向、多站的通信网络。现场总线技术将专用微处理器置人传统的测量控制仪表,使它们各自都具有了数字计算和数字通信能力,采用可进行简单连接的双绞线等作为总线,把多个测量控制仪表连接成的网络系统,并按公开、规范的通信协议,在位于现场的多个微机化测量控制设备之间以及现场仪表与远程监控计算机之间,实现数据传输与信息交换,形成各种适应实际需要的自动控制系统。

现场总线控制系统既是一个开放通信网络,又是一种全分布控制系统。它作为智能设备的联系纽带,把挂接在总线上、作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化及控管一体化的综合自动化功能。这是一项智能传感器、控制、计算机、数字通信、网络为主要能容的综合技术。在我国电力系统中,目前DCS系统得到广泛的应用。这种控制方式的实现需要通过传感器、变送器将所有被控设备的状态、电量、非电量信号收集到中央控制室的主控计算机上,然后在计算机上按照规定的数学模型进行计算、判断、进而向被控设备发出指令。其在本质上仍然为数字控制器与模拟变送器组成的模拟-数字混合系统,在电厂或变电站内受电磁干扰严重,难以达到严格的计算精度,并实施准确控制。另一方面,模拟变送器位于测控现场,而控制器位于集中控制室。这从构成控制系统的信号流的角度来看,在现场把被控参数转换为测量信号后,被送往位于集中控制室的控制器,再把所得到的控制信号由控制室送往现场的调节阀或控制电机。这样,即使是一个简单的回路控制系统,其信号的必经路径也将会很长,因而会引起许多弊端和隐患。将FCS引入电力系统将在根本上优化控制系统的各种性能。将整个生产过程的控制功能分散,为每个被控设备就地配备专用的底层前置控制计算机,这些专用的前置机根据控制要求负责管理被控设备的有关信息。这些信息经前置机处理后通过通讯接口由现场总线与上位计算机相联。此时上位机的任务已不再是全面监控所有设备,而是担负人机对话或向上级调度远传信息的任务。在上位机可以根据前置机上传的信息构造各种画面、图象、图表、曲线来直观地反映现场设备的运行情况。不仅前置机可以配合PLC根据所取的实时数据对被控设备实行必要的调节和控制,而且上位机也可以直接通过前置机对被控设备进行实时性不强的调节和控制,把控制功能下放到现场,仅由现场仪表就可以实现控制功能。这样无疑增强整个电力系统自动控制系统的可靠性和系统组织的灵活性。并且基于这种现场总线技术的系统,还可与其它计算机、节点通讯,构成高性能的控制系统。

(3)光互连并行处理器阵列在电力系统自动控制和继电保护中的应用研究。光互连技术的特点:①光互连不受电容性负载的影响,其输入输出可根据需要具有很大灵活性。②光互连的扇出数主要受探测器功率限制。光互连既可解决无终端的电互连线受到临界线长度的限制的问题,又可解决有终端线受到沿该线输出端密度限制的问题,它可以在计算系统内部实现高性能互连。它以光速传递信息,可将时钟扭曲问题减小到最小程度。③光互连不受平面和准平面的限制,光在光波导中可以大于10°的交叉角相互交叉,自由空间光束可相互穿越而不相互作用,可提高系统集成度。研究结果表明,互连网络采用光子传输与电子交换相结合的方法,拓扑结构具有灵活的编程重构特性。光互连网络的带宽不受传输长度的影响,具有很强的抗电磁干扰能力,体现了光互连技术在并行处理器阵列系统中具有很大的应用潜力,为并行处理器阵列中的高速数据通讯和结构设计提供了方便。从而表明了光互连并行处理器阵列在电力系统自动控制和继电保护中具有远大的应用前景,将使电力系统自动控制和继电保护的水平提高到一个新的高度,保证电力系统安全、经济、可靠的运行。

3.结束语

上一篇:中考前鼓励学生的话下一篇:学习系列讲话强化“四个意识”心得体会