容积/单元复习教案教学设计(人教新课标五年级上册)(精选4篇)
1.容积/单元复习教案教学设计(人教新课标五年级上册) 篇一
年级:五年级
学科:数学
单元:
课题:方程的意义
主备人:张连强
杨寨中心学校
二○一○年八月
方程的意义
第一课时
教学内容:数学书P53-54及“做一做”,练习十一1-3题。
教学目标:
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
教具准备:天平、空水杯、水(可根据实际变换为其它实物)
教学过程:
一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水更醒目),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?叫方程。请大家试着写出一个方程。
1、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
1、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
2、小结:这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
四:练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
五、作业:练习十一第1题。
板书设计:
方程的意义
100+x=250
判断一个式子是不是方程的两个条件:
一要是等式,二要含有求知数(即字母)
教后小记:
第二课时
教学内容:数学书P55-56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教具准备:天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
教后小记:
年级:五年级
学科:数学
单元:第四单元-第7、8课时
课题:解方程
主备人:王光涛
杨寨中心学校
二○一○年八月
解方程(一)
教学内容:数学书P57,及“做一做”,练习十一第4题。
教学目标:
1、结合具体的题目,初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高比较、分析的能力。
教学重难点:比较方程的解和解方程这两个概念的含义。
教学过程:
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)
齐读题目要求。
怎么判断X=3是不是方程的解?将x=3代入方程之中看左右两边是否相等,写作格式是:方程左边=5x
=5×3
=15
=方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
板书设计: 解方程
100+x=250
x=150
x=150就是方程100+x=250的解。
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
解方程(二)
教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。
教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高分析、迁移的能力。
教学重难点:掌握解方程的方法。
教学过程
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3个皮球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3
化简,即得: x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3
=6+3
=9
=方程右边
所以, x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6 x÷9=0.7 (强调验算)
课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5-7题。
板书设计: 解方程
例1: x+3=9
x+3-3=9-3 方程两边同时减去一个3,
左右两边仍然相等
即得: x=6
例2: 3x=18 方程两边同时除以3即可
年级:五年级
学科:数学
单元:第四单元-第9、10课时
课题:解方程
主备人:刘桂芝
杨寨中心学校
二○一○年八月
解方程(三)
教学内容:课本 60页例3、及61页的做一做,练习十一的第8题。
教学目标:
1、初步学会如何利用方程来解应用题
2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找题中的等量关系,并根据等量关系列出方程。
教学准备:课件
教学过程:
一、复习导入
解下列方程:
x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7
学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。
二、学习新知。
1、教学例3.
(1)出示题目。(课件)
出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。
“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”
我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。
同学们想想,“警戒水位是多少米?”
(2)分析,解题。
根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。它们之间有哪些数量关系呢?(板书)
警戒水位+超出部分=今日水位①
今日水位-警戒水位=超出部分②
今日水位-超出部分=警戒水位③
同学们能解决这个问题吗?
学生独立解决问题。
(3)评讲、交流。(侧重如何用方程来解决本题。)
学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。
学生列出的方程可能有:
① x+0.64=14.14 ②14.14﹣x= 0.64 ③14.14﹣0.64= x
每一种方法,都需要学生说出是根据什么列出的方程。
如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。
对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。
对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。
(4)小结
在解决问题中,我们是怎样来列方程的?
将未知数设为x,再根据题中的等量关系列出方程。
三、练习。
(5)解决“做一做”中的问题。
从题中知道哪些信息?有哪些等量关系?
用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。
(6)独立完成练习十一中的第8题。
四、课堂小结
这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?
五、板书
列方程解应用题
解:警戒水位+超出部分=今日水位① x+0.64=14.14
今日水位-警戒水位=超出部分② x+0.64-0.64=14.14-0.64
今日水位-超出部分=警戒水位③ x=13.5
答:警戒水位是13.5米。
解方程(四)
教学内容:数学书P61:例4、
教学目标:
1、能够根据具体问题列出方程,并正确解方程。
2、培养学习方程的兴趣,感受数学与现实生活的联系。
3、会列方程解决实际问题,提高解决问题的能力。
教学重难点:能够根据具体问题列出方程并正确解答。
教学准备:课件
教学过程:
一、复习导入
1.、用含有字母的式子表示下面的数量关系
(1)3与X的2倍的和。
(2)30减去X除以4的商。
2、(1)要知道自己每分钟能跑多少米,可以怎样获取必要的信息?
(2)要知道一本书还剩多少页没看,需要知道什么?
二、探究新知。
(一)尝试
1、出示例4(课件出示)列方程并求出方程的解。
(1)先提问:要知道一个滴水龙头每分钟会浪费多少水,可以怎么办?
学生各抒己见后,再介绍教材中一位少先队员的做法:那桶接了半小时,共接了1.8千克水。
(2)读题,理解题意:先列方程,再求出方程的解。
(3)引导学生分析题意,找出题中的等量关系。
A、提问:看题,你知道了什么?(引导学生回答)
B、讨论:每分钟滴水量、30分钟与半小时滴水量之间有什么等量关系?
引导学生得出:每分钟滴水量×30=半小时滴的水
思考:怎样根据等量关系列出方程?
C、学生试着列方程(注意单位不统一,该怎么办?),
指名回答,师板书:
设每分钟滴水量为X克
1.8千克=1800克
30X=1800
问:方程的左边表示什么?方程的右边表示什么?
(4)、解方程。
A问:如何来解这个方程?
B、你会做吗?学生试一试并指明一学生板演。
(5)集体订正,板演生讲每一步的根据。
(二)应用
1、3箱苹果共重46 .5㎏,平均每箱苹果重多少千克?
2、大树身高13 .2 m,是小树的5 .5倍。小树多高?
三、课堂小结
今天这节课你学到了那些知识?
四、板书
列方程解乘除计算的问题
例4每分钟滴水量×30=半小时滴的水
设每分钟滴水量为X克
1.8千克=1800克
30X=1800
2.容积/单元复习教案教学设计(人教新课标五年级上册) 篇二
单元教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2.加强学生对中位数在统计学意义上的理解。
3.本单元内容可用4课时进行教学。
第一课时
课题:等可能性与公平性
教学内容:P98.主体图P.99.例1及练习二十第1-3题。
教学目的:
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3能从事件发生的可能性出发,根据指定的要求设计游戏方案。
4能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
教学过程:
一、情境导入
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习
1、学习例1,感受等可能性事件的等可能性。
首先我们来到足球场,足球比赛马上要开始了。(出示足球比赛主体图)你们知道足球比赛是怎样决定谁开球的吗?
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识-可能性。[板书课题]
2、抛硬币试验
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数
正面朝上次数
反面朝上次数
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者 抛硬币总次数 正面朝上次数 反面朝上次数
德摩根 4092 2048 2044
蒲丰 4040 2048 1992
费勒 10000 4979 5021
皮尔逊 24000 1 11988
罗曼若夫斯基 80640 39699 40941
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习
1、P99做一做
几个准备走棋的同学正在为谁先走而犯难,我们一起去看看。小红说的游戏规则你认为公平吗?为什么?
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、P100第2题
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题
通过转转盘,该男(或女)生先来抛骰子。下面,我请男生用长方体的骰子,女生用正方体骰子掷。这样是否公平?
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)
试验,验证结果。
4、练习二十第1题
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
课后反思:
我为这学生准备了大量教具,包括情境图、主题图、做一做及练习2的转盘,长方体及正方体的骰子、同学们也都准备了硬币。由于准备充分,且整节课教学环节以操作、游戏贯穿,所以学生忘我地投入到学习全过程,教学效果相当好。
下面谈谈自己在备课过程中的几点思考:
1、对本课情境图使用的分析。我曾听过几位教师执教此内容,许多人都是直接用录像由足球开赛引入,可谓直奔主题。但我觉得本课校园生活的情境图内蕴含大量可能性教学的素材,不仅今天的例题足球开赛可以由此引入,连做一做及练习二十中的3道题也都可以以这幅情境图来衔接。而且,例2、例3的主题图也“镶嵌”其中。因此,在本课的新授、练习中我都力求充分利用主题图展开,它使教学更流畅,同时也使学生感受到生活中充满数学。
2、对抛硬币实验的思考。抛硬币次数如果太少,那么正反的可能性也许会与理论值1/2偏差较大。抛硬币次数如果太多,那么课堂宝贵的时间又会因此而浪费,所以,我采用了小组合作然后全班汇总的方式。每组要求有一名记录员,其他同学共计抛20次。通过组间竞赛比一比哪一组操作得既迅速,又安静。这样的竞赛促使学生较安静、快速地完全了实验活动。全班操作结果,正面朝上次数与理论值(10次)误差最大的是3个,其中有4个小组正面朝上的次数正好占总次数的1/2。当我再次引导学生汇总全班结果时,太巧了,正面朝上的次数又恰巧是总数的1/2。
3、对巩固练习安排的思考。我借助情境图,以右下角下棋的游戏为载体。首先由转转盘决定男女生下棋谁先走来完成做一做第1题。当学生回答出不公平,并提出改进方案后,我顺引出练习二十第2题,要求学生思考并回答,再用此公平的转盘决定男女生谁先走(咱们班男生选的蓝色,女生选的红色,如果转到其它两种颜色则重来)。当决定了某方先走后,就要抛骰子看走每次走几步了。这时,我将练习二十第3与第1题结合起来,对内容进行适当改编。指出长方体骰子由男生掷,正方体骰子由女生掷,此时男生大呼不公平,在辨析过程中,学生不知不觉地完成了两题的内容,最后由男女生在我自制的棋盘上“拼杀”了一盘,结果了今天的新课。
第二课时
教学内容:P101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重点:会用分数来描述一个事件发生的概率。
教学难点:让学生认识到基本事件与事件的关系,即花落在每个人手里的可能性与落在男生(或女生)手里的可能性的关系。
教学准备:主题图、扑克牌、转盘。
教学过程:
一、谈话引入:
同学们,你们玩过击鼓传花的游戏吗?其实在这个游戏中就蕴含着我们今天要学习的知识--可能性。[板书课题]
二、新授
1、出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
调查本班第一排男生和女生的实际人数(男生4人,女生2人)。
如果第一排的同学围成一个圆圈玩击鼓传花的游戏,那么他们中每个人得到花的可能性分别是多少?
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是1/6。
2、画图转化,直观感受
如果把这些同学分为男生组和女生组。那么花落在女生手里就由女生组表演,花在男生手里就由男生组表演节目,这样游戏公平吗?为什么?花落到男生组的可能性是多少?女生呢?
生发表意见,全班交流。
我们可以画图来看看同学们的想法是否正确。(画图).
师:从图中可以发现,每一个人得花的可能性是1/6,6人中有2人是女生,就有2次被传到的可能,所以妇女同学表演节目的可能性是2/6,男同学是4/6。
问:如果游戏总人数仍旧是6人,怎样调整才能使游戏公平?他们的可能性又分别是多少?
师:如果18个学生中,男生9人,女生9人,男生女生得到花的可能性又各是多少呢?……
练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
3、小结
4、巩固练习
完成P.101.做一做。
问:指针停在转盘每一个扇形区域的可能性是多少?
转盘指针停在红、黄、蓝三种颜色区域的可能性各是多少?
为什么指针停在红色区域的可有性是3/8?
如果转动指针80次,大约会有多少次指针停在红色区域?(转运指针80次,则指针停在每个小区域的次数大致相等,即为80÷8=10次,而红色占3个区域,所以指针停在红色区域的次数大约就是10×3=30次)
在实际的操作中,停在各个区域的次数一定跟我们计算的结果一致吗?
师:这是理论的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转运80次,有可能会偏离这个结果,这也是正常的。
三、练习
完成练习二十一
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
问:9张卡片,摸到每张卡片的可能性是多少?
摸到单数的可能性是多少?双数呢?
这个游戏公平吗?说说你的理由。
在这个游戏中,小林一定会输吗?
你能设计一个公平的规则吗?
2、第三题,
问:乙猜对的可能性是多少?猜错的可能性是多少?你觉得这个游戏规则公平吗?
乙一定会输吗?
先独立思考,再小组合作,全班交流。
四、课内小结:通过今天的学习,你有什么收获?
五、作业:P102第二题,学生在独立设计,全班交流。
补充练习:说出下列事件发生的可能性是多少?
1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出红色球的可能性是多少?白色呢?黄色?
2、商场促销,将奖品放置于1到9号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
教学反思:
我感觉本课最大难点是例题的教学,而例题教学中的最大难点又在于花落在每个人手里的可能性与落在男生组(或女生组)手里的可能性的关系。因为去年曾听过一节此内容较精彩的研讨课,但那位优秀的教师在例题教学过程中也是“步履维艰”。
我尝试分析了一下例题难在何处?主要原因是这里男生组与女生组表演的可能性正好相等,难以激发起学生探究的欲望。有的学生错误地认为游戏中只有男生组和女生组,所以男生组(或女生组)获胜的可能性就应该是1/2。(因为有两个组,男生组和女生组分别占其中的一份)。其次,例题如果采用直观形象的色块来帮助理解比较容易突破难点,但主题图中人数太多,用转盘画图示来表示不方便。针对以上原因,我在教案设计时将观察人数由例题的18人减少为(6人),这样绘制转盘时就能即快捷又方便学生观察探究了。其次,我将例题的等可能性事件变为非等可能性事件。当我对第一排的同学宣布完游戏规则后,全班男生大呼“不公平”。此时,我就紧抓其“不公平”的心理引导他们深入思考,最终从数学可能性的角度发现其概率的不同,男生组表演节目的可能性是4/6,女生只有2/6。
困惑:为什么教材例题要以击鼓传花为素材来研究男生组与女生组的可能性呢?学生生活中很少是男生组或女生组为单位来进行表演的,他们缺乏这样的游戏体验。其次,为什么不能直接采用直观形象的转盘作为研究素材呢?
3.容积/单元复习教案教学设计(人教新课标五年级上册) 篇三
单位:昆仑宋家坊小学
备课人:王福明
教学内容:教材105-108页
教学目标:
1、理解中位数在统计学上的意义,学会求中位数的方法。
2、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
3、感受数学与现实生活的密切联系,体会数学的运用价值,形成热爱数学的情感。
教学重点:理解中位数在统计学上的意义,学会求中位数的方法。
教学难点:体会“平均数”“中位数”各自的特点。
教具准备:实物投影。
教学过程:
一、创设情境,引入课题。
1、出示书本第105页的例4图及统计表。
姓名 李明 陈东 刘云 马刚 王明 张炎 赵丽
成绩/米 36.8 34.7 25.8 24.7 24.6 24.1 23.2
师:从这幅情境图上的统计表中你能获得哪些信息?
2、提出问题。
师:你们觉得第3组同学掷沙包的一般水平应该是多少呢?用什么数表示?可以用什么方法?
先估一估,再让学生算出该组数据的平均数(27.7),并进行核对。
师:通过估算和求平均数,你们有什么发现?
师:为什么平均数比大多数的同学的成绩都高呢?
3、引入课题。
师:通过刚才的这个例子,我们发现用平均数表示第3组同学掷沙包的一般水平不太合适,那用什么数表示呢?
板书课题:中位数的统计意义及计算方法。
二、探索新知:
1、介绍中位数的特点。
师:把一组数据按大小顺序排列后,最中间的数据就是中位数,它的优点是不受偏大事偏小数据的影响。
板书:(中位数:不受偏大或偏小数据的影响,有时用它代表全体数据的一般水平更合适。)
2、探索中位数的求法。
师:根据刚才的介绍,你觉得应怎样求一组数据的中位数?
学生通过思考讨论后发表自己的看法。
师生小结:把掷沙包的成绩数据进行大小排列,找出最中间的数来表示这组同学掷沙包的一般水平。中位数是一组数据按大小顺序排列后,最中间的数。
讨论:通过刚才的学习,你觉得中位数和平均数有什么联系和区别?
先让学生小组交流,然后教师组织学生进行全班交流。
通过全班交流,引导学生认识:中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。平均数主要反映下组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平),当一组数据中某些数据严重偏大或偏小时,就最好选用中位数来表示该组数据的一般水平。
3、自我探究。
让学生自学例5,并针对问题在小组内交流想法。然后教师按问题编排的顺序组织学生逐题讨论。
4、深化认识。
全班交流时,教师还可提出以下问题让学生讨论。
(1)在计算中位数时,例题5与例4所给的条件有什么不同?
(2)在例5中,为什么用中位代表这组数据的一般水平比平均数更合适?
(3)计算偶数个数据的中位数和奇数个数据的中位数方法有什么不同?
通过上面问题的的讨论,引导学生认识:
(1)计算中位数时,例5与例4的不同之处是统计表中7个数据还没有按大小顺序排列,先把这7个数按大小顺序排列,然后再仿例4进行计算。
(2)在例5中,7名男生跳远成绩的平均数是2。96,中位数是2。89,分析发现有5名男生的成绩都低于平均值,从而说明在这里用平均数来代表该组成绩不太合适,所以应选用中位数。
提问:如果我们再加上一个学生,如何找出它们的中位数?
讨论:有偶数个数,中位数怎么找?学生讨论。
师生小结:一组数中有偶数个数时,中位数是最中间的两个数的和除以2,计算出中位数来。
5、小结:奇数个数,按大小顺序,最中间的那个数就是中位数,可直接在数据组中找出;偶数个数据,按大小顺序排列,求出最中间的两个数的平均数,就是中位数。
三、巩固练习:
指导学生完成书本107页的练习二十三的第1、2题。
四、全课小结:
师:你能举例说明什么是中位数,什么是平均数吗?怎样求偶数个数的中位数?
五、布置作业:
练习二十三的第4题。
课题:人教版五年级上册统计与可能性铺一铺
单位:昆仑中心学校中心小学
备课人:孙兆科
教学内容:教材109-110页
教学目标:
1、通过观察生活中常见的密铺现象,使学生初步理解密铺的含义,知道什么是平面图形的密铺;通过拼摆各种图形,探索密铺的特点,认识一些可以密铺的平面图形。
2、在探究多边形密铺条件的过程中培养学生的观察、猜测、验证、推理和交流的能力。进一步发展学生的合情推理能力,能运用几种图形进行简单的密铺设计。
3、通过欣赏密铺图案和设计简单的密铺图案,使学生体会到图形之间的转换,充分感受数学知识与生活的密切联系,经历欣赏数学美、创造数学美的过程,从而激发学生学习数学的兴趣,享受由美带来的愉悦。
教学重点:
掌握密铺的特点、知道哪些图形可以进行密铺。
教学难点:
理解密铺的特点,能进行简单的密铺设计。
教具准备:
实物投影。
教学过程:
(一)情境导入
1、你们知道密铺吗?这些密铺的图案是由什么基本图形组成的?(欣赏)
(二)探究新知
1、生活中,哪些地方用到了密铺?学生举出相应的例子。
2、如果密铺平面时只用一种图形,比如圆、等 边三角形、长方形等,请你猜猜看,哪些图形能用来密铺?
3、引导学生想像,然后以小组为单位讨论,合作动手摆一摆,找出哪些图形可以密铺。
4、学生汇报自己交流的结果,教师适当小结。
5、让学生任选一组瓷砖图片,在方格上设计新颖、美观的图案。
6、让先设计完的同学数一数在自己设计的密铺中,有多少块不同的基本图形?所占的面积是多少?
7、展示学生的作品,看谁设计的最美观,更有创意,学生互评一下。
8、出示七巧板中的两种图形密铺的图案,提问:你能像这样用七巧板中的任意两种图形进行密铺吗?
(三)课堂小结
1、你知道哪些图形可以密铺吗?你会设计密铺的图案吗?
4.容积/单元复习教案教学设计(人教新课标五年级上册) 篇四
一.学生学习情况分析
本学期,我所教五年级两个班的学生数学成绩一直以来都存在着较严重的问题:基础不扎实甚至偏差,学习习惯没有培养起来;学习主动性欠缺,方法单一,疏于动脑;计算不准确,综合分析、概括和归纳的能力较为薄弱,在实际应用中对数量关系找得不准确,理解不到位,前后知识的联系不够紧密;对于知识规律性的探索和应用上欠灵活,掌握得不够牢固,成绩很不理想。
通过半个学期的教学,两个班学生的整体精神面貌有了较大改进,计算能力和解决问题的能力也有了不小的提高;在第一单元的考试很不理想的情况下,两个班的学生能积极的端正学习态度,绝大部分学生参加了学校的补差辅导班,在一边学习新知识一边复习旧知识的基础上,第二单元的检测有了较大的进步;不少后进生开始学数学、爱数学,学习的兴趣大为增强,良好的学习习惯逐渐形成培养起来。
本单元的知识与前后知识的联系较为紧密,在以往教学中,已逐渐让学生认识和体会方程的意义和解法,如利用课本35页第12题、46页第九题、53页19题等题目的练习。在教学第四单元前,为了更好地了解和促进学生的计算能力,并加强对解简易方程的计算,举行了一次口算能力的前测,在40道检测题中,有2人全对,占总人数的2%;有22人对35题以上,占总人数的25%;两个班的总平均分为26.8分。但是,在以往的教学中,学生习惯了用算术法思考,总想着用条件求问题,未能淡化条件,建立与问题相关的最明显的相等关系;因此在列方程解应用题的教学中,要加强分析等量关系的训练,结合线段图,写出等量关系,建立代数意识。
二、单元教学目标
1.知道用字母表示数的意义和和作用,能用字母表示数和常见的数量关系;能根据字母的取值,求含有字母的式子的值。
2.理解方程的意义,知道方程与等式,方程的解与解方程的区别,会解简易方程.
3.掌握列方程解应用题的一般步骤;能根据题意找出等量关系;能根据题目中数量关系的特点灵活选择用方程法或算术法来解应用题。
三、单元学习内容的前后联
四、教学重点、难点
教学重点:1.让学生知道用字母表示数的意义和作用,并能用字母表示数或常见的数量关系;能根据字母所取的值,求含有字母的式子的值。
2.理解:方程、方程的解、解方程的含义,会解简易方程并检验。
3.掌握列方程解应用题的一般步骤,并能正确列出方程。
教学难点:1.根据量与量之间的关系,理解含有字母的式子的的含义.
2.理解并掌握解含有二、三步运算的简易方程的方法与原理。
3.掌握根据题意找数量间相等关系的方法,并能正确列出方程解应用 题。
五、单元评价要点
1.能知道用字母表示数的意义和作用,并能用字母表示数,用字母表示数量关系。
2.会根据字母的取值,求含有字母的式子的值。
3.能正确地解简易方程并检验。
4.能准确地找出等量关系,列出方程解应用题.
5. 能根据题目中的数量关系的特点灵活选择解题方法。
六、各小节教学目标及课时安排
本单元计划课时数: 25 节
教学内容 教学目标 计划
课时 授课
日期 备注
1.①用字母表示运算定律和公式
1. 会用字母表示运算定律和计算公式;
2. 理解用字母表示数的意义和作用;
3. 掌握一个数的平方的意义及读写法。 1课时
14
周
1.②用字母表示数量关系
1. 熟练掌握常见的数量关系;
2. 了解用含有字母的式子表示数量的意义;
3. 掌握用含有字母的式子表示数量的方法; 1课时
1. 熟练掌握常见的数量关系及转换;
2. 简便运算用字母归纳的方法;
3. 巩固练习:完成练习二十二.
1课时
1.③.用含有字母的式子表示数量
1.根据量与量之间的关系,会用含有字母的式子来表示数量;
2.在理解含有字母的式子的基础上,会根据字母的取值,求含有字母的式子的值。 1课时
1.理解用含有字母的式子表示数量的意义,会用含有字母的式子表示数量;
2.能根据字母所取的值,求含有字母的式子的值.
3.培养学生的抽象思维能力和概括能力.
1课时
1.掌握用含有字母的式子表示数量的方法;
2.巩固练习:完成练习二十三. 1课时 15
周
2.①方程的意义
1.理解方程的意义;
2.知道方程和等式之间的区别;
3.能正确判断一个式子是不是方程. 1课时
解方程是本章的一个重点和难点,也是学生出错较多的地方,在教学中,要注重学生对计算原理的理解,并且要养成自觉检验的好习惯.
2.②解简易方程(一)
1.知道方程的解和解方程的含义与区别;
2.掌握一步计算的简易方程的解法并会检验;
3.培养规范书写和自觉检验的良好习惯. 1课时
2.③解简易方程(二)
1.初步学会ax+b=c或 b+ax=c这类方程的解法;
2.理解ax+b=c或 b+ax=c这类方程的解法原理;
3.进一步掌握解简易方程的格式.
1课时
1.熟悉ax+b=c或 b+ax=c这类方程的解法原理;
2.掌握ax+b=c或 b+ax=c这类方程的解法;
3.培养学生分析问题、解决问题的能力;
4.巩固练习:完成练习二十五。 1课时
2.④解简易方程(三)
1.初步学会 ax+bx=c这类方程的解法;
2.理解ax+bx=c这类方程的计算原理;
3.进一步掌握解ax+bx=c这类方程的书写格式. 1课时
16
周
此处加一节巩固练习,加强学生对解方程和列方程解应用题的掌握.
1.熟悉理解ax+bx=c这类方程的计算原理;
2.培养学生分析问题和解决问题的能力;
3.巩固练习:完成练习二十六. 1课时
3.①列方程解较容易的两步计算的应用题
1.总结并掌握列方程解应用题的一般步骤;
2.会列方程解比较容易的两步计算的应用题;
3.掌握根据题意找出数量间相等关系的方法;
4.掌握列方程解应用题的书写格式并会检验.
1课时
1.知道列方程解应用题的关键是根据题意找出数量间相等关系;
2.培养学生分析问题和解决问题的能力;
3.巩固练习:完成练习二十七. 1课时
3.②列方程解稍复杂的两、三步计算的应用题
3.③列方程解含有两个求知数的应用题
3.④用方程解和用算术法解应用题的比较 1.会用方程解答“已知比一个数的几倍多(或少)几是多少,求这个数”的应用题;
2.能根据实际情况灵活选择解题方法,培养学生主动获取知识的能力;
3.培养学生的应用意识和解决实际问题的能力.
1.初步学会列方程解答三步计算的应用题;
2. 会分析稍复杂的应用题的数量关系,并能正确列出方程;
3.能用解相遇问题的思维方式解答相关的实际问题,培养学生的实践能力;
1.掌握列方程解稍复杂应用题的思路和解题步骤;
2.体会列方程解应用题的优越性,培养学生的应用意识和解决实际问题的能力;
3.巩固练习:完成练习二十八.
1.掌握含有倍数关系的、有两个求知数的应用题的解题步骤和方法,并能初步会列方程解答;
2.会设未知数,并能用含有求知数的式子表示两个数量之间的关系。
1.学会列方程解含有两个未知数的应用题;
2.培养学生的比较、分析和归纳概括能力;
3.巩固练习:完成练习二十九.
1.知道用方程解应用题和用算术法解应用题这两种解题思路的区别;
2.根据题目中数量关系的特点灵活选择解题方法。
1.通过对两种方法的比较,进一步掌握用方程解应用题的特点;
2.分清用方程解和用算术法解应用题的解题思路;
3.培养学生的思维能力与创新意识.
1.提高提高根据题目的特点,灵活选择解题方法的能力;
2.培养学生灵活的思维能力,提高解决问题的能力
3.巩固练习:完成练习三十. 1课时
1课时
1课时
1课时
1课时
1课时
1课时
1课时
17
周 根据题意找出数量间的相等关系是列方程解应用题的关键,本处适当补充找找等量关系的方法:画线段图、列表法、写出等量关系式法等帮助解题。
18
周
此处可加强学生对多样化解题策略的训练,能根据题目特点灵活选择解题方法。
4.整理和复习
①用字母表示数和解简易方程
②用方程和算术法解应用题 1.进一步明确用字母表示数的意义,会用字母表示数和常见的数量关系;
2.掌握解简易方程的计算原理与方法,能正确求解并检验.
3.巩固练习:完成整理和复习题.
1.掌握列方程解应用题的一般步骤;
2.明确根据题意找出数量间相等关系的方法;
3.进一步明确列方程解和算术法解应用题的区别,并灵活选择解题方法。 1课时
1课时
单元测试 1课时 19
周
测试情况
反馈 1课时
【容积/单元复习教案教学设计(人教新课标五年级上册)】推荐阅读:
第二单元小数除法 教案教学设计(人教新课标五年级上册)09-26
第四单元有余数的除法 教案教学设计(人教新课标三年级上册)08-06
(人教新课标)六年级语文上册第一单元草虫的村落 教学设计07-07
第七单元:11~20各数的认识和加减(共3课时)2 教案教学设计(人教新课标一年级上册)08-19
二上数学第二单元100以内的加法和减法(二)教案 (人教新课标二年级上册)09-21
七年级语文上册 第三单元《观沧海》教学设计 人教新课标版11-18
八年级上册 第四单元 交往艺术新思维(人教版思想品德九年级第一轮复习教案)09-04
人教版四年级上册语文各单元复习资料10-05