高频小信号放大电路课程设计

2024-09-07

高频小信号放大电路课程设计(精选4篇)

1.高频小信号放大电路课程设计 篇一

课程名称:高频电子线路

设计题目:LC高频小信号放大器

院 系:机械与电子信息工程学院

专业班级:电子信息工程071121班

小组成员:赵培杰20121000181

张源林20121000136

裴生伟20121000291

肖曲林20121000182

指导老师:罗大鹏

日 期:2014年3月

ABSTRACT

High frequency signal resonance amplifier was widely used in telecommunications.Broadcasting equipment and so on.We can use, LC loop resonance frequency selective parallel resonant frequency amplifier , thus the particular signal.Transistor amplifier with voltage gain of emitter, output voltage and input voltage, frequency characteristics of the poor performance, suitable for low and middle level of multi-level amplifier circuit, using two levels of signal tuned circuit will original weak signal, and by using the LC 100 times parallel resonant circuit will be elected signal.The technical indexes of amplifier and test method, the impact of distribution parameters of the circumstances about circuit performance.Small signal resonance frequency amplifier, characterized by the main performance indexes, the harmonic resonance frequency and voltage magnification Av0 amplifier pass band BW and selective rectangular K1.0r coefficient usually.Keywords triode LC resonant quality factor pass band rectangular coefficient.摘 要

高频小信号谐振放大器在通信、广播等设备中有广泛的应用,可以利用三极管放大信号、LC并联谐振回路谐振选频,从而放大特定频率的信号。三极管共发射极放大具有电压增益大、输出电压与输出电压反相、低频性能差的特点,适用于高频和多级放大电路的中间级,利用两级单调谐电路将原始微弱信号放大100倍,并利用LC并联谐振回路将特定信号选出。表征高频小信号谐振放大器的主要性能指标由谐振频率f0,谐振电压放大倍数AV0,放大器的通频带BW及选择性(矩形系数K1.0r)的计算。

关键词 三极管;LC;谐振;品质因数;通频带;矩形系数

本设计以理论分析为依据,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

分工

赵培杰,主要参数计算及仿真实验

张源林,参数计算及报告制作

裴生伟,PPT制作及仿真实验

肖曲林,参数计算及PPT演讲

1电路设计方案

1.1 设计任务

设计一个高频小信号调谐放大器。要求 :

(1)谐振频率10.7mhz,谐振电压放大倍数>20db,带宽为1mhz(2)矩形系数<10,噪声系数<7db(3)输入、输出阻抗为50欧姆。

1.2 高频小信号放大器的特点

(1)频率较高中心频率一般在几百kHz到几百MHz频带宽度在几KHz到几十MHz,故必须用选频网络。

(2)小信号信号较小故工作在线性范围内即工作在线形放大状态。

(3)采用谐振回路作负载,即对靠近谐振频率附近的信号有较大的增益,对远离谐振频率附近的信号其增益迅速下降,即具有选频放大作用。

1.4 电路原理图

根据上面各个具体环节的考虑设计出下面总体的电路:

2选用三极管

选取适用于高频放大的三极管,2N2222三极管 型号:2N2222A 封装:TO92 极性:NPN 主要参数:60V,0.8A,500mW,300MHZ,HFE=100~300,从参数可以知道需要放大的频率为10.7MHZ《300*0.2,即可以使用 又查表可知放大系数为50。

以下是从网上查的2N2222型三极管参数资料.3电路参数的设计

3.1 设置静态工作点

Ieq =1mA, Veq =1.5V, Vceq=7.5V, 则

Re=Veq/Ieq=1.5KΩ

Rb2=Vbq/(6Ibq)=18.3KΩ

Rb1=(Vcc-Vbq)*Rb2/Vbq=55.6KΩ

3.2 计算谐振回路参数

根据要求应由谐振频率选取电感L,中心频率f0=10.7MHz取电容为51pF 由公式

L=(1/2x3.14)2/C

得L=4uH 3.3计算输入回路的LC的值

Q=f0/bw=10.7/1=10.7;

设R1=800;Xl1=Xc1=R1/Q=77.7;C=1/(2*3.14*f0*77.7)=200pH;L=77.7/(2*3.14)=1.2uH;p1=R1/RS=0.25;

4仿真结果

从示波器可知与原信号反向放大

5心得体会

从本次设计中发现在设计抽头变压器时,没能找到合适的线圈比,只能使用电容耦合输出,从而达到了输出波形的目的.当增益输出不够时主要通过调节静态工作点,以增加增益.在输入端设计谐振回路目的是为了滤波,以减少噪音的影响.输出回路可以先设置一个电感值,再经过计算得到适当的电容值.三极管必须选用高频管,且fT>5fo.

2.高频小信号放大电路课程设计 篇二

高频小信号放大器有窄带和宽带放大器, 是按频带宽度分的。通常被放大的小信号是窄带信号, 高频小信号的基本类型是频带放大器, 负载使用各种选频电路, 有选频滤波和阻抗变换的用处。如图1-1所示电路中的电感短路、电容开路;直流偏置电路中Rb1、Rb2为基极分压偏置电阻, Re为发射极负反馈偏置电阻, Cb、Ce为旁路电阻用于稳定静态工作点。

二、高频小信号调谐放大器各级模块原理分析

2.1耦合变压器。耦合, 把两个或两个以上的体系或两种运动形式之间, 利用各种互相作用而影响彼此来结合起来的现象叫做耦合, 比如通过磁场耦合的互感线圈。耦合的变压器常常用在无线电中, 如收音机的中周、输入变压器、输出变压器都属于这一类, 称为耦合变压器。许多方面都会用到耦合变压器, 在阻抗匹配方面也用运用[1]。

2.2共发射极三极管放大电路。基本共射极放大电路式放大电路的一种基本电路形式, 应用非常广泛, 根据晶体管工作在放大区的条件, 即发射极正偏, 集电结反偏可以得到基本共射大电路。

2.3抽头式并联谐振回路。在实际应用中, 常常用到激励源或负载与回路电感或是电容部分链接的并联振荡回路, 即抽头式并联振荡回路。

2.4负反馈放大电路的自激振荡。在实用的放大电路中, 常常引入负反馈, 以改善多反面的性能, 但对于某些放大电路, 会因负反馈不当而产生自激振荡, 不能正常工作, 而有些电路又需要自激振荡。若输入信号为零, 而输出端有一定频率一定幅值的交流信号, 则称电路产生了自激振荡, 之所以会产生自激振荡是由于电路在中频段时, 放大倍数Α和反馈系数F都是实数, 它们的相角φA+φF=2nπ (n为整数) , 然而耦合的电容、旁路电容、晶体管结电容和其它杂散电容存在, 在低频和高频段, A的数值和相位均产生变化, 即A是频率的函数, F也是频率的函数, A和F此时会产生相移, 叫附加相移, 电路存在附加相移为±π的ƒ0, 且在ƒ=ƒ0时|AF|>1, 就会产生自激振荡。

三、高频小信号调谐放大器的技术参数

3.1增益。增益, 放大微弱信号能力的强弱就是放大器的增益。

3.2通频带和选择性。通频带B W 0.7 0 7与矩形系数Kr0.1。通频带BW0.707为ƒ0与QL的比值, ƒ0通为谐振回路的频率, L为回路的电感, QL为有载品质因数, 把电压增益下降到最大值的0.707倍时, 此时的频率范围为高频段。了解放大器的频率选择性, 需要矩形参数, 矩形系数越小, 选择性越好, 其抑邻进无用信号的能力就越强[2]。

3.3提高放大器稳定性的方法。为了提高放大器的稳定性, 通常从两个方面入手, 第一是从晶体管本身想办法, 减小其反向传输导纳, 它的大小主要是取决于晶体管基极电容的反馈, 选择管子时尽量选择反馈小的管子, 使其容抗增大, 反馈作用减弱。第二是从电路上设法消除晶体管的反向作用, 使它单向化, 具体方法有失配法和中和法。

四、结束语

在高频段时, 有分布参数在影响, 各项技术指标会有偏差, 所以要一遍一遍的调试, 认真的分析数据, 还要注意接地是否接好, 以便更好地进行测量。还有可能会遇到放大器不稳定和出现自激振荡, 要解决这些问题需要了解电路各组成部分的原理, 合理调整参数。今后的实际中需要高频小信号调谐放大器对一系列的小信号进行处理, 特别是现代通信的无线技术中都需要此类电路。

摘要:本文主要介绍的是有关于高频小信号调谐放大器的设计与其工作原理的分析。在通信系统和其他电子系统中, 高频调谐放大器都有很大的用处, 采取晶体管把信号放大, LC并联谐振回路谐振选频, 可以把信号的频率放大, 其过程中要注意增益、稳定性还有噪声系数等特性参数。

关键词:小信号谐振,实验设计,实验数据分析

参考文献

[1]阳昌汉, 谢红, 宫芳.高频电子线路.2版.高等教育出版社, 2013:78-92.

3.模电课程设计仿真 音频放大电路 篇三

设计题目:学生姓名:教师姓名:《模拟电路基础》电子线路应用设计报告

功率放大电路 学号:

日期: 2016.12.27

1、设计任务

设计要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗RL=8Ω。

性能指标:频率:20Hz~20kHz 输出功率:≥8W 放大倍数:30dB 失真:≤10%

2、电路原理

2.1 电路整体方案 2.1.1 方案的确定及论证

一、OCL互补对称功率放大器

图 2.1.1-1 OCL电路

如图所示放大电路是由两个射极输出器组成的,T1和T2分别为NPN型管和PNP型管,两管的材料和参数相同(即特性对称),且电源由对称的双电源+VCC和-VCC提供。

图中,两管基极没有偏置电流,静态损耗为0,电路工作在乙类状态,信号从基极输人,从射极输出,RL为负载,输出端没有耦合电容。所以,把图4-35所示的电路称为无输出电容的功率放大电路,简称OCL电路。静态时,UEQ=UBQ=0 输入电压的正半周:+VCC→T1→RL→地 输入电压的负半周:地→RL→T2→-VCC OCL电路的输出功率的计算公式如下:

最大输出功率:

转换效率:

二、用集成器件实现

TDA2030集成功放芯片:

TDA2030是德律风根生产的音频功放电路,采用V型5脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。

图 2.1.1-2 TDA2030芯片

TDA2030管脚功能: 1脚是正相输入端; 2脚是反向输入端; 3脚是负电源输入端; 4脚是功率输出端; 5脚是正电源输入端。

图 2.1.1-3 TDA2030芯片

图 2.1.1-4 TDA2030典型参数

TDA2030特点: 1.开机冲击极小。2.外接元件非常少。

3.TDA2030输出功率大,Po=18W(RL=4Ω)。4.采用超小型封装(TO-220),可提高组装密度。

5.内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。

6.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。

运用集成芯片TDA2030完成音频功率放大电路的设计,能够更好地达到设计任务和要求。2.1.2 整体电路

整体电路设计:使用TDA2030加少量外围元件,输入端使用高通滤波。

图 2.1.2-1 音频功放电路

2.2 各部分电路原理

一、输入部分

图 2.2-1 输入部分电路

R3是直流平衡电阻,同时与C3构成高通响应,用以滤除低频信号。

二、放大部分

图 2.2-2 放大部分电路

R1、R2和C2构成负反馈电路,决定电路的电压增益及低端截止频率。Au=R1/R2

三、输出部分

输出部分负载为扬声器,阻抗RL=8Ω。

四、保护部分

图 2.2-3 保护部分电路

R4和C7可以稳定频率,防止电路自激。D1、D2用以保护集成块 2.3 电路参数选择依据

阐述电路整体方案、各部分电路原理和电路参数选择依据

3、电路仿真和结果

根据要求,仿真软件选用multisim,在软件中连接电路如图4.1所示:

图 3-1 电路仿真图

一、波特图输出

图 3-2 波特图

由图可以看出,其仿真的结果,在20Hz-20kHz内中后段的波形放大能力基本保持不变化,且放大倍数约为30dB。符合题目要求。

二、输出功率

图 3-3 输出回路上探针数据 图 3-4 输出功率图

输出功率为8.662W,≥8W,满足要求。

三、失真分析

图 3-5 失真分析图

失真为0.014%,≤10%。满足要求。

选择的器件及其参数

给出部分和整体电路仿真截图,给出仿真结果及结论。

4、电路加工及测试(可选)

阐述制作电路(画图、焊接)的过程及注意事项,给出PCB版图、实物图。阐明所用的测试仪表、测试方法,给出测试结果。在最后,针对这次DIY,也有些收获和感悟。其中最重要的一点就是功放单点接地的问题!一定得慎之慎之处理处理不好功放会有底噪。

图中R1、R2是输入落地电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色,;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除总接地点外,两种地不得有其他连通点。

5、问题解答

1、为什么共射放大电路不宜用作功率放大电路?

共射主要用于放大电压信号,其输出功率和效率都很低;而功放不仅需要有放大的电压信号,还需要有放大的电流信号,只有电压信号和电流信号都足够大,才能满足功放的要求,所以共射放大不宜用作功率放大电路。

2、TDA2030使用时对电路有什么要求? TD2030使用时类似于集成运放,需要用负反馈电路。

3、如何实现电路的实物制作?

根据电路图绘制PCB→将PCB文件导出为PDF文档格式,采用1:1导出→将PDF打印到菲林上,采用实际大小打印→将打印好PCB菲林平铺在感光板上,准备曝光→用11W的日光台灯曝光约15分钟→曝光完毕后用显影液进行显影→准备好腐蚀溶液进行腐蚀→腐蚀结束,钻孔,准备焊接→焊接元件

6、总结

通过此次的课程设计,我增进了对功率放大电路的了解、掌握了音频功率放大电路的基本设计方法,对于仿真软件Multisim也用得更加得心应手,此外我还新学会了利用软件Altium Designer绘出PCB版图。同时对于模电的课程的内容也有了更加深刻的认识。

电子设计和需要扎实的理论基本功,同时也需要有一定的动手能力。理论加上实践,才能做等更好。

从选择题目到开始着手去做,我才发现自己的模电知识掌握得并不牢固,于是花了很多时间去读教材相关内容,包括基本放大电路的知识,多级放大器,放大电路的反馈和功率放大器等章节,总算是有了大概的想法和思路。而后便查阅各种论文和书籍资料,浏览各样的电子、电工论坛,看到别人的一些见解和讨论,启发了我的思路。最终发现了TDA2030的集成运放具有很大的优点,便想用集成运放来实现。我选择了TDA2030典型电路中的双电源电路来实现,并揣摩该电路的设计思路和意图,最终看出了其中的道理。之后便是应用仿真软件来实现。

制作实物电路图又是一次挑战。首先我询问了一些搞电子设计的同学如何实现实物,得知要先绘出PCB布线再印制、最终把元件焊上去并调试。软件Altium Designer的使用对我来说又是一项新鲜事物,我不断尝试,学会了如何利用软件布线。学校开放实验室给了我们很大的支持和鼓励,元件的找寻以及板子的印制都不再成为困扰我们的问题。我在没课的时候就呆在那里焊板子,最终做出了实物。

虽然我做出来的电路满足了设计要求,但是我仍觉得有些遗憾,那就是这个电路图我是直接用的TDA2030典型电路,并没有在此基础上做什么改进和变化。我想,以后我要更加注重模电这样的课程的学习,掌握扎实的基础,才有创新思考的能力。同时我也认识到,电子设计也需要有一定的动手能力。理论加上实践,才能做得更好。

电路设计、仿真、加工、测试过程中的收获和体会,对课程的理解,对实际电路的认识等等。

说明:正文小四号宋体。图表采用五号宋体,图表分别按顺序编号。

表1 选用的元器件型号和数量 图1 xxx仿真电路图

参考文献

4.高频小信号放大电路课程设计 篇四

高频小信号调谐放大器实验

一、实验目的1.掌握小信号调谐放大器的基本工作原理;

2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;

3.了解高频小信号放大器动态范围的测试方法;

二、实验原理

(一)单调谐放大器

小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a)所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率fS=12MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数Av0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。

放大器各项性能指标及测量方法如下:

1.谐振频率

放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1(a)所示电路(也是以下各项指标所对应电路),f0的表达式为

式中,L为调谐回路电感线圈的电感量;

为调谐回路的总电容,的表达式为

式中,Coe为晶体管的输出电容;Cie为晶体管的输入电容;P1为初级线圈抽头系数;P2为次级线圈抽头系数。

谐振频率f0的测量方法是:

用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f0。

2.电压放大倍数

放大器的谐振回路谐振时,所对应的电压放大倍数AV0称为调谐放大器的电压放大倍数。AV0的表达式为

式中,为谐振回路谐振时的总电导。要注意的是yfe本身也是一个复数,所以谐振时输出电压V0与输入电压Vi相位差不是180º

而是为180º+Φfe。

AV0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a)中输出信号V0及输入信号Vi的大小,则电压放大倍数AV0由下式计算:

AV0

=

V0

/

Vi

AV0

=

lg

(V0

/Vi)

dB

3.通频带

由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数AV下降到谐振电压放大倍数AV0的0.707倍时所对应的频率偏移称为放大器的通频带BW,其表达式为

BW

=

2△f0.7

=

f0/QL

式中,QL为谐振回路的有载品质因数。

分析表明,放大器的谐振电压放大倍数AV0与通频带BW的关系为

0.7

BW

0.1

2△f0.1

图1-2

谐振曲线

上式说明,当晶体管选定即yfe确定,且回路总电容为定值时,谐振电压放大倍数AV0与通频带BW的乘积为一常数。这与低频放大器中的增益带宽积为一常数的概念是相同的。

通频带BW的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f0及电压放大倍数AV0然后改变高频信号发生器的频率(保持其输出电压VS不变),并测出对应的电压放大倍数AV0。由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-2所示。

可得:

通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。

4.选择性——矩形系数

调谐放大器的选择性可用谐振曲线的矩形系数Kv0.1时来表示,如图1-2所示的谐振曲线,矩形系数Kv0.1为电压放大倍数下降到0.1

AV0时对应的频率偏移与电压放大倍数下降到0.707

AV0时对应的频率偏移之比,即

Kv0.1

=

2△f0.1/

2△f0.7

=

2△f0.1/BW

上式表明,矩形系数Kv0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。一般单级调谐放大器的选择性较差(矩形系数Kv0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。可以通过测量调谐放大器的谐振曲线来求矩形系数Kv0.1。

*(二)双调谐放大器

双调谐放大器具有频带较宽、选择性较好的优点。双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改用双调谐回路。其原理基本相同。

1.电压增益为

2.通频带

BW

=

2△f0.7

=

fo/QL

3.选择性——矩形系数

Kv0.1

=

2△f0.1/

2△f0.7

=

三、实验步骤

(一)单调谐小信号放大器单元电路实验

1.根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件(具体指出)。

2.按下面框图(图1-3)所示搭建好测试电路。

图1-3

高频小信号调谐放大器测试连接框图

注:图中符号表示高频连接线

3.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。(以后实验步骤中不再强调打开实验模块电源开关步骤)

4.调整晶体管的静态工作点:

在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即VBQ)和R5两端的电压(即VEQ),调整可调电阻W3,使VeQ=4.8V,记下此时的VBQ、VEQ,并计算出此时的IEQ=VEQ

/R5。

5.按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

6.调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频率为12MHz的高频信号。将信号输入到2号板的J4口。在TH1处观察信号峰-峰值约为50mV。

7.调谐放大器的谐振回路使其谐振在输入信号的频率点上:

将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。

8.测量电压增益Av0

在调谐放大器对输入信号已经谐振的情况下,用示波器探头在TH1和TH2分别观测输入和输出信号的幅度大小,则Av0即为输出信号与输入信号幅度之比。

9.测量放大器通频带

对放大器通频带的测量有两种方式,其一是用频率特性测试仪(即扫频仪)直接测量;

其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:

通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以20KHz或500KHz为步进间隔来变化),并用示波器观测各频率点的输出信号的幅度,然后就可以在如下的“幅度-频率”坐标轴上标示出放大器的通频带特性。

输出幅度

频率

10.测量放大器的选择性

描述放大器选择性的的最主要的一个指标就是矩形系数,这里用Kr0.1和Kr0.01来表示:

式中,为放大器的通频带;和分别为相对放大倍数下降至0.1和0.01处的带宽。用第9步中的方法,我们就可以测出、和的大小,从而得到和的值

注意:对高频电路而言,随着频率升高,电路分布参数的影响将越来越大,而我们在理论计算中是没有考虑到这些分布参数的,所以实际测试结果与理论分析可能存在一定的偏差。另外,为了使测试结果准确,应使仪器的接地尽可能良好。

*(二)双调谐小信号放大器单元电路实验

双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本相同,只是在以下两个方面稍作改动:

其一是输入信号的频率应改为465KHz(峰-峰值200mV);

其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复调第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了。

11.同单调谐实验,做双调谐实验,并将两种调谐电路进行比较。

四、实验报告要求

1.写明实验目的。

2.画出实验电路的直流和交流等效电路。

3.计算直流工作点,与实验实测结果比较。

4.整理实验数据,并画出幅频特性。

五、实验仪器

1.高频实验箱

1台

2.双踪示波器

1台

3.万用表

1块

4.扫频仪(可选)

上一篇:小型建筑企业安全事故解析下一篇:探望外婆小学生作文