导数大题题型总结汇编
1.导数大题题型总结汇编 篇一
首先,关于二次函数的不等式恒成立的主要解法:
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间)
与定义域的关系(2)端点处和顶点是最值所在
其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
解:由函数得
(1)在区间上为“凸函数”,
则在区间[0,3]上恒成立
解法一:从二次函数的区间最值入手:等价于
解法二:分离变量法:
∵当时,恒成立,
当时,恒成立
等价于的最大值恒成立,
而()是增函数,则
(2)∵当时在区间上都为“凸函数”
则等价于当时恒成立
变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)
请同学们参看第三次周考:
例2:设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
(二次函数区间最值的例子)
解:(Ⅰ)
令得的单调递增区间为(a,3a)
令得的单调递减区间为(-,a)和(3a,+)
∴当x=a时,极小值=当x=3a时,极大值=b.
(Ⅱ)由||≤a,得:对任意的恒成立①
则等价于这个二次函数的对称轴(放缩法)
即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数.(9分)
∴
于是,对任意,不等式①恒成立,等价于
又∴
点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3;已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得
(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减
又
∴的值域是
(Ⅲ)令
思路1:要使恒成立,只需,即分离变量
思路2:二次函数区间最值
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立,回归基础题型
解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
解:.
(Ⅰ)∵是偶函数,∴.此时,,
令,解得:.
列表如下:
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
+
0
-
0
+
递增
极大值
递减
极小值
递增
可知:的极大值为,的极小值为.
(Ⅱ)∵函数是上的单调函数,
∴,在给定区间R上恒成立判别式法
则解得:.
综上,的取值范围是.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。子集思想
(I)
1、
当且仅当时取“=”号,单调递增。
2、
单调增区间:
单调增区间:
(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,
综上,a的取值范围是[0,1]。
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
求实数的取值范围;
若函数与的图象有三个不同的交点,求实数的取值范围.
解:(1)由题意∵在区间上为增函数,
∴在区间上恒成立(分离变量法)
即恒成立,又,∴,故∴的取值范围为
(2)设,
令得或由(1)知,
①当时,,在R上递增,显然不合题意…
②当时,,随的变化情况如下表:
—
↗
极大值
↘
极小值
↗
由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得
综上,所求的取值范围为
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网
解:(1)∵的图像过原点,则,
又∵是的极值点,则
(2)设函数的图像与函数的图像恒存在含的三个不同交点,
等价于有含的三个根,即:
整理得:
即:恒有含的三个不等实根
(计算难点来了:)有含的根,
则必可分解为,故用添项配凑法因式分解,
十字相乘法分解:
恒有含的三个不等实根
等价于有两个不等于-1的不等实根。
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
(1)由题意得:
∴在上;在上;在上
因此在处取得极小值
∴①,②,③
由①②③联立得:,∴
(2)设切点Q,
过
令,
求得:,方程有三个根。
需:
故:;因此所求实数的范围为:
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8、
解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,
=x2-7x+10,令,解得或.
令,解得
可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.
(Ⅱ)=x2-(m+3)x+m+6,
要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)
根分布问题:
则,解得m>3
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
解:(1)
当时,令解得,令解得,
所以的递增区间为,递减区间为.
当时,同理可得的递增区间为,递减区间为.
(2)有且仅有3个极值点
=0有3个根,则或,
方程有两个非零实根,所以
或
而当或时可证函数有且仅有3个极值点
其它例题:
1、(最值问题与主元变更法的.例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
解:(Ⅰ)
令=0,得
因为,所以可得下表:
0
+
0
-
↗
极大
↘
因此必为最大值,∴因此,,
即,∴,∴
(Ⅱ)∵,∴等价于,
令,则问题就是在上恒成立时,求实数的取值范围,
为此只需,即,
解得,所以所求实数的取值范围是[0,1].
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;
(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.
解:(Ⅰ).由,函数在时有极值,
∴
∵∴
又∵在处的切线与直线平行,
∴故
∴…………………….7分
(Ⅱ)解法一:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,
∴所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,
由得点F的横坐标为:
由得点G的横坐标为:
∴即
解得:或(舍去)故这时直线方程为:
综上,所求直线方程为:或.…………….………….12分
(Ⅱ)解法二:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,∴所求一条直线L的方程为:
另一种情况由于直线BO方程为:,设直线BO与AC交于H,
由得直线L与AC交点为:
∵,,
∴所求直线方程为:或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:
(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0
得
(Ⅱ)依题意=–3且f(2)=5
解得a=1,b=–6
所以f(x)=x3–6x2+9x+3
(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)
=3ax2+2bx–3a–2b由=0b=–9a①
若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a
由①②得–25a+3<8a<7a+3
所以当
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
解:(1)
………………………………………………………………………2分
令得
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
-
此时,,,有一个交点;…………………………9分
当即时,
+
—
,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ)若函数在处有极值,求的解析式;
(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
【导数大题题型总结汇编】推荐阅读:
导数知识点归纳总结06-29
高等数学导数证明题08-20
高中数学导数及其应用10-24
一.导数的应用教学反思08-22
函数与导数测试题10-02
常用函数的导数教学设计07-04
例说借助导数证明函数不等式 人教版09-09
古诗题型专题总结08-08
高一数学集合题型总结09-25
公务员面试题型答题总结08-17