开关电源电磁兼容经验谈

2024-07-09

开关电源电磁兼容经验谈(精选6篇)

1.开关电源电磁兼容经验谈 篇一

通信开关电源的电磁兼容性: 摘要:简要介绍了通信开关电源的电磁兼容性要求、国内外标准、电磁兼容性的成因、研究解决方法及国内通信开关电源的电磁兼容性现状.引言

通信开关电源因具有体积小、重量轻、效率高、工作可靠、具有远程监控等原因,广泛的应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力.随着信息技术的发展,信息技术设备遍布祖国大江南北,从发达的中心城市至贫穷落后的偏远山区,为人与人间的沟通交流及数据传输提供了极大的便利.通信设备的电网供电质量由于城乡间的差异,即有稳定的大电网如核电、火电、水电等并网的供电方式,同时也有独立的小水电单独供电方式.特别是在小水电站供电方式下,因水量的变化复杂、用户用电量的变化较大及设备工作的不稳定,造成电网波形失真严重及其电网电压和大幅波动,同时因配电系统的接线不规范,对通信开关电源也造成了严峻的考验.铁路通信及电力通信正在发展壮大.由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波过,从而引起电网电压的很大的波动,强大的电场容易引起开关电源设备工作的瞬时不稳定.在高压电网运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的搔扰影响.用于基站的通信用开关电源,由于多安装在较高的建筑物上或是山顶,更容易受到雷电的袭击.因此,通信开关电源要有很强的抗电磁搔扰的能力,特别是对雷击、浪涌、电网电压、静电、电场、磁场及电磁波等要有足够的抗扰动能力,保证自身能够正常工作以及通信设备供电的不间断而且稳定.另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波.在高压大电流的方波切换过程中,方波电压电流将产生丰富的谐波电压及谐波电流,这些谐波电压及谐波电流可通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生搔扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生搔扰,使设备不能正常工作.由于电压差可以产生电场、电流的流动可以产生磁场,丰富的谐波电压电流的高频部分,在开关电源内部产生电磁场,造成开关电源内部工作的不稳定,使电源的性能降低.有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成搔扰,引起其它设备工作异常.因此,要限制通信开关电源对由负载线、电源线产生的传导搔扰量对空间产生的辐射电磁场搔扰量,使之能与处于同一环境中的其它电信设备均能够正常工作,互不产生搔扰.电磁兼容性的国内国外标准

电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能随的电磁搔扰的能力

要彻底消除设备的电磁搔扰及对外部一切电磁搔扰信号不敏感是不可能的.只能通过制订系统内设备与设备之间的相互允许产生的电磁搔扰大小及抵抗电磁搔扰的能力,才能使电气设备及系统间达到电磁兼容性的要求.国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性要求制订了约束条件.国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会.其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的研究.CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法作出了详细的要求.CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法.CISPR22《信息技术设备的无线电搔扰限值和测量方法》规定了信息技术设备在0.15-1000MHz频率范围内产生的电磁搔扰限值.CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部搔扰信号的时域及频域的抗搔扰性能要求.其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求.是目前通信开关电源电磁兼容性设计的最基本要求.IEC最近也出版了大量的基础性电磁兼容标准.其中最有代表性的是IEC61000系列标准,规定了电子电气设备的雷击浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导搔扰抗扰度、传导搔扰及辐射搔扰等的电磁兼容性要求.另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDC0871-1A1、VDE0971-2A2、VDE0878,都对通信设备的电磁兼容性提出了要求.我国对电磁兼容性标准的研究比较晚.采取的最主要的办法是引进、消化、吸收.洋为中用是国内电磁兼容性标准的制订的最主要的方法.1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T 0.41标准,制订了UD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽的规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标.国标也等同采用了相应的检测明确了国际标准.如GB/T 17626.1-12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电搔扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24.开关电源引起电磁兼容性的原因

通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的.从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合电磁波耦合几种.电磁兼容产生的三个要素为:搔扰源、传播途径及受搔扰体.共阻耦合主要是搔扰源与受搔扰体在电气上存在的共同的阻抗,通过该阻抗使搔扰信号进入受搔扰对象.线间耦合主要是产生搔扰电压及搔扰电流的导线或PCB线,因并行布线而产生的相互耦合.电场耦合主要是由于电位差的存在,产生的感应电场对受搔扰体产生的耦合.磁场耦合主要是大电流的脉冲电源线附近,产生的低频磁场对搔扰对象产生的耦合.而电磁场耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受搔扰体产生的耦合.实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已.在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流的接近方波,从频谱分析知,方波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1000次以上.同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射.用于整流及续流二级管,也是产生高频搔扰的一个重要原因.因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡.因整流及续流二极管一般离电源输出线较近,其产生的高频搔扰最容易通过直流输出线传出.通信开关电源为了提高功率因数,均采用了有源功率因数效正电路.同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量的采用了软开关技术.其中零电压、零电流或零电流开关技术应用最为广泛.该技术极大的降低了开关器件所产生的电磁搔扰.但是,软开关无损吸收电路,多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁搔扰的一大搔扰源.通信开关电源中,一般利用储能电感及电容器,组成L、C滤波电路,实现对差模及共模搔扰信号的滤波,以及交流方波信号转换为平滑的直流信号.由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频搔扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播.滤波电容器,随着搔扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断的下降,直至谐振频率以上时,完全失去电容器的作用而变为感性.不正确的使用滤波电容及引线过长,也是产生电磁搔扰的一个原因.通信开关电源由于功率密度高、智能化程度高,带MCU微处理器,因而,从高至近千伏的电压信号,到低至几伏的电压信号;从高频的数字信号,至低频的模拟信号,电源内部的场分布相当复杂.PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理及CPU、检测电路的设计不合理,均会导致系统工作的不稳定或如静电放电、电快速瞬变脉冲群、雷击、浪涌及传导搔扰、辐射搔扰及辐射电磁场抗扰性能力的降低.电磁兼容性研究及解决方法

电磁兼容性的研究,一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种搔扰信号模拟器、辅助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解与改进来进行分析研究.从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手.第一:减小搔扰源产生的搔扰信号.第二:切断搔扰信号的传播途径.第三,增强受搔扰体的抗搔扰能力.在解决开关电源内部的兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提.因而,开关电源产生的对外搔扰,如电源线谐波电流、电源线传导搔扰、电磁场辐射搔扰等,只能用减小搔扰源的方法来解决.一方面,可以增强输入输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等.另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理.而对外部的抗搔扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力,通常,对1.2/50us开路电压及8/20US短路电流的组合雷击波形,因能量较小,采用氧化锌压敏电阻与气体放电管等的组合方法来解决.对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电搔扰的器件.快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能.减小开关电源的内部搔扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几方面入手:注意数字电路与模块电路PCB布线的正确分区、数字电路与模拟电路单点的接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻搔扰、减小地环的影响、布线时注意相邻线间的间距及信号性质,避免产生串扰、减小高压大电流回路特别是变压器原边与开关管、电源滤波电容回路所包围的面积,减小输出整流回路及续流二极管回路与直流滤波器所包围的面积,减小变压器的漏电、滤波电感的分布电容、运用谐振频率高的滤波电容器等.MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射发射的主要搔扰源:小信号电路是抗外界搔扰的最薄弱环节,适当的增设提高抗搔扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗搔扰能力;与机壳距离较近的小信号电路,应加适当的绝缘体耐压处理等.功率器件的散热器、主变压器的电磁屏蔽层要适当的接地,综合考滤各种接地措施,有助于提高整机的电磁兼容性.各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性.整流器的机架上,要考虑各整流器间的电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容级的正确分配等.开关电源对内、外的搔扰及抗搔扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号.解决共模搔扰最简单的方法是解决好各电路单元与整机端口、机壳间的问题.整机屏蔽难以实施且成本较高,在无可赖何的情况下才采用该措施.国内通信开关电源的电磁兼容性改进现状

自YD/T983标准开始起草以来,国内通信电源制造商纷纷开始电磁兼容性的研究.由于电磁兼容性测试仪器、试验场地建设费用很高,且需要有经验的研发人员,很多制造商不能有自己的试验室,对电磁兼容性的研究造成了一定的困难.YD/T983标准中,抗扰度指标选用了国外标准中较低等级.除雷击浪涌、ESD及EFT指标外,其它抗扰度指标均比较容易达到要求.电磁搔扰指标如传导搔扰及辐射搔扰指标,由于很难满足标准的要求,是目前电磁兼容性研究的热点内容.国内只有极少数的厂家可以完全达到相关的标准的要求.中兴通信建立了自己的电磁兼容性试验室,在通信开关电源研发的初期,就致力于电磁兼容性的研究工作.其通信开关电源的前级运用最先进的有源功率因数校正技术加无损吸收电路,后级DC-DC采用零电压零电流(ZVZCS)相移谐振软开关技术或双管正激无损吸收软开关技术,通过专业的电源输入输出滤波器设计及防雷设计,以及对整机的安全性、数字接口电路的抗静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁屏蔽设计,不仅使整机内部的电磁环境良好,工作稳定,可靠性提高,也使通信开关电源对外的电流谐波、电起伏和闪烁、传导搔扰及辐射搔扰达到或超过CISJPR22标准规定的A级要求.使输入交流电源线能够承受至少±6KV(1.2/50us与8/20us的综合波)浪涌电压搔扰、直流电源线能够承受至少±2KV的浪涌电压;整机外部能够承受至少±8KV的静电放电及3V/M的高频电磁场搔扰,300A/M的工频磁场搔扰.宽广的交流输入电压范围,使整机的电压跌落、电压瞬变及电压短时中断等搔扰过后,开关电源能够正常工作.专业的采集全国各地的电网搔扰电压,均在中兴开关电源上经过验证分析.中兴通信系列开关电源的电磁兼容性指标,已完全满足并超过了YD/T983-1998《通信开关电源设备电磁兼容性要求及测量方法》中所规定的所有项目的指标,部分产品已通过CE认证及FCC认证中的全部电磁兼容性指标,是真正的环保型通信开关电源.特别适合于移动基站、程控交换设备、IP电话、有线电视等数据通信传输设备以及铁路、水电、火电站等强的电磁场搔扰的场合使用.

2.开关电源电磁兼容经验谈 篇二

现代通信,电子、电气设备的正常工作都离不开电源。通信电源[1]在通信设备中具有不可比拟的重要地位。随着通信事业的飞速发展,手机、电话、电脑等通信工具走入人们的生活,已经变得越来越普遍。通信设备的不断更新,对于通信开关电源的要求也越来越高。通信开关电源具有体积小、重量轻、效率高、工作可靠等优点,广泛应用于光数据传输、程控交换、无线基站、有线电视系统及IP网络中,是电子电气设备正常工作的“心脏”。

1 通信开关电源的干扰

通信开关电源[2]要稳定工作就要有很强的抗电磁干扰能力,对于电场,磁场及电磁波等要有足够的抗干扰能力,保证自身能够正常工作以及通信设备供电的稳定且不间断,同时也要不受通信系统本身因通信时电磁波带来的干扰。一般来讲,开关电源受到的干扰源有电压电流快速变化造成的干扰,传导干扰和辐射干扰。开关电源的干扰来源有:开关电源的大功率开关管工作在高压大电流的切换状态,由导通切换为关断状态时形成浪涌电压,或由关断切换为导通状态时形成的浪涌电流,它们的高次谐波成分会通过空间向外发射或通过电源线的传导构成干扰源。由关断切换为导通状态时,开关变压器副方的整流二极管受反方向恢复特性的限制,产生尖峰状的反向电流,它与二极管结电容以及引线电感等形成阻尼正弦振荡,也含有大量的谐波成分,构成干扰。

通信开关电源电磁干扰特点:

(1)整流或续流二极管及主功率变压器在高压、大电流及高频开关的方式下工作,其电流电压快速变化会造成干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。

(2)收发天线的极化,方向特性EMC辐射。通信开关电源受到:9 kHz~30 MHz的射频磁场干扰;30~1 000 MHz的射频电场干扰。

(3)部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其他高频设备及对电磁场比较敏感的设备造成干扰,引起其他设备工作异常。

因此,对通信开关电源,要限制由负载线、电源线产生的传导干扰及空间传播时产生的辐射电磁场干扰量,使它们能与处于同一环境中的其他电信设备均能够正常工作,互不产生干扰。

2 国内外电磁兼容性标准

电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁干扰的能力。国内外已有大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。其中CISPR16、CISPR22及CISPR24构成了信息技术设备包通信开关电源设备的电磁兼容性测试内容及测试方法要求,是目前通信开关电源电磁兼容性设计的最基本要求。

3 开关电源的电磁兼容性问题分析

通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容[3]性问题的原因是相当复杂的。有通信系统的高频信号对开关电源的电磁干扰;同时,开关电源由于本身的电路设计,PCB布线[4],元器件的性能等也会对通信,或其他电子、电气设备产生干扰[5]。其中,按耦合通路来分,可分为传导干扰和辐射干扰两种;按照干扰信号对于电路作用的形态不同,可将电源系统内的干扰分为共模干扰和差模干扰两种。通常,线路电源线上的任何传导干扰信号,都可表示成共模和差模干扰两种方式。

在开关电源中,主功率开关管在高电压、大电流或以高频开关方式工作下,开关电压及开关电流的波形在阻性负载时近似为方波,波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1 000次以上。由于电压差可以产生电场、电流的流动可以产生磁场,以及丰富的谐波电压电流的高频部分在设备内部产生电磁场,从而造成设备内部工作的不稳定,使设备的性能降低。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态并不是理想的,在高频开或关时,常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。

通信开关电源采用了有源功率因数校正[6],虽然控制复杂,但效果与负载无关,提高了功率因数,使性能更佳。同时,开关电源采用软开关技术来降低电路开关功耗,减少噪声,提高电路的效率及可靠性。但是,软开关无损吸收电路多利用L,C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁干扰的一大干扰源。

通信开关电源中,一般利用储能电感及电容器组成L,C滤波电路,实现对差模及共模干扰信号的滤波,以及交流方波信号转换为平滑的直流信号。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频干扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器,随着干扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断下降,直至达到谐振频率以上时,完全失去电容器的作用而变为感性。不正确地使用滤波电容及引线过长,也是产生电磁干扰的一个原因。

4 电磁兼容性解决方法

(1)解决开关电源内部的电磁兼容性[7]

减小通信开关电源本身设计时的内部干扰:抑制高频开关变压器的噪声,吸收缓冲,降低漏感;在电路设计时PCB的合理布线,尽量不走环线;干扰比较重的放在一起,低频,低压干扰小的远离;尽可能减小回路包容的面积;正负导线尽可能接近;增强输入/输出滤波电路的设计,改善APFC电路的性能,消除或者减小二极管的电流快速变化。其中常用的电路是零电压开关ZVS、零电流开关ZCS和准谐振ZVS/ZCS电路。该技术极大地降低了开关器件所产生的电磁干扰。利用组合软开关技术结合的无损耗吸收技术与谐振式零电压技术、零电流技术的优点,解决在电路中因并联或串联谐振网络,产生的谐振损耗。对功率开关管波形整形;模拟与数字,高压与低压等的隔离。

(2)消除电磁干扰,提高开关电源的工作性能。

消除通信开关电源的传导干扰和辐射干扰传导干扰主要是由于信号经电网传播,会对其他电子设备产生严重干扰,往往引起更严重的问题。常用的抑制方法有:缓冲器法,减少耦合路径法,减少寄生元件法等。而传导干扰的极限值,可参考国标中的电磁兼容规范GB9254-1988,GB6833.9-87,GB6833.4-1987,GB6833-1987。

在辐射研究中天线是电磁辐射源,在开关电源电路中,主电路中的元器件、连线等都可认为是天线,同时手机电话等的MCU与LCD的数据线、地址线工作频率高,也是产生辐射干扰的主要干扰源。可以通过增加提高抗干扰能力的器件提高易受外界干扰的小信号电路的抗干扰能力;并综合考虑各种接地措施,提高整体的电磁兼容性[8]。开关电源在输入电路中容易受到共模/差模干扰,此时,可以利用EMI滤波电路[9]抑制此干扰。EMI滤波电路如图1(a)所示。其中,L1,L2为共模抑制电感,与C1~C7组成线路低通滤波器:C1,C4,C5用于抑制差模噪声,这里选用0.33μF的聚丙烯薄膜电容器;C2,C3和C6,C7用于抑制共模噪声,因为它们安装在机壳和端子间,会有漏电电流流向机壳,为防止触电,这里选用漏电流小,不易击穿和损坏的云母电容器,容量为3 300 pF和0.1μF;C1~C7耐压值均选为交流250 V。

开关电源对内、外的干扰及抗干扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号。其中解决共模干扰除了上述一般的EMI滤波电路,还可按如下电路图的思想在电路上改进,使开关电源能够在电路上改进从而提高性能。图1(b)为共模/差模干扰滤波器典型电路,图1(c)为在图1(b)基础上变异的共模/差模干扰滤波电路。

(3)隔离电源与其他设备间的相互干扰,增强通信开关电源的抗干扰能力。在通信端口及控制端口的小信号电路中,选用具有抗静电干扰的器件。而单位脉冲干扰的频谱最宽,容易以共模的方式传入控制电路内,可采用吸收式滤波器消除,减小共模电感的分布电容、加强输入电路的共模信号滤波来提高系统的抗扰性能。隔离,屏蔽其他干扰信号的干扰,以及自身对于其他设备的干扰。

切断干扰信号的传播途径:电磁屏蔽,用金属外壳加强屏蔽效果,并进行良好的接地处理(注意大地与系统地不可接在一起),各控制单元间的大面积接地用接地板屏蔽,同时也可以改善开关电源内部工作的稳定性。

5 结语

本文分析了通信开关电源在工作时易受到的干扰及其特点,结合通信技术,开关电源的相关性能指标,并参考目前国内外电磁兼容性的标准,根据通信开关电源的电磁兼容性问题提出了解决通信开关电容电磁兼容性的可行性方法,使通信开关电源的工作性能提高。

参考文献

[1]陈梓城.电源技术与通信电源设备[M].北京:高等教育出版社,2005.

[2]王鸿麟.现代通信电源(修订本)[M].北京:人民邮电出版社,1998.

[3]康希荣.通信开关电源的电磁兼容性[J].电源技术应用,2002(4):3-6.

[4]顾海洲,马双武.PCB电磁兼容技术:设计实践[M].北京:清华大学出版社,2004.

[5]王庆斌,刘萍,尤利文.电磁干扰与电磁兼容性技术[M].北京:机械工业出版社,1998.

[6]PRESSMAN AI.开关电源设计[M].王志强,译.2版.北京:电子工业出版社,2005.

[7]马伟明.电力电子系统中的电磁兼容[M].武汉:武汉水利电力大学出版社,2000.

[8]区建昌.电子设备的电磁兼容性设计[M].北京:电子工业出版社,2003.

[9]王华刚.通信电源设备电磁兼容性问题的诊断与处理[J].通信电源技术,2008(6):113-35.

3.开关电源电磁兼容经验谈 篇三

关键词:开关电源;电磁干扰;抑制;技术

开关电源由于其实用性,广泛运用于工业、军事、医疗等领域,在大功率高电压的电气设备之中,开关电源会受到难以避免的电磁干扰,在开关频率加大或功率密度提高的条件下,电磁的兼容性能需要加以密切的关注,也是需要切实解决的问题,本文从电子线路电磁干扰的特点入手,探讨高频开关电源电磁干扰的机理及抑制技术,对于开关电源的电磁兼容性进行测量,提供了干扰源的干扰量、传输特性及敏感度等依据,从而提高开关电源的使用效率和质量。

1 高频开关电源的概念及特点

电磁干扰即是电磁的兼容性不足,对电子设备之间的电磁辐射传导加以破坏的进程。开关电源在小型化、高频化发展的趋势中,自身的噪声源也会产生大量的传导性电磁干扰,即EMI,从而对电子系统造成不良效果。由于大量的电器设备如:计算机、通信产品、电器等的涌入,空间人为电磁能量以成倍的速度递增,电磁环境的恶化态势正显现出严重的问题。开关电源的电磁干扰是一种有害的电磁效应,它必须具备三个干扰要素,即:干扰源、敏感体、干扰耦合路径。它具有以下特点:

①开关电源在频繁的开关过程中,会产生较大的电流变化,从而不可避免地产生强大的干扰强度。

②开关电源干扰源的关键干扰装置表现在功率的开关器件、散热器、高频变压器之中,具有较为清晰的电路干扰位置。

③开关电源的干扰频率不高,主要表现为传导干扰和近距离电场干扰。

④由于线路板通常是人工布设,随意性较大,对于线路板分布参数的提取和评估,增加了难度,同时,人工布设不当也是产生电磁干扰源的一个原因。

⑤开关电源的电磁干扰与网侧阻抗不匹配,呈现变化的趋势,难以把握。而且,滤波器中的电器元件要在使用中承受较大的无功功率,就无疑增加了电源体积,降低了效率。

2 开关电源的工作原理及电磁干扰机理分析

2.1 开关电源的构造及工作原理

开关电源的构造由主电路、控制电路、检测电路、辅助电源构成,其中:主电路包括输入滤波器、整流器、逆变等;控制电路则是通过对输出端的数据的取样,在比较之下控制逆变器,从而改变输出频率或脉宽,实现电路稳定。检测电路重点提供保护电路中的参数,还显示各种仪表数据。辅助电源则负责提供单一电路的不同电源。

开关电源控制的工作原理,如下图1所示:

在图1中,K开关负责无定时的接通或断开,在K开关接通时,E电源向开关K和滤波电路提供负载RL及能量;在K开关断开时,E电源中止提供能量。由此可知,电源提供的负载和能量是无定时的、间断的状态,而为了使开关获取稳定连续的能量供给,需要配备储能装置,即在能量接通时负责实现对能量的储存,在开关断开时,负责释放储存的能量,这个装置由图中的电感L、电容C2、二极管D构成,这个电路具有上述功能。可以将图中AB之间的电压平均值用EAB表示,用以下公式加以计算和控制:

E=TT·E

上式中:Ton表示每次接通开关的时间;T表示开关通断的周期间隔。在这两个要素变化的条件下,AB之间的电压平均值也会改变,这种改变控制称为“时间比率控制”。开关电源控制原理,主要表现为三种方式:脉冲宽度调制;脉冲频率调制;混合调制。

2.2 电磁干扰的产生机理分析

开关电源的电磁干扰是存在电路之中的无用信号、噪声等,它们对于电气设备、通道产生的干扰,开关电源自身存在有大量的谐波干扰,同时还有潜在的电磁干扰,并集中显现于电压、电流变化较大的电气元器件之中。电磁干扰产生的机理主要有以下几点:

①开关电路产生的电磁干扰。由开关管和高频变压器构成的开关电路是开关电源的核心,具有较大幅度的脉冲,谐波丰富,开关电路产生的电磁干扰主要是由于开关管负载为高频变压器初级线圈,在开关管接通与断开的瞬间,会出现较大的电压尖峰,产生磁化冲击电流的瞬变,这就造成了属于传导性质的电磁干扰。

②整流电路造成的电磁干扰。整流电路的整流二极管在接通状态时,有较大的正向电流,然而当其终断时受反的电压影响,而产生一个反向电流,还包含较多的高频谐波分量,产生剧烈的电流变化。

③高频变压器产生的电磁干扰。在高频开关电源构成中,变压器初级线圈、开关管和滤波电容,会形成高频开关电流环路,在这个环路之内有极大的空间辐射,若电容滤波性能不好或容量不足,电容上的高频阻抗就会将高频电流传导到交流电源中,造成传导干扰。同时,值得一提的是,整流电路造成的干扰强度较大、频带较宽,是较为重要的电磁干扰源之一。

④分布电容生成的电磁干扰。由于开关电源正向高频发展,因而分布电容也是电磁干扰源之一,由于散热片和开关管的集电极之间的绝缘片接触面积大而薄,高频电流会由分布电容流过,产生共模干扰。

3 开关电源电磁干扰的抑制技术举措分析

对于开关电源电磁干扰的抑制技术,主要可以从三个途径着手:其一,减少电磁干扰源的干扰信号;其二,截断电磁干扰信号路径;其三,提高电磁干扰敏感体的抗干扰性能。下面,本文可以就抑制开关电源电磁干扰的技术进行分述:

3.1 软开关抑制技术

软开关抑制技术基于“硬”开关基础之上,它是利用谐振技术或控制技术,连通或截断零电流状态下的先进技术。它在小型化、轻量化、电磁兼容性高的发展特点之下,有效地降低了开关损耗和噪声,提高了开关电源的使用频率。

软开关与“硬”开关的区别在于:“硬”开关在开关过程中的电压和电流都不为零,有重叠的状况;而且电压、电流的变化较大,脉冲较为明显,产生较大的开关噪声。而软开关由于增添了电感、电容等谐振元件,减少了电压、电流的重叠,有效降低了开关噪声。

软开关技术中包括多种技术,如:谐振变换器、准谐振变换器、零开关PWM变换器、零转换PWM变换器。其中:谐振变换器是基于标准PWM变换器之上,附加谐振网络,从而实现零电压或零电流的开关。准谐振变换器则是在PWM开关上附加谐振元件的控制技术。零开关PWM变换器是先利用谐振实现换相,再运用PWM方式工作。零转换PWM变换器是并联一个谐振网络,由此而产生零开关条件,实现控制技术。但是,值得注意的是,软开关技术要有辅助电路的添加实现,才能较好地实现对开关电源EMI的有效改善和优化。

3.2 开关频率调制技术

首先,要明晰频率调制的概念,频率调制是指瞬时频率偏移跟随调制信号m(t)成比例变化的调制,它可以用以下公式表示:

=Km(t)

其次,我们再分析开关频率调制技术的应用思想:固定频率调制脉冲在低频段上产生电磁干扰,并集中于低频段的各个谐波点之上,它通过调制开关频率fc,将集中的能量加以分散,从而有效降低各个谐波点上的EMI值,它关注的是使分散的各频点都在EMI的限值之内,而并非降低电磁干扰的总量。鉴于这一应用思想,开关频率调制技术在降低噪声频谱峰值的过程中,采用随机频率控制法和调制频率控制法。

其中:随机频率控制法是在开关电源间隔之中加入随机扰动分量,分散各频点的噪声能量,使离散的尖峰脉冲噪声转化为连续、分散的各频点噪声,从而降低峰值。调制频率控制法则是在电路产生的锯齿波中加入调制波形,生成离散频段的边频带,使噪声能量分散到这些边频带之上,这样,就可以在不影响变换器工作的前提下,抑制开关的通断时的电磁干扰。

3.3 共模电磁干扰的有源抑制技术

共模干扰也称不对称干扰、接地干扰,它是电流的载体与大地之间的电磁干扰,有源抑制技术的应用思想主要是在主回路中提取与导致干扰的开关电压波形完全反相的补偿EMI噪声电压,在保证开关电源正常工作的前提下,消除较宽频段内的共模干扰。这一抑制技术是作用于电磁干扰源本身,是非常有效的共模电磁干扰抑制技术。

3.4 抑制电磁干扰的缓冲电路设计

对于缓冲电路设计的开关电源可以消除电力线内潜在的电磁干扰,对于阻抗和消除电快速瞬变、电涌、电压高低变化、电力线谐波等,可以起到较重要的作用。试例50kHz开关控制电源的构造图为:(图2)

其中:开关元件在有外来电压变化时,产生较多的谐波成分而导致其波形失真,图中的线性阻抗稳定网络可以有效地抑制共模干扰,在其对称结构和适宜的去耦处理与设计下加以解决。整流滤波电路由整流电路和大电容构成,它可以产生高频的矩形脉冲,并可以促进稳压反馈作用,稳定输出的电压。场效应管开关主电路是核心电路,设计之中添加了一个缓冲电路来抑制EMI,它主要采用灵敏接地的方法解决共模辐射的问题。

3.5 滤波抑制技术

这是一种常用而高效的高频开关电源电磁干扰抑制技术,它的应用原理为:在高频开关电源的输入输出端口,接上滤波器,阻抗开关电源在电网中的干扰信号,其干扰信号主要是传导干扰,并表现为共模干扰和“差模”干扰两种形式,其中:共模干扰是非对称性的干扰,它是干扰信号对地的电位差以及电网串连的噪声,具有幅度大、频率高、干扰性能较大的特性;“差模”干扰是对称性干扰,它是电磁场在信号间耦合感应以及不平衡电路转换而产生的电压,它在添加抗干扰滤波器的条件下,可以有效地抑制干扰信号。“差模”干扰具有幅度小、频率低、干扰较小的特性。

3.6 PCB抑制技术

PCB抗干扰抑制技术的目的是为了减小PCB的电磁辐射,解决PCB电路之间的串扰现象。它包括布局、布线及接地设计,其布局设计与电气设计类似,设计流程为:首先考虑PCB的尺寸和形状,要保持最佳电路板的矩形形状,即长宽比为3:2或4:3,使其可以承受一定的机械强度;然后,再确定特殊元器件的位置设计。由于发生器、“晶振”易产生干扰噪声,因而在设计时的位置要相互靠近;最后,再根据电路的功能单元进行整体布局,要考虑元器件的分布参数,确保均匀、整齐而紧凑,尽量减少元器件之间的引线和连接,还要选取不易产生噪声的、不易传导的、不易辐射噪声的元器件。

3.7 屏蔽抗干扰抑制技术

由于开关电源会在传播空间产生电场和磁场,因而,可以考虑采用屏蔽的措施,将电磁干扰源和受干扰物之间隔离一层与地相连的屏蔽片,这种屏蔽技术可以采用两种方式,其一是静电屏蔽,用于阻抗“静电”场和恒定磁场的干扰;其二是电磁屏蔽,用于阻抗交变电场、磁场的干扰,这样,就可以使电磁波产生衰减,减少对电气设备的干扰影响。

总而言之,高频的开关电源会在信号传输过程中产生电磁干扰,不利于电气设备的安全、稳定运行,因而,需要采用适宜的开关电源电磁干扰抑制技术,使电磁干扰得到有效的衰减,保障电气设备稳定、高效。

参考文献:

[1]李林.开关电源纹波的计算和仿真——稳态纹波篇[J].今日电子,2014(02).

[2]陈天乐.开关电源的新技术与发展前景[J].通信电源技术,2014(02).

[3]白丽华.开关电源的干扰及其抑制[J].科技信息,2013(10).

[4]高孝天.开关电源控制模式的探讨[J].科技创新与应用,2013(12).

4.开关电源高频电磁波干扰概论 篇四

(一)虽然关于EMI的书和资料非常多,但基本都是针对设备级的,针对开关电源的很少,有个别书和资料虽然写着开关电源的名字,但由于作者并非电源设计人员,所以就变成了标准汇编。针对开关电源的目前就是这个《开关电源高频电磁波干扰概论》,非常经典,是香港大学的两位教授写的。但我也没有听过作者讲解,所以只能凭自己的理解和大家讨论。

第一节

这个是说EMI的传播过程,干扰源-干扰途径-接收器,就向传染病:传染源-传染途径-易感人群。

对于开关电源来说,最后一部分是不需要考虑的,干扰源也不能消灭,因为它也是开关电源之所以能工作的源头,但是可以通过软开关、加缓冲等方式来使干扰源的干扰小一些。控制干扰途径是降低开关电源EMI的重要一环,也是本讲义的重点讲解之处。

信号源波形产生的频谱

电压波形产生的频谱

周期信号的频谱是没有偶次谐波的,正负对称的波形产生的频率分量更少,像桥式电路。高数都忘光了,有兴趣的做一下FFT.占空比和波形斜率的影响 占空比越大时,干扰的幅度也大一些,这个可由FFT的系数算出来。

波形的斜率对干扰的高频部分影响非常大。低频部分几乎没有影响。低频部分主要由波形的幅度和高电平部分的宽度决定的,但高频部分大幅度下降的转折点为1/(3.14*tr),所以tr越大时,转折点的频率越低,高频下降越大。

所以我们应该想到降低斜率的措施,缓冲电路。

第一节小结:

电压和电流波形都有很丰富的频率成分 超过200M时由于幅值已经很低,所以影响很小 波形影响低频部分

上升沿和下降沿影响高频部分 占空比对个频谱幅值有一点影响

第2节:

下以部分13-42页,介绍的内容比较杂,有传导和辐射的场地、设备的放置,Log的概念等。

重点说一下这个图,这个介绍的是干扰的耦合途径,左边为传导干扰,右边为辐射干扰。辐射分为远场和近场。一般用蝶型天线辐射测量只测量电场,而不是磁场,磁场是用大圆环来测量的,灯具常用。

电场除了直接辐射到天线外,还可能辐射到地面再反射到天线,天线接受到的是直射波和反射波的矢量合成,所以需要上下移动寻找最大合成量。除此以外,由于电磁波有极化,所以天线需要改变方向以检测最大值(一般只测试水平和垂直)。

LISN网络。

LISN网络是用来拾取噪音的。差模噪音会在Line1--Line2之间流动,经过50欧姆电阻拾取。共模电流经过下面的地线再通过50欧姆的电阻回到电源,共模噪音也是经过50欧姆电阻拾取。50uH电感和10uF电容是用来阻止电网的干扰进入被测电源和防止被测的噪音跑到外面去。0.25uF的电容保证只有交流噪音信号可以流过去。在150KHz频率以上时其阻抗很小,近似短路。

线对线(差模)和线对地(共模)的噪音检测。

都是通过测量50欧姆电阻的电压信号来检测的,但仪器并不会区分差模和共模,实际为两个信号的矢量叠加(个人意见,仪器里面我不清楚)。

两种辐射测试:

场强辐射测试,通过组合天线来测量辐射的电场强度,蝶型天线(两个耳朵)测量30-300MHz,对数天线测量300-1GHz,对开关电源来说,主要是耳朵测量,300MHz以后一般电源辐射很小。

功率辐射测试(吸收钳),这个一般带长引线的设备需要做这个试验,如DVD等。

有效检测部分只有前面的一个环,后面是做吸收用的,范围30-300MHz。共模电流通过高频变压器后送到检测设备。

电流波形产生的频谱

第三节

下面几页说的是峰值、准峰值和平均值在仪器内部的测试方法,不是我们关心的重点。

从上面可以看出(看原文),3中检测主要是包络检波的冲放电时间常数不一样。标准要求测试的是QP和AV。但由于扫描时间过长,一般摸底是用PK和QP测量。

第四节

下面的内容主要是讲述容性和感性耦合的机理。首先开始的是容性耦合!

这个图告诉我们,在电源里面两个分离的物体是有电容效应的,当有交流信号时,就会有电流流过。

在电源里面相对并有电压变化的物体是很多的,如漏极和次级;漏极和初级的L,N线等,它们都会引起电流流动,被LISN检测到就是EMI干扰。仿真的结果和实际是基本上相符的。

看不见的耦合-感性耦合,第一个图描述了两个电路,前面是个振荡电路,后面就是上面容性耦合的电路,看似两个电路不相干,但是由于距离比较近,两个电路会通过磁场耦合,就向一个变压器一样,互感的公式如第二个图所示,随两个电路的距离增大而减小,随振荡电路面积(r为代表)的增大而增大。

第一幅图把上面的计算电感等效的变压器带入电路里面,第二幅图是测量和模拟的结果,可以看到互感的模型是很正确的,感性耦合确实向变压器一样。这样的耦合在开关电源里面比比皆是,向反激里面的高压电容、变压器初级和开关管组成的环路,变压器初级嵌位电路形成的环路,次级整流管形成的环路。除了常见的这3个外其实还有很多,如初级、次级和Y电容组成的环路,变压器初级、初级和屏蔽层的电容及屏蔽层的电感组成的环路等。

容性耦合的一个例子:

这个例子是说漏极和输入的接线端有一个耦合,尽管电容很小(0.1pF),但由于漏极电压高,差模干扰还是会超过标准。

这个很容易理解。不再赘述。

容性耦合的另一个例子:

此处的例子是指漏极和地的电容,漏极虽然很小,但地很大,虽然传导并不要求屏蔽室,在实际的EMI测试中还是在一个屏蔽的屋子里面,这实际上加大了图中的Cs。同样由于电压高,假设Cs很小,实际测试的干扰(实际为共模)也会超标。

根据以上的分析得出减少容性耦合的一个方法,就是减小高压点的面积,从而减小电容。

中间的图由于高压部分的面积大而被认为Wrong。其实最右边的图也不是很好,最好往左边靠。

此处介绍的PCB的布线规则。线的面积尽量小,当然要满足电流的要求,平衡走线,这样两线对高压点的电容是平衡的,容性干扰会对消。输入部分尽量远离MOS的漏极。漏极的面积尽量小。

感性耦合的例子:

这个例子描述的噪音源的一端和输入的差模滤波的回路有一个耦合,尽管耦合电感很小,但由于噪音源电流大,并且差模滤波回路阻抗很小,所以干扰还是可能超标。

自感影响的例子,由于X电容本省有自感存在,当它滤除差模电流时本省的自感也产生干扰电压,引起差模电流流动,这就是非理想器件造成干扰的原因。

PCB布线规则,减小感性耦合,方法根容性耦合差不多,好的布线对两个方法都有用。好的布线:环路面积小,环路之间距离要远,节点端为容性端。

开关纹波电流的影响,开关电流会在其左边的电路部分的输入阻抗上形成电压,当然会有电流流过LISN的检测电阻,从而被测到EMI电流,由于是在两根线间流动的,所以是差模电流。这种电路的计算是很复杂的,还好有仿真电路,仿真一下很简单。不过我认为在实际应用中,仿真都不必做,我们只要理解其原理,知道怎么克服就可以了。

典型EMI差模滤波电路的参数和结果:右边蓝色的线为模拟的噪音结果,可以看到初始值很高。

理想C1没有ESR,ESL,从右边看到蓝色的线非常低,说明C1的ESR,ESL是主要产生干扰的源头,20多DB的起始值是电流在2pifc 上形成的电压造成的。

C2由于值很小,对低频段EMI的影响几乎可以忽略。

后面还有几个图,为节约时间和空间不上传,从图上可以得到的信息是由于C1的阻抗比起C2和L来说很低,所以干扰的源头就是开关电流在C1的ESL和ESR上形成的电压。后面不同的图只是为了证明这一点。

这一部分的总结:真实电路和理想电路是不同的,各种元件都有其等效的其他参数。大电解的ESR贡献了差模噪音的低频部分,ESL贡献了差模噪音的高频部分。结果很明显,高频电解的ESR,ESL比较低,有利于降低差模噪音!

如果一级滤波结果不好,自然想到两阶段滤波。

在实际的设计中,并不需要单独增加一个电感,可以利用共模(功率大的电源一般都要用)的漏感来做差模电感,这样只需要增加一个X电容就可以了。

不同的共模漏感是不一样的,如果用ET型的磁心,4槽骨架的比2槽的要大,漏感可以通过短路一组引线来测量。

第一个图是两阶段差模滤波考虑元件寄生参数的真实等效电路,第二个图是模拟的结果。可以看到两阶段滤波对干扰的衰减更厉害。原因是两阶段时干扰信号经过了两级LC,是80dB/10倍频程的衰减。

单独把这一页列出来,因为它告诉了我们一个很重要的技巧。

当把开关电源的频率设定到150KHz时,在150K的衰减时8dB;但是如果把开关频率设定到130K,则开关频率的干扰不需要测量,需要关注的是开关频率的二倍频,即260K,此时的衰减是很大的,从图上看到有30dB的裕量。

输入整流管的影响

整流管导通时,差模电流几乎无阻挡通过,整流管不导通时,按图上没有差模电流,但实际上整流管有电容存在,还是有一点点电流的,不过影响很小,可以忽略。

根据这个图我们也不难理解,在测量EMI时,低压时的EMI通常比高压时在低频段(差模为主)大一些。因为低压时整流管的导通时间长,当然导通时间长的原因是低压时的电流大。电流大也是造成EMI大的重要原因,这两者的共同作用造成了低压时的EMI大。

全导通和非全导通时的EMI差异。全导通是通过用直流电源给LISN供电来模拟的。从上面的描述可以看到,峰值和准峰值是没有变化的(由开关电流的峰值决定,两种情况此电流峰值没有变化),但平均值明显用整流桥的要低很多。

一个描述前半周,一个描述后半周。这个非常容易理解。

输入滤波对电源稳定性的影响

根据Middlebrook的额外元素理论,只要输入滤波的输出阻抗远小于电源的输入阻抗便不会有稳定性问题。输出阻抗远小于电源的输入阻抗的表现就是上述电路Pin部分 分得到最大化的Vin电压,根据这个要求列出上述方程,只要一阶部分的系数>1,就可以得到左半平面极点,就不会有稳定性问题。有一阶部分的系数>1的调节得到上述红色公式。

带一个实际的电源参数进去,发现RL3实际上要>10欧姆电路才能稳定,但实际的电感的内阻是很小的,由此得出结果几乎每一个电源都会振荡。但实际上并不是这样,说明理论有不对的地方。

这个是为了和后面做对应的,不作解释。看后面就可以了。

电感的频率特性,我们会看到在频率升高时磁心的损耗会反应为一个很大的电阻,正是它阻尼了振荡,当然趋附和临近效应反应的电阻和直流电阻也有影响,但不是主要因素。

补充一下,在实际的电源中C1都很大,很大的C1实际上降低了对RL3的要求,只要很小的RL3就可以了,实际不用考虑RL3,电容的ESR起到了RL3的作用。

当频率高时,用铁分心做电感时,由于损耗严重可能引起融化,这有点玄,但漆包线绝缘是有可能坏掉的。用铁氧体时由于损耗小,就没有这个问题。所以不要忘了ac电阻代表的磁心损耗,它可以阻尼电源的振荡。

由上面的分析我们就知道了为什么输入滤波通常不会引起电源振荡。

主要是第一点和第三点。滤波电感的磁心损耗提供了额外电阻;C1通常比较大。

补上忘掉的一部分:

普通的整流滤波只有在电压峰值时二极管才导通,此时二极管是完全导通的,所以差模和共模电流很容易通过整流管而被LISN检测到,而其他时间二极管不导通,差模电流是不能通过的,共模电流通过能力

也减弱,只有高频的部分才容易通过二极管的节电容通过。

由于二极管不导通时几乎没有干扰电流流过,所以用交流电源供电时测量到的平均值会比直流电源供电时低,因为直流供电时二极管是每时每刻导通的,干扰电流可以全通过。

由以前的帖子里描述的测量EMI的原理可知,峰值和准峰值是没有变化的。因为它们测的是瞬间(PK)和极短时间的平均值(QP)。

输入滤波电感同样也是一个噪音接收源:

电感的环路接受外部磁通(可能来自于你的变压器)会产生噪音电流。

同样电感的绕组是铜线做的,可以和电路里面的高压部分产生容性耦合,从而产生噪音电压。

5.开关电源电磁兼容经验谈 篇五

1、输入端,FUSE选择需要考虑到I2T参数。保险丝的分类,快断,慢断,电流,电压值,保险丝的认证是否齐全。保险丝前的安规距离2.5mm以上。设计时尽量放到3mm以上。需考虑打雷击时,保险丝I2T是否有余量,会不会打挂掉。

2、这个图中可以增加个压敏电阻,一般采用14D471,也有采用561的,直径越大抗浪涌电流越大,也有增强版的10S471,14S471等,一般14D471打1KV,2KV雷击够用了,增加雷击电压就要换成MOV+GDT了。有必要时,压敏电阻外面包个热缩套管。

3、NTC,这个图中可以增加个NTC,有的客户有限制冷启动浪涌电流不超过60A,30A,NTC的另一个目的还可以在雷击时扛部分电压,减下MOSFET的压力。选型时注意NTC的电压,电流,温度等参数。

4、共模电感,传导与辐射很重要的一个滤波元件,共模电感有环形的高导材料5K,7K,0K,12K,15K,常用绕法有分槽绕,并绕,蝶形绕法等,还有UU型,分4个槽的ET型。这个如果能共用老机种的最好,成本考虑,传导辐射测试完成后才能定型。

5、X电容的选择,这个需要与共模电感配合测试传导与辐射才能定容值,一般情况为功率越大X电容越大。

6、如果做认证时有输入L,N的放电时间要求,需要在X电容下放2并2串的电阻给电容放电。

7、桥堆的选择一般需要考虑桥堆能过得浪涌电流,耐压和散热,防止雷击时挂掉。

8、VCC的启动电阻,注意启动电阻的功耗,主要是耐压值,1206的一般耐压200V,0805一般耐压150V,能多留余量比较好。

9、输入滤波电解电容,一般看成本的考虑,输出保持时间的10mS,按照电解电容容值的最小情况80%容值设计,不同厂家和不同的设计经验有点出入,有一点要注意普通的电解电容和扛雷击的电解电容,电解电容的纹波电流关系到电容寿命,这个看品牌和具体的系列了。

10、输入电解电容上有并联一个小瓷片电容,这个平时体现不出来用处,在做传导抗扰度时有效果。

11、RCD吸收部分,R的取值对应MOSFET上的尖峰电压值,如果采用贴片电阻需注意电压降额与功耗。C一般取102/103 1KV的高压瓷片,整改辐射时也有可能会改为薄膜电容效果好。D一般用FR107,FR207,整改辐射时也有改为1N4007的情况或者其他的慢管,或者在D上套磁珠(K5A,K5C等材质)。小功率电源,RC可以采用TVS管替代,如P6KE160等。

12、MOSFET的选择,起机和短路情况需要注意SOA。高温时的电流降额,低温时的电压降额。一般600V 2-12A足够用与100W以内的反激,根据成本来权衡选型。整改辐射时很多方法没有效果的时候,换个MOSFET就过了的情况经常有。

13、MOSFET的驱动电阻一般采用10R+20R,阻值大小对应开关速度,效率,温升。这个参数需要整改辐射时调整。

14、MOSFET的GATE到SOURCE端需要增加一个10K-100K的电阻放电。

15、MOSFET的SOURCE到GND之间有个Isense电阻,功率尽量选大,尽量采用绕线无感电阻。功率小,或者有感电阻短路时有遇到过炸机现象。

16、Isense电阻到IC的Isense增加1个RC,取值1K,331,调试时可能有作用,如果采用这个TEA1832电路为参考,增加一个C并联到GND。

17、不同的IC外围引脚参考设计手册即可,根据自己的经验在IC引脚处放滤波电容。

18、更改前:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。变压器一定要验算delta B值,delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)有兴趣验证这个公式可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右。变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。

18、更改后:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。变压器一定要验算delta B值,防止高温时磁芯饱和。delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)。(参考TDG公司的磁芯特性(100℃)饱和磁通密度390mT,剩磁55mT,所以ΔB值一般取330mT以内,出现异常情况不饱和,一般取值小于300mT以内。我之前做反激变压器取值都是小于0.3的)附,学习zhangyiping的经验(所以一般的磁通密度选择1500高斯,变压器小的可以选大一些,变压器大的要选小一些,频彔高的减小频彔低的可以大一些吧。)

变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。附注:有兴趣验证这个公式的话,可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右(25℃时,饱和磁通密度510mT)。借鉴TDG的磁芯基本特征图。

19、输出二极管效率要求高时,可以采用超低压降的肖特基二极管,成本要求高时可以用超快恢复二极管。20、输出二极管并联的RC用于抑制电压尖峰,同时也对辐射有抑制。

21、光耦与431的配合,光耦的二极管两端可以增加一个1K-3K左右的电阻,Vout串联到光耦的电阻取值一般在100欧姆-1K之间。431上的C与RC用于调整环路稳定,动态响应等。

22、Vout的检测电阻需要有1mA左右的电流,电流太小输出误差大,电流太大,影响待机功耗。

23、输出电容选择,输出电容的纹波电流大约等于输出电流,在选择电容时纹波电流放大1.2倍以上考虑。24、2个输出电容之间可以增加一个小电感,有助于抑制辐射干扰,有了小电感后,第一个输出电容的纹波电流就会比第二个输出电容的纹波电流大很多,所以很多电路里面第一个电容容量大,第二个电容容量较小。

25、输出Vout端可以增加一个共模电感与104电容并联,有助于传导与辐射,还能降低纹波峰峰值。

26、需要做恒流的情况可以采用专业芯片,AP4310或者TSM103等类似芯片做,用431+358都行,注意VCC的电压范围,环路调节也差不多。

27、有多路输出负载情况的话,电源的主反馈电路一定要有固定输出,或者假负载,否则会因为耦合,burst模式等问题导致其他路输出电压不稳定。

28、初级次级的大地之间有接个Y电容,一般容量小于或等于222,则漏电流小于0.25mA,不同的产品认证对漏电流是有要求的,需注意。

算下来这么多,电子元器件基本能定型了,整个初略的BOM可以评审并参考报价了。BOM中元器件可以多放几个品牌方便核成本。如客户有特殊要求,可以在电路里面增加功能电路实现。如不能实现,寻找新的IC来完成,相等功率和频率下,IC的更改对外围器件影响不大。如客户温度范围的要求比较高,对应元器件的选项需要参考元器件使用温度和降额使用。

原理图定型后就可以开始画PCB了。

1、PCB对应的SCH网络要对应,方便后续更新,花不了多少时间的。

2、PCB的元器件封装,标准库里面的按实际情况需要更改,贴片元件焊盘加大;插件元件的孔径比元件管脚大0.3mm,焊盘直径大于孔0.8mm以上,焊盘大些方便焊接,元器件过波峰焊也容易上锡,PCB厂家做出来也不容易破孔。还有很多细节的东西多了解些对生产是很大的功劳啊。

3、安规的要求在PCB上的体现,保险丝的安规输入到输出距离3mm以上,保险丝带型号需要印在PCB上。PCB的板材也有不同的安规要求,对应需要做的认证与供应商沟通能否满足要求。相应的认证编号需印到PCB上。初级到次级的距离8mm以上,Y电容注意选择Y1还是Y2的,跨距也要求8mm以上,变压器的初级与次级,用挡墙或者次级用三层绝缘线飞线等方法做爬电距离。

4、桥堆前L,N走线距离2.5mm以上,桥堆后高压+,-距离2.5mm以上。走线为大电流回路先走,面积越小越好。信号线远离大电流走线,避免干扰,IC信号检测部分的滤波电容靠近IC,信号地与功率地分开走,星形接地,或者单点接地,最后汇总到大电容的“-”引脚,避免调试时信号受干扰,或者抗扰度出状况。

5、IC方向,贴片元器件的方向,尽量放到整排整列,方便过波峰焊上锡,提高产线效率,避免阴影效应,连锡,虚焊等问题出现。

6、打AI的元器件需要根据相应的规则放置元器件,之前看过一个日本的PCB,焊盘做成水滴状,AI元件的引脚刚好在水滴状的焊盘上,很漂亮。

7、PCB上的走线对辐射影响比较大,可以参考相关书籍。还有1种情况,PCB当单面板布线,弄完后,在顶层敷整块铜皮接大电容地,抑制传导和辐射很有效果。

8、布线时,还需要考虑雷击,ESD时或其他干扰的电流路径,会不会影响IC。

PCB与元器件回来就可以开始制样做功能调试了。

1、万用表先测试主电流回路上的二极管,MOSFET,有没有短路,有没有装反,变压器的感量与漏感是否都有测试,变压器同名端有没有绕错。

2、开始上电,我的习惯是先上100V的低压,PWM没有输出。用示波器看VCC,PWM脚,VCC上升到启动电压,PWM没有输出。检查各引脚的保护功能是否被触发,或者参数不对。找不到问题,查看IC的上电时序图,或者IC的datasheet里面IC启动的条件。示波器使用时需注意,3芯插头的地线要拔掉,不拔掉的话最好采用隔离探头挂波形,要不怎么炸机的都不知道。用2个以上的探头时,2根探头的COM端接同1个点,避免影响电路,或者夹错位置烧东西。

3、IC启动问题解决了,PWM有输出,发现启动时变压器啸叫。挂MOSFET的电流波形,或者看Isense脚底波形是否是三角波,有可能是饱和波形,有可能是方波。需重新核算ΔB,还有种情况,VCC绕组与主绕组绕错位置。也有输出短路的情况,还有RCD吸收部分的问题,甚至还碰到过TVS坏了短路的情况。

4、输出有了,但是输出电压不对,或者高了,或者低了。这个需要判断是初级到问题,还是次级的问题。挂输出二极管电压电流波形,是否是正常的反激波形,波形不对,估计就是同名端反了。检查光耦是否损坏,光耦正常,采用稳压管+1K电阻替换431的位置,即可判断输出反馈431部分,或者恒流,或者过载保护等保护的动作。常见问题,光耦脚位画错,导致反馈到不了前级。431封装弄错,一般431的封装有2种,脚位有镜像了的。同名端的问题会导致输出电压不对。

5、输出电压正常了,但是不是精确的12V或者24V,这个时候一般采用2个电阻并联的方式来调节到精确电压。采样电阻必须是1%或者0.5%。

6、输出能带载了,带满载变压器有响声,输出电压纹波大。挂PWM波形,是否有大小波或者开几十个周期,停几十个周期,这样的情况调节环路。431上的C与RC,现在的很多IC内部都已经集成了补偿,环路都比较好调整。环路调节没有效果,可以计算下电感感量太大或者太小,也可以重新核算Isense电阻,是否IC已经认为Isense电阻电压较小,IC工作在brust mode。可以更改Isense电阻阻值测试。

7、高低压都能带满载了,波形也正常了。测试电源效率,输入90V与264V时效率尽量做到一致(改占空比,匝比),方便后续安规测试温升。电源效率一般参考老机种效率,或者查能效等级里面的标准参考。

8、输出纹波测试,一般都有要求用47uF+104,或者10uF+104电容测试。这个电解电容的容值影响纹波电压,电容的高频低阻特性(不同品牌和系列)也会影响纹波电压。示波器测试纹波时探头上用弹簧测试探头测试可以避免干扰尖峰。输出纹波搞不定的情况下,可以改容量,改电容的系列,甚至考虑采用固态电容。

9、输出过流保护,客户要求精度高的,要在次级放电流保护电路,要求精度不高的,一般初级做过流保护,大部分IC都有集成过流或者过功率保护。过流保护一般放大1.1-1.5倍输出电流。最大输出电流时,元器件的应力都需要测试,并留有余量。电流保护如增加反馈环路可以做成恒流模式,无反馈环路一般为打嗝保护模式。做好过流保护还需要测试满载+电解电容的测试,客户端有时提出的要求并未给出是否是容性负载,能带多大的电容起机测试了后心里比较有底。

10、输出过压保护,稳定性要求高的客户会要求放2个光耦,1个正常工作的,一个是做过压保护的。无要求的,在VCC的辅助绕组处增加过压保护电路,或者IC里面已经有集成的过压保护,外围器件很少。

11、过温保护一般要看具体情况添加的,安规做高温测试时对温度都有要求,能满足安规要求温度都还可以,除非环境复杂或者异常情况,需要增加过温保护电路。

12、启动时间,一般要求为2S,或者3S内起机,都比较好做,待机功耗做到很低功率的方案,一般IC都考虑好了。没有什么问题。

13、上升时间和过冲,这个通过调节软启动和环路响应实现。

14、负载调整率和线性调整率都是通过调节环路响应来实现。

15、保持时间,更改输入大电容容量即可。

16、输出短路保护,现在IC的短路保护越做越好,一般短路时,IC的VCC辅助绕组电压低,IC靠启动电阻供电,IC启动后,Isense脚检测过流会做短路保护,停止PWM输出。一般在264V输入时短路功率最大,短路功率控制住2W以内比较安全。短路时需要测试MOSFET的电流与电压,并通过查看MOSFET的SOA图(安全工作区)对应短路是否超出设计范围。其他异常情况和注意:

1、空载起机后,输出电压跳。有可能是轻载时VCC的辅助绕组感应电压低导致,增加VCC绕组匝数,还有可能是输出反馈环路不稳定,需要更新环路参数。

2、带载起机或者空载切重载时电压起不来。重载时,VCC辅助绕组电压高,需查看是否过压,或者是过流保护动作。

还有变压器设计时按照正常输出带载设计,导致重载或者过流保护前变压器饱和。

3、元器件的应力都应测试,满载、过载、异常测试时元器件应力都应有余量,余量大小看公司规定和成本考虑。性能测试与调试基本完成。调试时把自己想成是设计这颗IC的人,就能好好理解IC的工作情况并快速解决问题。这些全都按记忆写的,有点乱,有些没有记录到,后续想到了再补上。

我顺便提一下,上面原理图中18的此饱和是500MT,即5000高斯,0,5特斯拉,普通铁氧体到不了5000吧,顶多4000,好像才3500吧,所以一般的磁通密度选择1500高斯,变压器小的可以选大一些,变压器大的要选小一些,频彔高的减小频彔低的可以大一些吧。

从我干开关电源近二十年,算是老手了,我非常深有体会的是,开关电源最难的是环路参数,非常不好确定,普遍不大稳定就是环路没有调好,这个是一个大问题了,太多搞不定的就是这个问题了,还有变压器参数的选择也是一个难点,有人说变压器的分量非常大,确定多少匝比,规格,如果铁损线损一样最好,绞在一起了,无法确定哪个多哪个少了,还有,如何确定磁通密度多少为最合适,也是非常难了,这个多年的经验非常重要,许多人变压器不懂设计,还有,风铃可以磁通大一些,自冷要小一些,都不是一件内容的事情。

现在是很多人知识匮乏,没有无线电技术的知识,那一些新手根本不懂,把PCB布成整齐的非常随意的任意走线了,很像精细,那根本胡闹,不能用的版了,新一代的知识多元化,诱惑太大了,什么人都可以上大学了,比如一些职高的普高没毕业的人也上大学了,应试教育也是大问题,人才质量不行了,什么也不懂的人多了,他们照样搞开发,能做成什么好产品,最重要的是知识和学问,却又是最不在乎是又是学问,浮躁社会浮躁的人,满脑子就是短平快,要知道欲速则不达,只会抄袭模仿拿来主义山寨之风,模仿制造低劣产品,因为所谓的开发人员就是搬运工,而且所谓人才流动,半拉子一下就飞了,成了政治资本,干过了什么项目,还有不少其实是调试工,技术人员,冒充什么开发人员,老板急于求成,用的其实是伪人才,伪人才只能制造伪劣产品了,就是只会克隆产品复制了,还做不好,大功率的其实不少老外的产品哪个做成了,小功率的相对内容简单一些不少还是做成了,但做不好的多多了,我谈这个是非常普遍存在的社会现实,比如一位做12伏100安,抄袭模仿八九个月没有做成,最终失败打水漂了,其实可以做成的,我见过那个产品,同开发人员一交流,发现学问不行,我对那位陈老板说凶多吉少九成以上要失败的,他不信,就是我完全模仿一个地方也不能漏下,难道做不成,结果呢,真的做不成了,相当多人都以为一抄就成一步到位,总是这么说,结果岂不,哪个成功了,一败涂地了。其实,那个12伏100安真的不能,就是要有一些学问,失败的原因就在这里了。

原谅我谈了别的方面的了,不过,确实千真万确,非常普遍而且常态化的我们这个社会的现实了,普遍的从业人员就是知识匮乏,技术和能力不行,就是生搬硬套,克隆主义至上,好像我们这个社会就是假大空的社会,多数的产品都是这么去干的。成了不少其实有不少老外非常不错的产品,我都见过不少了,怎么都没有见到我们做的实际产品了,其实大帮小帮都在抄袭,怎么见不到东西呀,因为都失败了打水漂了,我在这里说了大实话的,非常真实的不要误解了。如果有何不妥,多多见谅吧。

对了,上面两个地方将容易错写成了内容,修正一下,有一个非常真实的事例,比如01年我国通合公司就做成了LLC多谐振的产品,由于效率高一时非常轰动,模仿者也登门而至,我是在03年初开始非常费劲,与同事大半年了,说来奇怪,原机占空比大仿做的就小了,当时的土办法就是把环流加大,但效率降低了,另一家深圳南油的一直做不成,耗了不少财力,老板火了起来把那位总工炒掉了。我03年底离开了,改用SG3525,主结构有了,按照规律,3525的死区时间还可以调整呢,占空比大了,就这样做成功了,我是不会生搬硬套,比较灵活的,人家做不成做不好我就可以做到了,这种情况很多,所以不要完全克隆死板做,必须要会搞电路设计,如果是这样,好多产品是可以做成的,可以模仿参考,结合自主设计,我的这一事例不也充分说明了吗,学问和灵活最重要了,就是这么一回事。真正模仿成功还做的不错的技术功夫也非常不错了,许多人不懂这个道理,就是难道不成,不相信,真的如此,失败多多了,即使一些做成了,也是不三不四的,产品性能和质量是一个大问题,还是一句话,伪人才制造伪劣产品,现实上伪人才多得去了,产品冒牌货多同样的人才冒牌货一样多了,其实,大家相信的倒是谎言的多,一抄就成一步到位就是成了最大的谎言了。满口子多么省事节省成本,甚至更有甚者,全打包连图纸都没有,坏了就是修电器一样,把坏的找出来换掉就可以了,这个就是投机主义干事了,肯定这样做的问题特别大,他们就是把财力花在营销广告战了。

基本性能测试后就要做安规EMC方面的准备了。

1、温升测试,45℃烤箱环境,输入90,264时变压器磁芯,线包不超过110℃,PCB在130℃以内。其他的元器件具体值参考下安规要求,温度最难整的一般都是变压器。

2、绝缘耐压测试DC500V,阻值大于100MΩ,初次级打AC3000V时间60S,小于10mA,产线量产可以打AC3600V,6S。建议采用直流电压DC4242打耐压。耐压电流设置10mA,测试过程中测试仪器报警,要检查初次级距离,初级到外壳,次级到外壳距离,能把测试室拉上窗帘更好,能快速找到放电的位置的电火花。

3、对地阻抗,一般要小于0.1Ω,测试条件电流40A。

4、ESD一般要求接触4K,空气8K,有个电阻电容模型问题。一般会把等级提高了打,打到最高的接触8K,空气15K。打ESD时,共模电感底下有放电针的话,放电针会放电。电源的ESD还会在散热器与不同元器件之间打火,一般是距离问题和PCB的layout问题。打ESD打到15K把电源打坏就知道自己做的电源能抗多大的电压,做安规认证时,心里有底。如果客户有要求更高的电压也知道怎么处理。参考EN61000-4-2。

5、EFT这个没有出现过问题2KV。参考EN61000-4-4。

6、雷击,差模1K,共模2K,采用压敏14D471,有输入大电解,走线没有大问题基本PASS。碰到过雷击不过的情况,小功率5W,10W的打挂了,采用能抗雷击的电解电容。单极PFC做反激打挂了MOSFET,在输入桥堆后加入二极管与电解电容串联,电容吸收能量。LED电源打2K与4K的情况,4KV就要采用压敏电阻+GDT的形式。参考EN61000-4-5。

EFT,ESD,SURGE有A,B,C等级。一般要A等级:干扰对电源无影响。

7、低温起机。一般便宜的电源,温度范围是0-45℃,贵的,工业类,或者LED什么的有要求-40℃-60℃,甚至到85℃。-40℃的时候输入NTC增大了N倍,输入电解电容明显不够用了,ESR很大,还有PFC如果用500V的MOSFET也是有点危险的(低温时MOSFET的耐压值变低)。之前碰到过90V输入的时候输出电压跳,或者是LED闪几次才正常起来。增加输入电容容量,改小NTC,增加VCC电容,软启动时间加长,初级限流(输入容量不够,导致电压很低,电流很大,触发保护)从1.2倍放大到1.5倍,IC的VCC绕组增加2T辅助电压抬高;查找保护线路是否太极限,低温被触发(如PFC过压易被触发)。

基本性能和安规基本问题解决掉,剩下个传导和辐射问题。这个时候可以跟客户谈后续价格,自己优化下线路。跟安规工程师确认安规问题,跟产线的工程师确认后续PCB上元器件是否需要做位置的更改,产线是否方便操作等问题。或者有打AI,过回流焊波峰焊的问题,及时对元器件调整。

传导和辐射测试大家看得比较多,论坛里面也讲的多,实际上这个是个砸钱的事情。砸钱砸多了,自然就会了,整改也就快了。能改的地方就那么几个。

1、这个里面看不见的,特别重要的就算是PCB了,有厉害的可以找到PCB上的线,割断,换个走线方式就可以搞掉3个dB,余量就有了。

2、一般看到笔记本电源适配器,接电脑的部分就有个很丑的砣,这个就是个EMI滤波器,从适配器出线的部分到笔记本电脑这么长的距离,可以看成是1条天线,增加一个滤波器,就可以滤除损耗。所以一般开关电源的输出端有一个滤波电感,效果也是一样的。

3、输入滤波电感,功率小的,UU型很好用,功率大的基本用环型和ET型。公司有传导实验室或者传导仪器的倒是可以有想法了就去折腾下。要是要去第三方实验室的就比较痛苦了,光整改材料都要带一堆。滤波电感用高导的10K材料比较好,对传导辐射抑制效果都不错,如果传导差的话,可以改12K,15K的,辐射差的话可以改5K,7K的材质。

4、输入X电容,能用小就用小,主要是占地方。这个要配合滤波电感调整的。

5、Y电容,初次级没有装Y电容,或者Y电容很小的话一般从150K-30M都是飘的,或者飞出限值了的,装个471-222就差不多了。Y电容的接法直接影响传导与辐射的测试数据,一般为初级地接次级的地,也有初级高压,接次级地,或者放2个Y电容初级高压和初级地都接次级的地,没有调好之前谁也说不准的。Y电容上串磁珠,对10MHz以上有效果,但也不全是。每个人调试传导辐射的方法和方式都有差异机种也不同,问题也不同,所以也许我的方法只适合我自己用。无Y方案大部分是靠改变变压器来做的,而且功率不好做大。

6、MOSFET吸收,DS直接顶多能接个221,要不温度就太高了,一般47pF,100pF。RCD吸收,可以在C上串个10-47Ω电阻吸收尖峰。还可以在D上串10-100Ω的电阻,MOSFET的驱动电阻也可以改为100Ω以内。

7、输出二极管的吸收,一般采用RC吸收足够了。

8、变压器,变压器有铜箔屏蔽和线屏蔽,铜箔屏蔽对传导效果好,线屏蔽对辐射效果好。至于初包次,次包初,还有些其他的绕法都是为了好过传导辐射。

9、对于PFC做反激电源的,输入部分还需要增加差模电感。一般用棒形电感,或者铁粉芯的黄白环做。

10、整改传导的时候在10-30MHz部分尽量压低到有15-20dB余量,那样辐射比较好整改。开关频率一般在65KHz,看传导的时候可以看到65K的倍频位置,一般都有很高的值。

总之:传导的现象可以看成是功率器件的开关引起的振荡在输入线上被放大了显示出来,避免振荡信号出去就要避免高频振荡,或者把高频振荡吸收掉,损耗掉,以至于显示出来的时候不超标。

辐射整改

1、PCB的走线按照布线规则来做即可。当PCB有空间的时候可以放2个Y电容的位置:初级大电容的+到次级地;初级大电容-到次级地,整改辐射的时候可以调整。

2、对于2芯输入的,Y电容除了上述接法还可以在L,N输入端,保险丝之后接成Y型,再接次级的地,3芯输入时,Y电容可以从输入输出地接到输入大地来测试。

3、磁珠在辐射中间很重要,以前用过的材料是K5A,K5C,磁珠的阻抗曲线与磁芯大小和尺寸有关。如图所示,不同的磁珠对不同的频率阻抗曲线不同。但是都是把高频杂波损耗掉,成了热量(30MHz-500MHz)。一般MOSFET,输出二极管,RCD吸收的D,桥堆,Y电容都可以套磁珠来做测试。

4、输入共模电感:如果是2级滤波,第一级的滤波电感可以考虑用0.5-5mH左右的感量,蝶形绕法,5K-10K材质绕制,第一级对辐射压制效果好。如果是3芯输入,可以在输入端进线处用三层绝缘线在K5A等同材质绕3-10圈,效果巨好。

5、输出共模电感,一般采用高导磁芯5K-10K的材料,特殊情况辐射搞不定也可以改为K5A等同材质。

6、MOSFET,漏极上串入磁珠,输入电阻加大,DS直接并联22-220pF高压瓷片电容可以改善辐射能量,也可以换不同电流值的MOS,或者不同品牌的MOSFET测试。

7、输出二极管,二极管上套磁珠可以改善辐射能量。二极管上的RC吸收也对辐射有影响。也可以换不同电流值来测试,或者更换品牌。

8、RCD吸收,C更改容量,R改阻值,D可以用FR107,FR207改为慢管,但是需要注意慢管的温度。RCD里面的C可以串小阻值电阻。

9、VCC的绕组上也有二极管,这个二极管也对辐射影响大,一般采取套磁珠,或者将二极管改为1N4007或者其他的慢管。

10、最关键的变压器。能少加屏蔽就少加屏蔽,没办法的情况也只能改变压器了。变压器里面的铜箔屏蔽对辐射影响大,线屏蔽是最有效果的。一般改不动的时候才去改变压器。

11、辐射整改时的效率。套满磁珠的电源先做测试,PASS的情况,再逐个剪掉磁珠。fail的情况,在输入输出端来套磁环,判断辐射信号是从输入还是输出发射出来的。

套了磁环还是fail的话,证明辐射能量是从板子上出来的。这个时候要找实验室的兄弟搞个探头来测试,看看是哪个元器件辐射的能量最大,哪个原件在超出限值的频率点能量最高,再对对应的元件整改。

辐射的现象可以看成是功率器件在高速开关情况下,寄生参数引起的振荡在不同的天线上发射出去,被天线接收放大了显示出来,避免振荡信号出去就要避免高频振荡,改变振荡频率或者把高频振荡吸收掉,损耗掉,以至于显示出来值的时候不超标。

磁珠的运用有个需要注意的地方,套住MOSFET的时候,MOSFET最好是要打K脚,套入磁珠后点胶固定,如果磁珠松动,可能导电引起MOSFET短路。有空间的情况下尽量采用带线磁珠。

传导辐射整改完成后,PCB可以定型了,最好按照生产的工艺要求来做改善,更新一版PCB,避免生产时碰到问题。

1、验证电源的时刻到了,客户要求,规格书。电源样品拿给测试验证组做测试验证了。之前问题都解决了的话,验证组是没问题的,到时间拿报告就可以了。

2、准备小批量试产,走流程,准备物料,整理BOM与提供样机给生产部同事。

3、准备做认证的材料(保险丝,MOSFET等元器件)与样机以及做认证的关键元器件清单等文档性材料。关键元器件清单里面的元件一般写3个以上的供应商。认证号一定要对准,错了的话,后续审厂会有不必要的麻烦。剩下的都是一些基本的沟通问题了。

做认证时碰到过做认证的时候温升超标了的,只能加导热胶导出去。或者提高效率,把传导与辐射的余量放小。这种问题一般是自己做测试时余量留得太少,很难碰到的。

4、一般认证2个月左右能拿到的。2个月的时间足够把试产做好了。

5、试产问题:基本上都是要改大焊盘,插件的孔大小更改,丝印位置的更改等。

6、试产的测试按IPS和产线测试的规章制度完成。

碰到过裸板耐压打不过的,原因竟然是把裸板放在绿色的静电皮上操作; 也有是麦拉片折痕处贴的胶带磨损了。

7、输入有大电容的电源,需要要求测试的工序里面增加一条,测试完毕给大电容放电的一个操作流程。

8、试产完成后开个试产总结会,试产PASS,PCB可以开模了。量产基本上是不会找到研发工程师了,顶多就是替代料的事宜。

9、做完一个产品,给自己写点总结什么的,其中的经验教训,或者是有点失败的地方,或者是不同IC的特点。项目做多了,自然就会了。

整个开发过程中都是一个团队的协作,所以很厉害的工程师,沟通能力也是很强的,研发一个产品要跟很多部门打交道,技术类的书要看,技术问题也要探讨,同时沟通与礼仪方面的知识也要学习,有这些前提条件,开发起来也就容易多了。

电容:有几个特性是需要注意的,做0-40℃的产品可能都还很顺利,但是做到-40℃—60℃的产品时就出问题了,起机不正常,跳了几次后才起来,LED电源最明显,输出带载抖动,PFC的MOSFET低温炸了,或者反激的MOSFET炸了。这个就是电容低温时的特性导致的。电解电容在低温时ESR很大,容量很小,可以看成1个NTC与一个小电容串联,起机的前几个周期,电容峰值电压高,储能不够,无法满载起机,这种情况要加大电容容量,或者换更好的系列的电容。如输出抖动之类的情况基本就是反馈环路上的电容容值太临界,低温时容量的差异导致环路不稳定,热机后问题就没有重复出现了。对于电容的材质、温度特性、以及datasheet里面图表和参数多少都必须要有了解,并且能用理论与自身经验来证明设计是对的。与电容在电路里面不同的作用必须弄清楚,才能选对电容。电容的寿命也是需要关注的,瓷片电容,陶瓷电容虽然比电解电容寿命长,但是都是有寿命的,相关的问题都可以查找资料来参考。

二极管

这个里面分类很多,必须搞清楚二极管的工作原理。模拟电路的书里面讲的比较抽象,还是需要看看半导体工艺,半导体制造,等其他的书来做个了解,二极管的datasheet里面有很多参数与曲线,看不懂的情况直接网上搜索相关内容,学校里面学的对于工程应用来讲还是太过于简单。学校只教了这个东西怎么工作,但是怎么选型,选肖特基,超快恢复,还是普通整流的还是其他类型都没有讲。选型也需要做大量的前期工作,最简单的还是经验值。在加班自学阶段,自己做实验来验证二极管参数,二极管datasheet里面的很多参数可以自己用些方法测试出来,网上一般能找到。做二极管的实验测试正向电压电流功率,找到二极管的热阻,再来推算散热片的尺寸对温度影响等,接下来散热设计就可以开始从这里入门了。

三极管,MOSFET,IGBT 二极管弄明白了后,再来看三极管,MOSFET,IGBT就比较容易理解了。那么多的概念性的东西,还有一大堆的计算,公式等等,都复杂得很。从简单的来讲,开关电源就是让这些开关器件工作在饱和区,按照这些元器件的设计要求来做,其他的情况碰到了再去学习就可以了。这些元器件,用多了,慢慢的公式也就容易理解了,之后再看看不同的厂家的元器件的培训资料,选型方案等等。

电感,变压器这些设计根据经验总结出来,一般ΔB值,占空比,温升基本计算就可以了。至于采用什么磁芯,可以找供应商来推荐的,也可以自己用公式计算出来,一般书上的公式需要自己验证一下,对于有出入的地方做相应的调整。比如书上的变压器计算一般不包括屏蔽,线损什么的,自己做计算的时候需要把这些考虑进去。变压器的绕线可以参考图片。(书籍《精通开关电源设计》第266页)

采用棒形电感,工字型电感的设计功率建议小于20W,功率大的采用环形电感设计。环形电感的设计里面可以根据这个链接了解下。http://

当实际应用与元器件的特性基本掌握的时候,可以开始下一个阶段的学习了。

学习不同公司的应用文档,电源的书里面的计算公式,以及自己设计时抓到的波形来分析,来对应这些公式做计算,做优化,做出一套适合自己思维模式的计算书。

比如桥堆的计算书对应不同的输出特性要求,以及之前做项目的经验,可以得出桥堆的峰值电流能到多少A能过1kV雷击或者2kV雷击。多大的封装在密封环境或者open的环境的温升数值,散热片尺寸。

计算书采用MATHCAD的就能满足一般要求,每次做个设计都可以更新里面的参数与系数值为后续的设计提供方便。有了计算书,之前的经验就相当于一个总结了,这个时候对应自己的计算书再来看电源设计书里面的公式,基本上就能看懂了。自己也会比较容易的开始推导这些公式了。参考一个飞兆的反激电源设计参考书。AN-4137 AN-4137SC.pdf

把帖子从头看了一遍。写得有点多,由于最近较忙,后续的写得有点乱。

至于PFC与LLC的电源,此篇就不写了,里面碰到的情况也差不多,用过6599,1910,1716,这几颗IC,用得不精,说不上好与不好,这些都是要看应用场合的。

一般用新IC,都需要对datasheet多看几遍,设计参数时对里面的图表多对照一下。一旦出现问题的时候,可以站在IC设计者的角度去考虑下,这个里面的逻辑是什么样子的。当然,有个简单的途径:搜索IC公司的专利,这个时候就像找到了宝藏一样的,里面的原理都解释的非常清楚。对应硬件电路的学习,也可以查找专利,对于理解电路里面元器件的作用帮助很大。有几本书籍可以推荐一下的。《开关电源设计指南(第二版)》 《开关电源设计第三版》 《精通开关电源设计(中文版)》 《开关电源故障诊断与排除》 《晶体管电路设计(上)》 《晶体管电路设计(下)》

《变压器与电感器设计手册-第三版(中文)》 《半导体制造基础》 《电路模块表面组装技术》 《实用模拟电路设计》

《AN-4151SC采用飞兆半导体FSFR系列功率开关(FPSTM)半桥LLC谐振[1].pdf》 《AN-4134采用FPS的隔离式正激AC-DC开关电源设计指南.pdf》 《AN-4137SC[1].pdf》

6.浅析电源电器设备的电磁兼容技术 篇六

关键词:电源,电器设备,电磁兼容技术,设计

0 引言

在电源电器设备的实际应用中,由于其所处的工作环境中电磁场不断增强,必然会导致电气设备的运行效率与质量受到影响。因此,在电源电器设备的设计中,必须注重电磁兼容技术的合理应用,以尽量降低电磁环境的干扰。随着现代电子技术的高速发展,电磁兼容技术逐渐形成一门新的学科,在电源电器设备设计中的应用也日趋广泛,国内电力技术人员必须加强相关问题的研究,从而实现电源电器设备运行效率的最优化。

1 电磁干扰的基本要素与类型

电磁干扰主要是指由于受到外界环境的干扰,而导致电缆信号的传输质量下降,其主要是以电子噪音的形式存在。从电子技术的角度进行分析,引起电磁干扰的基本要素主要包括:干扰源;有利于干扰能量传播的途径或通道;具有响应性的被干扰对象等。在现代电磁兼容性理论中,通常将被干扰对象称为“敏感设备”。因此,在电源电器设备的设计中,必须合理选用相应的电磁兼容技术。

从电磁兼容技术的角度进行分析,电磁干扰的类型主要可以划分为:

(1)功能性干扰源、非功能性干扰源。其中,功能性干扰源是指电源电器设备在运行过程中,对于其他设备产生的直接干扰,降低其他设备的实际运行效率与质量;非功能性干扰源是指在电源电器设备实现自身功能性的同时,伴随或附加产生一定的副作用,进而造成对于电源电器设备的干扰,如:在电源电器设备的开关闭合、切断等操作中,都有可能产生电弧放电干扰的现象。

(2)自然干扰源、人为干扰源。自然干扰源是指地球外层空间与大气层中的天电噪声、宇宙噪声,以上噪声是形成地球电磁环境的基本要素,也是对于各种电源电器设备产生干扰的主要干扰源;人为干扰源是指在机电设备或其他人工装置的运行中,产生的电磁能量干扰现象,其中多数装置为专门用于发射电磁能量的,如:电视、广播、雷达、通信与导航等现代化的无线电设备。

2 电磁干扰的途径

从电磁兼容技术标准的角度进行分析,电磁干扰主要可以分为:传导噪声、辐射噪声等,其中传导噪声是指在同一线路上,不同电源电器设备之间传递的电磁干扰;辐射噪声则主要是以电磁波的形态在空中辐射,对于各种电源电器设备会产生不同程度的电磁干扰。传导噪声也被称为“端子噪声”,在其传递中对于广播频率的干扰现象较为明显,而辐射噪声的传递范围则多在30 MHz以上的频率,主要是由于该频率范围中波长较短,较易引发电波在空中辐射。根据电磁干扰对于电源电器设备的作用机理,其常见的传输方式主要包括:电磁场耦合、电场耦合、传导耦合、磁场耦合等,必须结合电磁兼容的内容进行分析(图1)。

一般情况下,噪声耦合的确定相对简单,采取相应的降低耦合方式进行处理即可。以数字电路噪声(图2)为例,对于传导耦合的处理,则必须依靠滤波实现噪声干扰的减弱。对于电磁场耦合、电场耦合的处理,要重视避免出现此类电磁通路。在处理电源电器设备的辐射问题时,要坚持以下原则:频率越高,辐射耦合的几率越高;频率越低,传导耦合的几率越高,这也是电磁兼容设计中必须注意的关键技术问题。

3 电源电器设备电磁兼容性设计的基本原理

在电源电器设备的电磁兼容设计中,必须注重相关技术措施的合理应用,并且结合实际情况,对于相关技术的应用效果进行检测与试验。笔者结合多年电源电力设备设计经验,总结了以下电磁兼容设计的基本原理:

3.1 接地设计

在电源电器设备的电磁兼容设计中,进行相关设备的接地设计可以使电路系统中所有的单元电路构成一个“参考零电位”,以保证整个电路系统的抗干扰效果,并防止外界电磁场对于电源电器设备的运行干扰。在电源电器设备的机壳接地设计中,由于静电感应现象的存在,而导致机壳上积累了大量的电荷,所以,在设计中必须采取有效的电磁兼容技术措施,将电荷释放于大地中,避免因电荷过大而形成高压。如果电源电器设备内部产生火花,还有可能对其产生不同程度的电磁干扰,这也是设计中必须解决的技术问题之一。另外,雷击产生的电磁感应也可能造成电源电器设备的损坏,而合理的电磁兼容接地设计是抑制噪声、防止干扰的主要技术途径,也保障了电源电器设备的稳定、高效运行。

3.2 屏蔽设计

在电源电器设备电磁兼容的屏蔽设计中,其具有明显减弱电磁干扰的功能。在电源电器设备屏蔽材料的选择中,应注意以下2方面的问题:

(1)如果电源电器设备的干扰电磁场频率较高,应选用低电阻率的金属作为屏蔽材料,以达到抵消各种外界电磁波的作用,达到预期的屏蔽效果;

(2)如果电源电器设备的干扰电磁波频率较低,则要采用高磁导率的金属作为屏蔽材料,通过将磁力线控制在屏蔽体内部,防止其扩散到电源电器设备的屏蔽空间中。另外,某些电源电器设备的运行环境较为特殊,为了实现其在高频或低频磁场环境中的稳定运行,以及屏蔽效果的优良性,必须采用相应的金属材料构成多层屏蔽体。

3.3 其他抑制电磁干扰的方法

(1)在电源电器设备的电磁兼容设计中,如果只是应用屏蔽技术,很难达到预期的效果,需要同时辅助应用以平衡措施为主的电路技术。平衡电路主要是指在双线电路中,使用2根导线进行相关电路的连接,在满足阻抗其他导线电磁干扰的同时,还可以实现干扰噪声形成一个共态信号,在电路负载中自行消失,以满足电源电器设备的抑制电磁干扰需求。

(2)滤波是抑制、防止电源电器设备电磁干扰的主要技术措施,其具有减小传导干扰电平的效果,其主要原理为:有用信号频率与干扰频谱成分不是完全相同的,滤波器对于这些与有用信号频率不同的成分有良好的抑制能力,从而起到其他干扰抑制难以起到的作用。

(3)电源电器设备中无源元件的合理选择也是十分重要的,但是在实际应用中设计人员必须认识到其基本特征与理想特征之间的差异,无源元件本身就是一种干扰源,如果选用的无源元件不能满足实际要求,将难以起到预期的抑制与防止电磁干扰的效果。

4 电磁兼容性技术的相关规范和标准

国际无线电干扰特别委员会于1976年正式组织无线电系统中干扰噪声的研究,并且制定与电磁兼容技术有关的规范与标准。1990年10月,国际无线电干扰特别委员在经过数次研究与修订后,再版了电磁兼容技术的相关标准,并且在国际无线通信咨询委员会的协助下,为电源电器设备电磁兼容性技术的检测制订了相关的数据与具体方法。

同时,国际无线电干扰特别委员根据医疗、工业、通讯、科学等领域中所使用电源电器设备的干扰性能,公布了具体的测量方法与允许值,为电源电器设备的电磁兼容设计提供了基本的技术依据。目前,国内在电源电器设备的电磁兼容设计中,主要是参照国际无线电干扰特别委员制定的相关规范和标准,并且将其作为多数产品性能的检测依据。

5 典型电磁兼容技术问题的解决方案

由于各类型电气设备在现代社会中的应用日趋广泛,人类的活动空间中各种电磁波的影响也不断增强。因此,在电源电器设备的设计中,如果不能有效地解决电磁波的干扰问题,就难以实现相关设备的兼容工作,在电源电器设备的实际应用中,国内外在抗干扰技术的研究中已经取得了较多的成果,并且掌握了较多消除电磁干扰的实用方法。为了保证电源电器设备满足电磁兼容的要求,加强塑料金属化处理工艺的研究与应用是十分必要的,如:涂覆导电涂料、粘贴金属箔、真空镀铜、溅射镀锌、化学镀铜等。经过塑料金属化处理后,充分利用了塑料的绝缘性能,而且具有金属材料的反射作用,从而实现了电磁波的吸收、传导与衰减,进而达到屏蔽电源电器设备电磁波干扰的作用。

另外,不同类别电源电器设备受到工作环境、功率、功能、应用场合、抗电磁干扰能力的影响,对于外界电磁辐射的特性差异也较大,必须按照设备的类别制订出相对应的标准,如:我国电源电器设备分为电子产品、元器件、家用电器配件、电线电缆等类别,并制订了一整套相应的电磁兼容标准。

根据电磁兼容技术的相关原理,为了将电磁干扰控制在合理的范围内,必须联合应用多种电磁兼容技术,进而在减小电磁干扰的前提下,保证电源电器设备的兼容性符合实际要求。例如:在电源电器设备的最初设计时,应加强对于现场电波的测试,有针对性地选择相应的频率、极化方式,以避开其他设备所产生的杂波干扰;在高压线的路径选择中,要尽量绕开电源电器设备,并合理利用地物屏障与地形,从而保证相关设备的安全、稳定运行。同时,我国对于电源电器设备全部实施国家强制性产品认证,即常说的“3C”认证,其后续目录仍在增加电源电器设备的品种与类别。

6 结语

总之,在电源电器设备的设计中,必须注重电磁兼容技术的合理选用,在保证对于各种电磁波抑制与消除效果的同时,还要保证各种设备的兼容。在电源电器设备的设计过程中,电磁兼容技术的应用是一项较为复杂的技术任务,而且涉及到较多的电力技术类型,在实际应用中,设计人员必须掌握其基本原理及相关规范、标准,才能有效地解决相关技术问题。

参考文献

[1]周宏,黄盛霖,王晓伟.开关电源的电磁兼容分析及改进措施[J].舰船电子对抗,2005(2):49-51

[2]吴坤君,李玲霞,李强,等.电源电器设备的电磁兼容性[J].四川兵工学报,2008(3):14-15

上一篇:院感岗前培训小结下一篇:妈妈说课稿

热搜文章

    相关推荐