高一数学教案:函数的概念和图象教案

2024-09-12

高一数学教案:函数的概念和图象教案(共10篇)

1.高一数学教案:函数的概念和图象教案 篇一

数学教案-一次函数的图象和性质一次函数的图象和性质

一次函数的图象和性质

一、目的要求

1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析

1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程

复习提问:

1.什么是一次函数?什么是正比例函数?

2.在同一直角坐标系中描点画出以下三个函数的图象:

y=2x y=2x-1 y=2x+1

新课讲解:

1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的.图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数,

y=0.5x

与 y=-0.5x

由这两个正比例函数的解析式不难看出,当x=0时,

y=0

即函数图象经过原点.(让学生想一想,为什么?)

除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

(1)先选取两点,通常选点(0,0)与点(1,k);

(2)在坐标平面内描出点(0, O)与点(1,k);

(3)过点(0,0)与点(1,k)做一条直线.

这条直线就是正比例函数y=kx(k≠0)的图象.

观察正比例函数 y=0.5x 的图象.

这里,k=0.5>0.

从图象上看, y随x的增大而增大.

再观察正比例函数y=-0.5x 的图象。

这里,k=一0.5<0

从图象上看, y随x的增大而减小

实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

先看

y=0.5x

任取两对对应值. (x1,y1)与(x2,y2),

如果x1>x2,由k=0.5>0,得

0.5x1>0.5x2

即yl>y2

这就是说,当x增大时,y也增大。

类似地,可以说明的y=-0.5x 性质。

从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有下列性质:

(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

y=kx+b(k,b是常数,k≠0)

通常选取

(O,b)与(-

2.一次函数的性质和图象 电子教案 篇二

石家庄市第五中学

南海平

课型:新授课

教材:冀教版八年级《数学》下册第六章第二节第二课时 教学目标:

一、知识与技能目标

(1)能根据正比例函数的图像和函数关系式,探索并理解一次函数的图像和性质;

(2)进一步理解正比例函数图像和一次函数图像的位置关系;(3)探索一次函数的图像在平面直角坐标系中的位置特征。

二、过程与方法目标

通过组织学生参与由一次函数的图像来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用“数形结合”的思想方法探索数学问题的能力。

三、情感、态度与价值观目标

通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图像和性质。

教学难点:通过图形探求性质以及分析图形的位置特征,根据一次函数的图像总结出它的性质。

【教学过程设计】

一、创设情景,引导探究

复习正比例函数图像的画法

师:上节课我们了解了正比例函数图像,并学习了图像的画法。同学们能画出正比例函数y=2x的图像吗?说说看,如何画?

生:能。因为正比例函数的图像是一直线,且过原点,所以,我可以过(0,0)和(1,2)两点画直线y=2x。师:很好。试着画一下。

(让学生上黑板板演画法,教师对其进行点评)

师:我们知道y=2x实际上它是个二元一次方程,而二元一次方程的图像是一直 1 线,接下来我们看两个一次函数的图像y=2x+1和y=2x-1。教师要求学生画出这两函数的图像,并引导学生得出简捷画法。

二、师生互动,合作交流

1、探究一次函数y=2x+1和y=2x-1的图像与正比例函数y=2x的图像的位置关系 师:这三个函数表示的图像都是一直线,它们的位置有什么关系呢? 生:平行。

2、探究一次函数y=2x+1和y=2x-1的增减性

师:对x取不同的数值看y是如何变化的?

生:在y=2x+1和y=2x-1图像中,y随x增大而增大。

3、探究一次函数y=2x+1和y=2x-1的图像所经过的象限 师:一次函数y=2x+1和y=2x-1的图像过哪些象限呢? 生:y=2x+1的图像过第一、二、三象限

y=2x-1的图像过第一、三、四象限

师:让学生多画几个一次函数的图像如y=x+2,y=x-2;y=1.5x+0.5,y=1.5x-0.5 从以上一次函数的图像得出结论:

y=kx+b(k0,b0)b0当k>0b0图像过第一、二、三象限图像过第一、三、四象限y的值随x的增大而增大 

同样的方法研究一次函数y=-2x+1和y=-2x-1的图像和性质得出结论:y=kx+b(k0,b0)b0当k0b0图像过第一、二、四象限图像过第二、三、四象限y的值随x的增大而减小 

三、练习巩固

(1)教师用多媒体展现下列一组填空题:

1.已知一次函数y=3x+1,当x=0时,y= ;当y=0时,x=。这个函数的图像是一条。

2、一次函数y=-3x+1的图像经过第 象限,直线y=3x-1不过第 象限。一次函数y=kx+b中,k 0,b 0时,图像不过第一象限 3.下列一次函数y=kx+b(k≠0)的图像中,k<0,b>0的是。

yyyyOxOxOxOx(A)(B)(C)(D)

4.直线y=kx-3与y=5x平行,则k,此时y随x增大而。

5、已知一次函数y=ax+b(1)当点p(a,b)在第二象限时,则直线y=ax+b经过哪几个象限?

(2)如果ab<0,且y随x的增大而增大,则函数图像不经过哪个象限?

(2)课本第160页,练习。

四、课堂小结

师:通过本节课的学习,我们理解了哪些一次函数的有关内容呢?(1)一次函数的增减性;(2)一次函数图像的位置特征。

五、布置作业 1. 2. 课本P160,习题25.2 1,2,3,4 同步P74,知识与技能

六、课后反思

3.正弦函数、余弦函数的图象教案 篇三

1、了解利用正弦线作正弦函数图象的方法;

2、掌握正、余弦函数图象间的关系;

3、会用“五点法”画出正、余弦函数的图象。

预习课本P30———33页的内容

【新知自学】

知识回顾:

1、正弦线、余弦线、正切线:

设角α的终边落在第一象限,第二象限,…

则有向线段 为正弦线、余弦线、正切线。

2、函数图像的画法:

描点法:列表,描点,连线

新知梳理:

1、正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有向线段_________叫做角α的正弦线,有向线段___________叫做角α的余弦线。

2、正弦函数图象画法(几何法):

(1)函数y=sinx,x∈的图象

第一步:12等分单位圆;

第二步:平移正弦线;

第三步:连线。

根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为______,就得到y=sinx,x∈R的图象。

感悟:一般情况下,两轴上所取的单位长度应该相同,否则所作曲线的“胖瘦不一”,形状各不相同。

(2)余弦函数y=cosx,x∈的图象

根据诱导公式 ,还可以把正弦函数x=sinx的图象向左平移 单位即得余弦函数y=cosx的图象。

探究: 正弦函数曲线怎么变换可以得到余弦曲线?方法唯一吗?

3、正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线。

4、“五点法”作正弦函数和余弦函数的简图:

(1)正弦函数y=sinx,x∈的图象中,五个关键点是:

(0,0),__________, (p,0),

_________,(2p,0)。

(2) 余弦函数y=cosx,x?的图象中,五个 关键点是:

(0,1),_________,(p,—1),__________,(2p,1)。

对点练习:

1、函数y=cosx的图象经过点( )

A、( ) B、( )

C、( ,0 ) D、( ,1)

2、函数y=sinx经过点( ,a),则的值是( )

A、1 B、—1 C、0 D、

3、函数y=sinx,x∈的图象与直线y= 的交点个数是( )

A、1 B、2 C、0 D、3

4、sinx≥0,x∈的解集是________________________、

【合作探究】

典例精析:

题型一:“五点法”作简图

例1、作函数y=1+sinx,x∈ 的简图。

变式1、画出函数y=2sinx ,x∈〔0,2π〕的简图。

题型二:图象变换作简图

例2、用图象变换作 下列函数的简图:

(1)y=—sinx;

(2)y=|cosx|,x 、

题型三:正、余弦函数图象的应用

例3 利用函数的图象,求满足条件sinx ,x 的x的集合。

变式2 、求满足条件cosx ,x 的x的集合。

【课堂小结】

知识&nbs

p; 方法 思想

【当堂达标】

1、函数y=—sinx的图象经过点( )

A、( ,—1) B、( ,1)

C、( ,—1) D、( ,1)

2、函数y=1+sinx, x 的图象与直线y=2的交点个数是( )

A、0 B、1 C、2 D、3

3、方程x2=cosx的解的个数是( )

A、0 B、1 C、2 D、3

4、求函数 的定义域。

【课时作业】

1、用“五点法”画出函数y=sin x—1,x 的图象。

2、用变换法画出函数y=—cosx, x 的图象。

3、求满足条件cosx (x 的x的集合。

4、在同一 坐标系内,观察正、余弦函数的图象,在区间 内,写出满足不等式sinx≤cos的集合。

【延伸探究】

5、方程sinx=x的解的个数是_____________________、

4.《一次函数图象的应用》教案 篇四

的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?

3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,写出当x≥3时该图象的函数关系式;(2)某人乘坐2.5 km,应付多少钱?(3)某人乘坐13 km,应付多少钱?(4)若某人付车费30.8元,出租车行驶了多少千米?

三、运用新知:

为鼓励居民节约用水,出台了新的用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分按每立方米2元计算).现某户居民某月用水x立方米,水费为y元,(1)求y与x的函数关系式.(2)用图象表示出y与x的函数关系.四、能力提升:

如图点P按ABCM的顺序在边长为l的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,APM的面积为y,则函数y的大致图象是()

五、当堂反馈(基础题):

1、课本练习

2、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后:(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间是多长?

3、某洗衣机在洗涤衣服时经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如折线图所示.根据图象解答下列问题(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19 L,①求排水时,y与x之间的关系式.

②如果排水时间预定为2min,求排水2min时洗衣机中剩下的水量.

4.(提高题):北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800 元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)写出总运输费用与北京运往重庆x台之间的函数关系式;(2)若总运费为8 400元,上海运往汉口应是多少台?

5.高一数学教案:函数的概念和图象教案 篇五

整体设计

教学分析

本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标

1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点

教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排 1课时

教学过程

导入新课

思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课 新知探究 提出问题

①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?

②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?

③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?

④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗? 你能类比“五点法”也用几个字总结出作正切简图的方法吗?

活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性 由诱导公式

tan(x+π)=tanx,x∈R,x≠+kπ,k∈Z

2可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性 由诱导公式 tan(-x)=-tanx,x∈R,x≠+kπ,k∈Z 2

可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(k,0)k∈Z.2(3)单调性

通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(又由正切函数的周期性可知,正切函数在开区间((4)定义域

22,)内是增函数,2+kπ,+kπ),k∈Z内都是增函数.2y,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时x正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+,k∈Z,所以正切函

2数的定义域是{α|α≠kπ+,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在22

根据正切函数的定义tanα=解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域

由多媒体课件演示正切线的变化规律,从正切线知,当x大于2且无限接近2时,正

切线AT向Oy轴的负方向无限延伸;当x小于向无限延伸.因此,tanx在(且无限接近时,正切线AT向Oy轴的正方2222,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1

问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整22,)的图象为好.22+kπ(k∈Z)2个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠的图象,我们称正切曲线,如图3.图2

图3

问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(22,)的简图.学生可看出有三个点很关键:(4,-1),(0,0),(,1),还有两4条竖线.因此,画正切函数简图的方法就是:先描三点(x=4,-1),(0,0),(,1),再画两条平行线42,x=,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.2讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题

①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=

+kπ,k∈Z所隔开的无2穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(2+kπ,+kπ),k∈Z,没有减区间.它的图象是关于原点对称2的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(k,0),k∈Z.2问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例

例1 比较大小.(1)tan138°与tan143°;(2)tan(1317)与tan().4

5活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx在90°-tan, 55441317即tan()>tan().45(2)∵tan(

点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可.例2 用图象求函数y=tan3的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4

图5 解:由tanx-3≥0,得tanx≥3, 利用图4知,所求定义域为[kπ+

,kπ+)(k∈Z).32点评:先在一个周期内得出x的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种.变式训练

根据正切函数的图象,写出使下列不等式成立的x的集合.(1)1+tanx≥0;(2)tanx+3<0.解:(1)tanx≥-1, ,kπ+),k∈Z;42(2)x∈[kπ-,kπ-),k∈Z.23例3 求函数y=tan(x+)的定义域、周期和单调区间.23∴x∈[kπ-

活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将可让学生自己类比地探究,只是提醒学生注意定义域.解:函数的自变量x应满足即x≠2k+

x+作为一个整体.教师23x+≠kπ+,k∈Z, 2321,k∈Z.31,k∈Z}.3由于f(x)=tan(x+)=tan(x++π)=tan[(x+2)+ ]=f(x+2), 232323所以函数的定义域是{x|x≠2k+因此,函数的周期为2.51+kπ

点评:同y=Asin(ωx+φ)(ω>0)的周期性的研究一样,这里可引导学生探究

y=Atan(ωx+φ)(ω>0)的周期T=变式训练

求函数y=tan(x+解:由x+

.)的定义域,值域,单调区间,周期性.4≠kπ+,k∈Z可知,定义域为{x|x∈R且x≠kπ+,k∈Z}.424值域为R.3∈(kπ-,kπ+),k∈Z可得,在x∈(kπ-,kπ+)上是增函数.44224周期是π,也可看作由y=tanx的图象向左平移个单位得到,其周期仍然是π.4由x+例4 把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有:

错解1:∵函数y=tanx是增函数,又1<2<3<4,∴tan1

3,)上是单调递增函数, 223且tan1=tan(π+1),又<2<3<4<π+1<,22解法一:∵函数y=tanx在区间(∴tan2

课本本节练习1—5.解答: 1.在x轴上任取一点O1,以O1为圆心,单位长为半径作圆,作垂直于x轴的直径,将⊙O1分成左右两个半圆,过右半圆与x轴的交点作⊙O1的切线,然后从圆心O1引7条射线把右半圆分成8等份,并与切线相交,得到对应于轴上从33,,,0,,等角的正切线.相应地,再把x488848这一段分成8等份.把角x的正切线向右平行移动,使它的起点与x轴上的点22x重合,再把这些正切线的终点用光滑的曲线连结起来,就得到函数y=tanx,x∈(,)的图

22到

象.点评:可类比正弦函数图象的作法.2.(1){x|kπ

+kπ,k∈Z};(2){x|x=kπ,k∈Z};(3){x|+kπ

22(2)不会.因为对于任何区间A来说,如果A不含有侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性.课堂小结

1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义? 作业

课本习题1.4 A组6、8、9.设计感想

6.高一数学教案:函数的概念和图象教案 篇六

(1)》教案

一、创设情境

如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了. 我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.

二、探究归纳

问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?

解因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来. 问题2在教室里,怎样确定一个同学的座位?

解例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.

问题3要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:

(1)孔的圆周上的点与AB边的最短距离为5mm,(2)孔的圆周上的点与AD边的最短距离为15mm.

第 1 页 试问:钻孔时,钻头的中心放在铁板的什么位置?

分析圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以半径为5mm,所以圆心O到AD边距离为20mm,圆心O到AB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).

在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangledcoordinatessystem).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点. 在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限?

7.高一数学教案:函数的概念和图象教案 篇七

4-1.4.1正弦、余弦函数的图象(2)

1、教学目标:

2、使学生学会用“五点(画图)法”作正弦函数、余弦函数的图象。

3、通过组织学生观察、猜想、验证与归纳,培养学生的数学能力。

4、通过营造开放的课堂教学氛围,培养学生积极探索、勇于创新的精神。

5、教学重点和难点:

6、重点:用“五点(画图)法”作正弦函数、余弦函数的图象。

7、难点:确定五个关键点。

8、教学过程:

9、思考探究

10、复习

(1)关于作函数,x∈〔0,2π〕的图象,你学过哪几种方法?

(2)观察我们上一节课用几何法作出的函数y=sinx,x∈〔0,2π〕的图象,你发现有哪几个点在确定图象的形状起着关键作用?为什么?(用几何画板显示通过平移正弦线作正弦函数图像的过程)

2、“五点(画图)法”

在精确度要求不高时,先作出函数y=sinx的五个关键点,再用平滑的曲线将它们顺次连结起来,就得到函数的简图。这种作图法叫做“五点(画图)法”。

(1)、请你用“五点(画图)法” 作函数y=sinx,x∈〔0,2π〕的图象。

解:按五个关键点列表:

x 0 π2

π Sin

0

0 描点、连线,画出简图。

(用几何画板画出Y=sinx的图像,显示动画)

(2)、试用“五点(画图)法”作函数y=cosx, x∈〔0,2π〕的图象。

解:按五个关键点列表:

x 0 ππ

Cos x1 0-1

描点、连线,画出简图。

3π2-1

3π20

1.5fx = cosx10.5O1234356-0.5π2π22π-1

一、自主学习

例1. 画出下列函数的简图:

(1)y=1+sinx,x∈〔0,2π〕(2)y=-cosx,x∈〔0,2π〕 解:(1)按五个关键点列表:

x 0 π 2

π

Sin x0

0 1+ 描S点、i1 2 1 连n线,x画出简图。

fx = 1+sinx2gx = sinx5Oπ2π-22π32(2)按五个关键点列表:

x

0

π2

πCosx 1 0

-13π/2)和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。

小结:sin(x3π/2)+2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。

三、归纳小结

1、五点(画图)法

(1)作法 先作出五个关键点,再用平滑的曲线将它们顺次连结起来。(2)用途 只有在精确度要求不高时,才能使用“五点法”作图。(3)关键点

横坐标:0 π/2 π 3π/2 2π

2、图形变换平移、翻转等

四、布置作业

8.高一数学教案:函数的概念和图象教案 篇八

一、教材分析(说教材): 1.教材所处的地位和作用:

本节内容是高中数学必修4第一章第四节的内容。它前承正弦余弦函数的图象和性质,后启已知三角函数值求角的问题.2.教学目标:

(1)知识目标:掌握正切函数的性质,认识并会画正切函数的的简图.(2)能力目标:让学生亲身经历数学研究的过程,学会应用内比推理与数形结合的思想处理问题.(3)情感目标:

通过学生自主探究小组合作交流的过程体检探索的乐趣,增强团队意识,增强学习数学的兴趣.3.重点,难点以及确定的依据和处理的方法:

重点:正切函数的性质和图象是本课的难点,其理论依据是任意函数的性质和图象都是紧密相连的都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图象的间断性.所以要正确探索出性质和图象.处理方法是类比正余弦函数的图象和性质的研究.难点:画正切函数的简图.依据是正切线能准确画正切函数的图象,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过性质体会图象与X轴的交点,再利用定义域找到图象间断处的渐近线(用虚线)在找到点,1,1在利用单调性确定,一个周期内的几个特殊,,一个周期的图象,224422再利用周期性画出其它区间的图象.二、教学策略(说教法):

(一)教学手段:

一般对于函数性质的研究总是先作图象,再通过图象来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.但对正切函数教材采用了先根据已有的知识(如正切函数的定义,诱导公式,正切线等)研究性质,然后再根据性质来研究正切函数的图象,这样处理主要是为了给学生提供研究数学更多的视角,在性质的指导下可以更加有效地作图,研究图象,加强理性思考的成分,并使数形结合的思想体现的更加全面.(二)教学方法及其理论依据:

如何突出重点,突破难点,从而实现教学目标.我在教学中利用学案导学循环大课堂.坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的学案导学教学法.在学生课下看书、独立完成学案、小组讨论基础上,在教师课前批阅学案的前提下,让一部分学生把自己的学习成果先展示在黑板上,然后让学生进行质疑讨论,最后老师在进行补充学生的不足进行总结评价.三、学情分析:(说学法)

学生已经有了研究正弦余弦函数图象和性质的经验,这种经验完全可以迁移到对正切函数性质和图象的研究中,在心理上也具备了一定的分辨能力和语言表达能力.四、教学程序:

(一)课前展示:课间学生分配到任务后,需要板书的在课间进行板书.(二)复习回顾:以表格的形式将正余弦函数及正切函数的五个性质(即定义域,值域,周期性,奇偶性,单调性)列出,让学生先进性前两个函数的填写.(三)循环探究:1.根据学生上节课后十分钟布置的任务,并通过课下学生自学探究,由学生自己把正切函数的性质填写在上表,并对其他同学的疑问进行作答.2.让学生根据正切函数的性质自己试着画正切函数的简图,对学生出现的情况进行点评.以鼓励为主然后让学生想一想怎样更快更好画出正切函数的图象.总结正切函数简图的画法,处理方式在重点中已说过.3.用正切线通过多媒体展示,准确的画出正切函数的图象,并让学生看着图象再直观的理解性质.(四)例题展示:例1通过单调性比较正切值的大小,强调正切函数的单调性是在每一个单调区间上是增函数而不是在定义域上,这类题一定把所给的x角利用诱导公式转化到同一个单调区间.例2求ytan的定义域,周期,23单调区间.估计在此题中学生会出现问题就是区间的开闭问题.例3通过正切值的范围求角的范围,强调学生要学会利用简图来做题.(五)方法总结:学生自己先总结老师然后补充.(六)巩固练习:学案上的练习按等级设置,学生根据自己的情况完成对应等级的题目.(七)当堂检测:用多媒体给出检查学生这节课掌握的情况.(八)任务布置:仍然以学案的形式给出yAsinwx的图象的研究,想用问题的形式引出这节内容然后由学生自己探究.L

五、作业布置:完成相应的学案

六、设计说明:1.板书说明:侧、后黑板留给学生展示,前黑板写标题及重点强调的内容.2.时间分配:(一)课前五分钟

(二)两分钟

(三)十分钟

(四)十分钟

(五)二分钟

(六)六分钟

(七)五分钟

(八)十分钟

9.高一数学教案:函数的概念和图象教案 篇九

四、教学目标

根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。

3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点

教学重点:使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。

教学难点:借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

六、教学过程:

(一)创设情景、提出问题

本节课一开始我就让学生直接总结出二次函数的性质与图象,并指出如何得到函数的相关性质。学生在初中学习的基础上很容易就完成。就在学生回答后,教

师提出一个让大家意想不到的问题:既然大家已经学习也掌握了二次函数的图象和性质,那我们今天还有必要再重复吗?编者的失误?还是另有用意呢?

【设计意图:一方面可以激发学生学习热情和探索新知的欲望;另一方面也给学生传递一个学习目标方面的信息。在学生感觉很疑惑的时候,教师再次设问,把问题引向深入。】

【学情预设:学生可能很疑惑,或者有一些猜测】 你能独立完成问题2吗?。

问题2:试作出二次函数的图象。

要求学生按照自己处理二次函数的方法独立完成。

【设计意图:充分暴露学生的问题,突出本节课的重要性,激发学生学习的动力。】

【学情预设:一部分学生使用描点法作图;另一部分学生只确定对称轴和开口、只利用对称轴和y轴的交点等不是很规范的方法作图。】

在总结交流的基础上教师指出:有的同学用描点作图的方法作出函数的图象,从方法上没有问题,但是需要描出大量的点才能得到较为准确的图象;有的同学只是找到函数的对称轴判定开口方向就画出一个图象,或者是找到函数的对称轴和y轴的交点确定开口方向就画出函数的图象等等,这种不是很规范的作图方法,感觉很快,但是往往得到的图象不是很准确的,为什么呢?

(学生稍作思考)

师:实质上函数的性质是函数自身特殊对应关系的体现,而体现函数的对应关系的方法有解析式法、图象法和列表法。既然能够用解析式结合图象得到函数的性质,那么能否借助于解析式直接分析其性质,然后推断出图象的特征呢?在推断函数的图象时要考虑函数的哪些主要性质呢?我想这也是今天这节课的意图所

在,如何利用函数性质的研究来推断出较为准确的函数图象,大家是否有兴趣和能力来探讨这个问题呢?

带着这样的问题我带领学生进入下一个环节——师生互动、探究新知。

(二)师生互动、探究新知

在这个环节上,我引用课本所给的例题1请同学们以学习小组为单位尝试完成。

1、试述二次函数的性质,并作出它的图象。

要求:按照解析式----性质----推断函数图象的过程来探讨,【设计意图是:以便于学生在对比中进一步理解函数性质的应用,突破应用函数的性质来推断函数图象这一难点。同时体验分析障碍和获得成功的快乐,激发学生的学习兴趣。】

在学生学习小组的一番探讨后,教师选小组代表做总结发言,要求说出利用解析式得到性质的分析过程。

(其他小组作出补充,教师引导从以下几个方面完善):

(1)定义域(2)开口方向(3)值域(顶点)及最值(4)对称轴(5)单调性(6)奇偶性(7)零点(8)图象

【设计意图是:让学生在师生互动,共同探讨的过程中逐步实现知识的迁移,基本上形成新的认知。】

【学情预设:因为是第一次尝试利用解析式分析性质并推断图象,学生对于某些性质不能准确的阐述出分析过程,对对称轴的确定、单调区间及单调性的分析等可能存在困难。】

这时教师可以利用对解析式的分析结合多媒体引导学生得到分析的思路和解决的方法,进而突破教学难点。

根据实际情况教师可以引导学生从二次函数的配方结果来分析:(1)单调性的分析:

在=时,自变量越小,中当

就越大,时,就越大,即

取得最小值-2,当就越大;当就越大; 时,自变量越大,就越大,就越大,即这样单调性及单调区间(分界点)自然可以解决,结合单调性的定义可给出严格的证明;同时也可以帮助我们说明开口的方向是向上的。(2)对称性的分析:

在=时,即,=

也就是,则

中当和时,如果

成立。

时,一定有也就是因此可以令成立,这就是说二次函数应的点为对称中心的两个点对应的两个数的自变量在轴上取两个关于-4对和

时,函数值

对称。总是成立的,这就说明函数的图象关于直线在对解析式分析的同时借助于几何画板课件演示,让学生直观感受:

然后在教师的引导之下推广并得出一般结论:如果函数任意都有

成立,则函数

对定义域内的对称。的图象关于直线在得出对称性的一般结论这一副产品后,为了强化对这个结论的认识和理解,教师可以安插一个练习题:

练习:试用以上结论来概括函数___________________________.应该满足的结论是在完成以上各环节后,教师再次提出任务:既然我们把二次函数的相关性质都分析完成,那么根据以上性质请同学们再次分析如何利用二次函数的性质推断出二次函数的图象? 用二次函数的性质推断函数的图象时需要研究分析二次函数的哪些主要性质才能比较准确地画出图象?

【设计意图是:学生自主探究、小组讨论、发现知识间的内在联系.教师针对学生的讨论,对学生思维上进行恰当的启迪,方法上进行及时的点拨,让学生真正实现知识的迁移,形成较为完整的新的认知体系。鼓励学生积极、主动地探究,以顺利地完成整个探究过程.】

各学习小组再次探讨后,请学习小组代表回答,教师引导完成图象:

在这个过程中,考虑到各学习小组的水平可能有所不同,有同学可能提出图象为什么是曲线而不是直线等问题,教师要说明其实这也是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,有兴趣的同学可以阅读课本第110页的探索与研究。

【设计意图是:为后面的探索与研究打下伏笔,同时也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.】

【学情预设:有同学可能提出图象为什么是曲线而不是直线的质疑。】 在得到函数的图象之后,教师再请同学们以学习小组为单位,分析讨论利用二次函数解析式结合图象分析性质和利用解析式分析性质然后推断函数图象的两种研究过程的流程图.学习小组代表回答,教师引导完成以下内容:

【设计意图是:①把具体的数学问题进一步梳理并加以提炼、抽象、概括,使问题得以升华,拓宽学生的思维,形成新的认知。

②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。】

在学生形成认知的基础上,为了让学生抓住问题的本质,把这种方法真正的内化,拓宽学生的认知结构,教师再次提出问题:

教师提出问题:研究函数(比如今天的二次函数)可以怎么研究?用什么方法、从什么角度研究?特别是:如果用函数的性质推断函数的图象时需要研究分析函数的哪些主要性质才能比较准确地画出图象?

在教师的引导中得出结论:可以根据具体的函数从图象和解析式这两个不同的角度进行研究;当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

【设计意图是:在教师的组织引导下通过合作交流、共同探索,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。】

(三)独立探究,巩固方法

师:既然通过上面的学习使我们认识到学习研究函数的性质与图象可以从不同的角度完成,那么同学们是否可以按照例1的方法---先分析性质再推断图象来独立完成下一个问题呢?由此将带领学生进入本节课的第三个环节——独立探究,巩固方法,这也是本节课所要突破的一个难点。

2、试述二次函数的性质,并作出它的图象。

要求:每位同学都按照从解析式出发、分析研究性质从而推断图象。最后将研究所得到的结论写出来以便交流。

【设计意图:例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上从极值点,零点,单调区间,对称性等方面目标明确地研究性质再比较准确的画出图象,使新知得到有效巩固.强化方法的同时训练学生灵活应用的意识和能力。通过自主探索、不仅让学生充当学习的主人更可让学生充分经历知识的形成过程,从而加深每位同学对所得到结论的理解和认识。形成自己对本节课难点的理解和解决策略,培养学生的直觉和感悟能力。让学生上台汇报研究成果,是让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养。】

【学情预设:考虑到各位同学的水平可能有所不同,教师应巡视,对个别同学可做适当的指导。】

在学生分析解决的过程,教师巡视,帮助有困难的同学,之后进行交流总结。师:下面我们分享各位同学的研究成果!教师选择一些具有代表性的同学上台展示研究成果。对于从解析式、性质推断函数图象的研究,某些同学可能对于某些环节仍有问题,需要老师进一步引导完善。

通过前面几个环节,学生已基本掌握了本节课的相关知识,教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。但对二次函数的奇偶性的分析,有同学可能提出质疑,教师可利用奇偶性的定义同时借助于几何画板的演示,得出一般性结论。为此我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节——强化训练,加深理解。

(四)强化训练,加深理解

3、求函数的值域和它的图象的对称轴,并说出它在哪个区间上是增函数,在哪个区间上是减函数?它的奇偶性如何?

学生独立完成,教师最后做出点评分析。

【设计意图是:把教科书的例3进行改变.在教学过程中,利用函数奇偶性的定义,借助于多媒体的演示,引导学生分析函数中的参数b对奇偶性的影响,既解决了学生对二次函数的奇偶性的质疑,也强化了学生对函数的奇偶性的理解及运用,同时也把具体的函数问题推广到一般模式,使学生巩固了新知识,灵活运用了所学知识,培养了学生思维的深刻性和灵活性.】 【学情预设:①首先对于函数的值域、对称轴及单调性的确定问题不会太大;

②对二次函数的奇偶性的分析,有同学可能提出质疑,教师可借助于几何画板演示,得出一般性结论。】

通过本例题的探讨,学生不仅对二次函数的奇偶性有个新的认识,对本节课所强调的借助于函数解析式研究性质进而推断函数图象的研究方法基本内化,同时对函数奇偶性概念也会有更为深刻的理解。本节课的教学目标基本完成,紧接着我将带领学生进入下一个环节----小结归纳,拓展深化

(五)小结归纳,拓展深化

在小结归纳中我将从学生的知识,方法和体验入手,带领学生从以下几个方面进行小结:

师:通过本节课的学习,你对二次函数有什么认识?研究二次函数的方法有哪些?你有什么收获?

师生共同总结二次函数的图象和性质,教师可以边总结边板书。

在收获方面教师强调拓展今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于合适的方法得到相关的性质就可以推断出函数的图象。

【设计意图:①让学生再一次复习条理对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

②总结本节课中所用到的数学思想方法。

③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。】

【学情预设:学生可能只是把二次函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。】

(六)布置作业,提高升华

业:课本62页习题2.2A组第4、5题。

探究作业:已知抛物线的对称轴

(1)求m的值,并判断抛物线开口方向;(2)求函数的最值及单调区间。

【设计意图是:作业分层落实.巩固题让学生复习解题思路,完善解题格式,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.】

七、教学反思

1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到二次函数的性质,更

重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出二次函数的系数的动态过程,让学生直观观察系数对二次函数单调性、对称性、奇偶性的影响。

10.高一数学教案:函数的概念和图象教案 篇十

一、复习引入: 1.弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角.2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的一点P(x,y , P 与原点的距离r(0222 2>+=+= y x y x r , 则比值r y 叫做α的正弦,记作:r y =αsin 比值r x 叫做α的余弦,记作:r x =αcos

3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y,过P 作x 轴的垂线,垂足为M , 则有MP r y == αsin ,OM r x

==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:

1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法:(1函数y=sinx 的图象

第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12等份.把x 轴上从0到2π这一段分成n(这里n=12等份.(预备:取自变量x 值—弧

度制下角与实数的对应.第二步:在单位圆中画出对应于角6, 0π,3π,2 π ,…,2π的正弦线正弦线(等价于“列表”.把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数

图象上的点(等价于“描点”.第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.r y(x,α P

根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x(x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2余弦函数y=cosx 的图象

正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法: 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0(2π,1(π,0(23π ,-1(2π,0

余弦函数y=cosx ,x ∈[0,2π]的五个点关键是(0,1(2π,0(π,-1(2 3π ,0(2π,1

只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数

和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚可以.3.讲解范例: 例1 作下列函数的简图

(1y=1+sinx ,x ∈[0,2π],(2 y=-cosx.y=cosx y=sinx π2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11 y x-1 1 o x y 解:(1(2

三、小结: 本节课学习了以下内容: 1.正弦、余弦曲线 几何画法和五点法;2.注意与诱导公式,三角函数线的知识的联系.四、练习: o 1 y x 2

π2 3π2 π-π π 2-1 2 y x o 1-1 2 π2 3π2 π-π π 2 在同一直角坐标系内画出 和 的图象.3sin(2 y x =-

上一篇:国外培训心得体会下一篇:学校体育学第二版