三角形螺纹计算(精选6篇)
1.三角形螺纹计算 篇一
《三角形面积计算公式》教学设计
四卦小学
白保华
教学内容:人教版九年义务教育六年制小学数学第九册三角形面积 教材分析:人教版五年级上册84、85页三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
学情分析:学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
教学目标:
1、让学生经历三角形面积计算公式的探索过程,理解三角形面积公式的来源;并能灵活运用公式解决简单的实际问题。
2、在学习活动中,培养学生的实践动手能力,合作探索意识和能力,培养创新意识和能力。
3、通过实践操作,自主探究,使学生进一步学习用转化的思想方法解决新问题培养团结互助的合作思想品质。
教学重点:三角形面积计算公式的推导。
教学难点:运用拼、剪、平移、旋转等方法,发现正方形、长方形、平形四边形及三角形面积的相互联系推导出三角形面积计算公式。
教具准备:多媒体课件一套,投影仪。
学具准备:工具(尺、剪刀),三组学具(①完全相同的锐角三角形、直角三角形、钝角三角形各两个②长方形、正方形、平行四边形各一个③任意三角形若干个)
教学设计:
一、创设问题情境,质疑激励探索
师:同学们,今天老师为大家带来了几位老朋友,你们想和它们见见面吗?
1、课件出示:
学生说名称及特征后,平行四边形
出示关系集合图
长方形 正方形 师问:谁愿意说出三种图形的面积的计算方法和计算公式的推导过程。
课件展示三角形的图片
请同学们观察猜测:三角形的面积会怎样计算呢?该怎样转化呢?
揭题:三角形面积计算公式(板书课题)
(设计意图:创设轻松的学习氛围,用多媒体手段帮助学生回忆长方形、正方形、平行四边形的面积计算公式及其所属关系,为后面的探究活动中图形及公式的转化作好铺垫。激励学生用已有的经验深入认识“老朋友”(三角形)的欲望和倍心,同时又导出了探索的目标和方向。〕
二、合作探索新知,循序渐进解谜。
(一)实践操作的合作探索::根据你的猜想,动手操作验证一下吧!第一次小组合作:1.同学们,请你们选择三组学具中你喜欢的一种,用你们喜欢的方法进行实验
2.通过折、剪、拼、你会转化成哪种已学过的面积的图形? 3.转化后的图形与原三角形有什么联系?
4.组内展示交流:你是怎样操作的,得到什么样的结论
(二)汇报操作验证结果
生上台展示:把一张三角形纸片的三个角向内对折,变成一个小长方形,得到长方形的长是原来三角形底的一半,宽就是三角形的高的一半,为此,三角形的面积等于小长方形面积的2倍。2倍与其中的一个“一半”抵消,还剩一个“一半”为此,三角形的面积等于底乘高除以2 生上台展示:将三角形的顶角向底边平行对折,再沿折痕剪开,把得到的小三角形沿中间对折再剪开,分别补在剩下图形的两侧,变成一个长方形。三角形的底没变,高缩小了一半,为此,三角形的面积等于底乘高除以2师:这个办法怎么样? 生:也很合理。(表扬,祝贺)师:还有其他做法吗?
生:把等腰三角形对折,剪开一半拼成平行四边形(含长方形、正方形),拼成的平行四边形的底等于三角形的底,平行四边形的高是三角形的高,平行四边形的面积等于三角形的面积的2倍 生:选两个完全一样的直角三角形、锐角三角形、钝角三角形都可以拼成一个平形四边形(含长方形、正方形)拼得的平行四边形的底是原来三角形底的2 倍,高不变,所以,三角形的面积等于底乘高除以2。
师:这个办法怎么样?看来同学们在探究三角形面积的推导想出的办法还真不少!那么,你感觉哪种办法最好?最有创意?〔设计意图:尊重学生的知识基础和喜好,让学生自由选择三组学具中的一组,使学生更满意地完成任务,同时也培养学生学会。倾听别人的正确意见,给予排斥、质疑、认同的思维空间,创造客观评价他人和自己的机会,掌握三种基本思路,(即拼法、剪法、和割补法),鼓励个性割补法。多媒体课件的分类图展,多次发散验证学生推导的准确性,更能帮助学生构建新的知识网,充分享受成功的喜悦,激发学生的积极性,真正体现的学生为主体,面向全体学生的教育思想。
(三)各组同学可以上台采访和自己拼法不一样的小组,交流经验,比较这四种方法,你喜欢哪种方法?为什么?如果你觉得自己的拼法有不足之处,你想向哪一组同学学习?他们的拼法好在哪里。(各小组交流经验)〔设计用意:及时反思使学生产生鲜明的对照,能及时地改进自己操作中的不足,多吸取他人的优点,积累操作经验,拓宽思路。合理的评价机制真正起到了鼓励的作用。教师小组评价、同学对比评价、自己反思评价的客观多元评价方法,培养学生自我评价的能力,鼓励学生参与他人平等竞争,使学生产生挫败和成功的情感体验,提高心理素质。〕
(四)小组合作二:
小组交流:1.三角形的面积如何计算呢?用字母如何表示? 2.在本上书写计算公式 汇报结果:
生:三角形的面积等于底乘高除以2。
生:如果用S表示三角形的面积,用a表示三角形的底,用h表示三角形的高,字母表示三角形的面积公式S = ah ÷ 2(设计意图:通过比较、归纳,揭示三角形面积计算公式及字母表达式。公式的推导是全体学生亲身经历探索的过程、发现的过程,推理的过程,是学生个人独立思考与小组合作学习的过程,学生对公式的来源理解深刻,为实际应用及拓展创新铺下了坚实的基础)。
(五)第三次合作:
我们运用合作的力量探究出了三角形的面积计算公式,同学们太了不起了!请把三角形的面积的计算公式的推导过程与组内伙伴分享
板书两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成平行四边形面积的一半,又因为平行四边形的面积=底×高
所以:三角形的面积=底×高÷2
三、实践运用,拓展创新:
1、尝试解答例题。
课件出示:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?(学生独立尝试解答,教师巡视辅导,集体订正。)课内作业,课外延伸。
2、巩固练习
练习十七1-3题
四、全课总结:通过与伙伴的合作探究,你有什么收获?你对自己的表现满意吗? 板书设计:
三角形的面积
两个完全一样的三角形都可以拼成一个平行四边形 拼成的平行四边形的底等于三角形的底,拼成的平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成平行四边形面积的一半,又因为平行四边形的面积=底×高 所以
三角形的面积=底×高÷2
S = ah ÷
2小学数学概念教学
白保华
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学概念比一般概念更要准确掌握。数学概念是构建数学理论体系的基础,因此必须重 视。小学生年龄小,生活经验不足,知识面窄,构成了概念教学中的障碍。数学概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数学知识的首要条 件,也是进行计算和解题的前提。因此重视数学概念教学,对于提高教学质量有着举足轻重的作用。教师在概念教学中,要创设条件,根据不同类型概念运用不同教学策略,采用不同教学方法.可以通过演示操作、建立表象、逐步抽象、形成概念、强化练习、巩固概念、灵活运用、提高能力等方法与策略进行概念教学.一、什么是数学概念
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。
小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。这些概念是构成小学数学基础知识的重要内容,它们是互相联系着的。如只有明确牢固地掌握数的概念,才能理解运算概念,而运算概念的掌握,又能促进数的整除性概念的形成。
二、小学数学概念的表现形式
在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。
1.定义式
定义式是用简明而完整的语言揭示概念的内涵或外延的方法,具体的做法是用原有的概念说明要定义的新概念。这些定义式的概念抓住了一类事物的本质特征,揭示的是一类事物的本质属性。这样的概念,是在对大量的探究材料的分析、综合、比较、分类中,使之从直观到表象、继而上升为理性的认识。如“有两条边相等的三角形叫等腰三角形”;“含有未知数的等式叫方程”等等。这样定义的概念,条件和结论十分明显,便于学生一下子抓住数学概念的本质。
2.描述式
用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5„„叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。
一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。
另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。
一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会教材的这两个特点。
三、小学数学概念教学的意义
首先,数学概念是数学基础知识的重要组成部分。
小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。例如,整数百以内的笔算加法法则为:“相同数位对齐,从个位加起,个位满十,就向十位进一。”要使学生理解掌握这个法则,必须事先使他们弄清“数位”、“个位”、“十位”、“个位满十”等的意义,如果对这些概念理解不清,就无法学习这一法则。又如,圆的面积公式S=πr2,要以“圆”、“半径”、“平方”、“圆周率”等概念为基础。总之小学数学中的一些概念对于今后的学习而言,都是一些基本的、基础的知识。小学数学是一门概念性很强的学科,也就是说,任何一部分内容的教学,都离不开概念教学。
其次,数学概念是发展思维、培养数学能力的基础。
概念是思维形式之一,也是判断和推理的起点,所以概念教学对培养学生的思维能力能起重要作用。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。例如,“含有未知数的等式叫做方程”,这是一个判断。在这个判断中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1)56+23=79
(2)23-x=67
(3)x÷5=4.5
(4)44×2=88
(5)75÷x=4
(6)9+x=123
在概念教学过程中,为了使学生顺利地获取有关概念,常常要提供丰富的感性材料让学生观察,在观察的基础上通过教师的启发引导,对感性材料进行比较、分析、综合,最后再抽象概括出概念的本质属性。通过一系列的判断、推理使概念得到巩固和运用。从而使学生的初步逻辑思维能力逐步得到提高。6.1.3 数学概念教学的一般要求
1.使学生准确理解概念
理解概念,一要能举出概念所反映的现实原型,二要明确概念的内涵与外延,即明确概念所反映的一类事物的共同本质属性,和概念所反映的全体对象,三要掌握表示概念的词语或符号。
2.使学生牢固掌握概念
掌握概念是指要在理解概念的基础上记住概念,正确区分概念的肯定例证和否定例证。能对概念进行分类,形成一定的概念系统。
3.使学生能正确运用概念
概念的运用主要表现在学生能在不同的具体情况下,辨认出概念的本质属性,运用概念的有关属性进行判断推理。
四、小学数学概念教学的过程与方法
根据数学概念学习的心理过程及特征,数学概念的教学一般也分为三个阶段:①引入概念,使学生感知概念,形成表象;②通过分析、抽象和概括,使学生理解和明确概念;③通过例题、习题使学生巩固和应用概念。
(一)数学概念的引入
数学概念的引入,是数学概念教学的第一个环节,也是十分重要的环节。概念引入得当,就可以紧紧地围绕课题,充分地激发起学生的兴趣和学习动机,为学生顺利地掌握概念起到奠基作用。
引出新概念的过程,是揭示概念的发生和形成过程,而各个数学概念的发生形成过程又不尽相同,有的是现实模型的直接反映;有的是在已有概念的基础上经过一次或多次抽象后得到的;有的是从数学理论发展的需要中产生的;有的是为解决实际问题的需要而产生的;有的是将思维对象理想化,经过推理而得;有的则是从理论上的存在性或从数学对象的结构中构造产生的。因此,教学中必须根据各种概念的产生背景,结合学生的具体情况,适当地选取不同的方式去引入概念。一般来说,数学概念的引入可以采用如下几种方法。
1、以感性材料为基础引入新概念。
用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。
例如,要学习“平行线”的概念,可以让学生辨认一些熟悉的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,然后分化出各例的属性,从中找出共同的本质属性。铁轨有属性:是铁制的、可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义。
以感性材料为基础引入新概念,是用概念形成的方式去进行教学的,因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。
2、以新、旧概念之间的关系引入新概念。
如果新、旧概念之间存在某种关系,如相容关系、不相容关系等,那么新概念的引入就可以充分地利用这种关系去进行。
例如,学习“乘法意义”时,可以从“加法意义”来引入。又如,学习“整除”概念时,可以从“除法”中的“除尽”来引入。又如,学习“质因数”可以从“因数”和“质数”这两个概念引入。再如,在学习质数、合数概念时,可用约数概念引入:“请同学们写出数1,2,6,7,8,12,11,15的所有约数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的所有分类方法中,哪一种分类方法是最新的分类方法?”
3、以“问题”的形式引入新概念。以“问题”的形式引入新概念,这也是概念教学中常用的方法。一般来说,用“问题”引入概念的途径有两条:①从现实生活中的问题引入数学概念;②从数学问题或理论本身的发展需要引入概念。
4、从概念的发生过程引入新概念。
数学中有些概念是用发生式定义的,在进行这类概念的教学时,可以采用演示活动的直观教具或演示画图说明的方法去揭示事物的发生过程。例如,小数、分数等概念都可以这样引入。这种方法生动直观,体现了运动变化的观点和思想,同时,引入的过程又自然地、无可辩驳地阐明了这一概念的客观存在性。
(二)数学概念的形成
引入概念,仅是概念教学的第一步,要使学生获得概念,还必须引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念的本质属性。为此,教学中可采用一些具有针对性的方法。
1、对比与类比。
对比概念,可以找出概念间的差异,类比概念,可以发现概念间的相同或相似之处。例如,学习“整除”概念时,可以与“除法”中的“除尽”概念进行对比,去比较发现两者的不同点。用对比或类比讲述新概念,一定要突出新、旧概念的差异,明确新概念的内涵,防止旧概念对学习新概念产生的负迁移作用的影响。
2、恰当运用反例。
概念教学中,除了从正面去揭示概念的内涵外,还应考虑运用适当的反例去突出概念的本质属性,尤其是让学生通过对比正例与反例的差异,对自己出现的错误进行反思,更利于强化学生对概念本质属性的理解。
用反例去突出概念的本质属性,实质是使学生明确概念的外延从而加深对概念内涵的理解。凡具有概念所反映的本质属性的对象必属于该概念的外延集,而反例的构造,就是让学生找出不属于概念外延集的对象,显然,这是概念教学中的一种重要手段。但必须注意,所选的反例应当恰当,防止过难、过偏,造成学生的注意力分散,而达不到突出概念本质属性的目的。
3、合理运用变式。
依靠感性材料理解概念,往往由于提供的感性材料具有片面性、局限性,或者感性材料的非本质属性具有较明显的突出特征,容易形成干扰的信息,而削弱学生对概念本质属性的正确理解。因此,在教学中应注意运用变式,从不同角度、不同方面去反映和刻画概念的本质属性。一般来说,变式包括图形变式、式子变式和字母变式等。
例如,讲授“等腰三角形”概念,教师除了用常见的图形展示外,还应采用变式图形去强化这一概念,因为利用等腰三角形的性质去解题时,所遇见的图形往往是后面几种情形。
(三)数学概念的巩固
为了使学生牢固地掌握所学的概念,还必须有概念的巩固和应用过程。教学中应注意如下几个方面。
1、注意及时复习
概念的巩固是在对概念的理解和应用中去完成和实现的,同时还必须及时复习,巩固离不开必要的复习。复习的方式可以是对个别概念进行复述,也可以通过解决问题去复习概念,而更多地则是在概念体系中去复习概念。当概念教学到一定阶段时,特别是在章节末复习、期末复习和毕业总复习时,要重视对所学概念的整理和系统化,从纵向和横向找出各概念之间的关系,形成概念体系。
2、重视应用
在概念教学中,既要引导学生由具体到抽象,形成概念,又要让学生由抽象到具体,运用概念,学生是否牢固地掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确灵活地应用,通过应用可以加深理解,增强记忆,提高数学的应用意识。
概念的应用可以从概念的内涵和外延两方面进行。(1)概念内涵的应用
①复述概念的定义或根据定义填空。
②根据定义判断是非或改错。
③根据定义推理。
④根据定义计算。
例4(1)什么叫互质数?答:
是互质数。
(2)判断题:
27和20是互质数()
34与85是互质数()
有公约数1的两个数是互质数()
两个合数一定不是互质数()
(3)钝角三角形的一个角是 82o,另两个角的度数是互质数,这两个角可能是多少度?
(4)如果P是质数,那么比P小的自然数都与P互质。这句话对吗?请说明理由?
2.概念外延的应用
(1)举例
(2)辨认肯定例证或否定例证。并说明理由。
(3)按指定的条件从概念的外延中选择事例。
(4)将概念按不同标准分类。
例5(1)列举你所见到过的圆柱形物体。
(2)下列图形中的阴影部分,哪些是扇形?(图6-2)
(3)分母是9的最简真分数有_分子是9的假分数中,最小的一个是
(4)将自然数2-19按不同标准分成两类(至少提出3种不同的分法)概念的应用可分为简单应用和综合应用,在初步形成某一新概念后通过简单应用可以促进对新概念的理解,综合应用一般在学习了一系列概念后,把这些概念结合起来加以应用,这种练习可以培养学生综合运用知识的能力。
五、小学数学概念教学中应注意的问题
1、把握概念教学的目标,处理好概念教学的发展性与阶段性之间的矛盾。
概念本身有自己严密的逻辑体系。在一定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和变化,同时也由于人们认识的不断深化,因此,作为人们反映客观事物本质属性的概念,也是在不断发展和变化的。但是,在小学阶段的概念教学,考虑到小学生的接受能力,往往是分阶段进行的。如对“数”这个概念来说,在不同的阶段有不同的要求。开始只是认识1、2、3、„„,以后逐渐认识了零,随着学生年龄的增大,又引进了分数(小数),以后又逐渐引进正、负数,有理数和无理数,把数扩充到实数、复数的范围等。又如,对“0”的认识,开始时只知道它表示没有,然后知道又可以表示该数位上一个单位也没有,还知道“0”可以表示界限等。
因此,数学概念的系统性和发展性与概念教学的阶段性成了教学中需要解决的一对矛盾。解决这一矛盾的关键是要切实把握概念教学的阶段性目标。
为了加强概念教学,教师必须认真钻研教材,掌握小学数学概念的系统,摸清概念发展的脉络。概念是逐步发展的,而且诸概念之间是互相联系的。不同的概念具体要求会有所不同,即使同一概念在不同的学习阶段要求也有差别。
有许多概念的含义是逐步发展的,一般先用描述方法给出,以后再下定义。例如,对分数意义理解的三次飞跃。第一次是在学习小数以前,就让学生初步认识了分数,“像上面讲的、、、、、等,都是分数。”通过大量感性直观的认识,结合具体事物描述什么样的是分数,初步理解分数是平均分得到的,理解谁是谁的几分之几。第二次飞跃是由具体到抽象,把单位“1”平均分成若干份,表示其中的一份或几份都可以用分数来表示。从具体事物中抽象出来。然后概括分数的定义,这只是描述性地给出了分数的概念。这是感性的飞跃。第三次飞跃是对单位“1”的理解与扩展,单位“1”不仅可以表示一个物体、一个图形、一个计量单位,还可以是一个群体等,最后抽象出,分谁,谁就是单位“1”,这样单位“1”与自然数“1”的区别就更加明确了。这样三个层次不是一蹴而就的,要展现知识的发展过程,引导学生在知识的发生发展过程中去理解分数。
再如长方体和立方体的认识在许多教材中是分成两个阶段进行教学的。在低年级,先出现长方体和立方体的初步认识,通过让学生观察一些实物及实物图,如装墨水瓶的纸盒、魔方等。积累一些有关长方体和立方体的感性认识,知道它们各是什么形状,知道这些形状的名称。然后,通过操作、观察,了解长方体和立方体各有几个面,每个面是什么形状,进一步加深对长方体和立方体的感性认识。再从实物中抽象出长方体和立方体的图形(并非透视图)。但这一阶段的教学要求只要学生知道长方体和立方体的名称,能够辨认和区分这些形状即可。仅仅停留在感性认识的层次上。第二阶段是在较高年级。教学时仍要从实例引入。教学长方体的认识时,先让学生收集长方体的物体,教师先说明什么是长方体的面、棱和顶点,让学生数一数面、棱和顶点各自的数目,量一量棱的长度,算一算各个面的大小,比较上下、左右、前后棱和面的关系和区别。然后归纳出长方体的特征。再从长方体的实例中抽象出长方体的几何图形。进而可以让学生对照实物,观察图形,弄清楚不改变观察方向,最多可以看到几个面和几条棱。哪些是看不见的,图中是怎样来表示的。还可以让学生想一想,看一看,逐步看懂长方体的几何图形,形成正确的表象。
在把握阶段性目标时,应注意以下几点:
(1)在每一个教学阶段,概念都应该是确定的,这样才不致于造成概念混乱的现象。有些概念不严格下定义,但也要依据学生的接受能力,或者用描述代替定义,或者用比较通俗易懂的语言揭示概念的本质特征。同时注意与将来的严格定义不矛盾。
(2)当一个教学阶段完成以后,应根据具体情况,酌情指出概念是发展的,不断变化的。如:有一位学生在认识了长方体之后,认为课本中的任何一张纸的形状也是长方体的。说明该学生对长方体的概念有了更进一步的理解,教师应加以肯定。
(3)当概念发展后,教师不但指出原来概念与发展后概念的联系与区别,以便学生掌握,而且还应引导学生对有关概念进行研究,注意其发展变化。如“倍”的概念,在整数范围内,通常所指的是,如果把甲量当作1份,而乙量有这样的几份,那么乙量就是甲量的几倍。在引入分数以后,“倍”的概念发展了,发展后的“倍”的概念,就包含了原来的“倍”的概念。如果把甲量当作l份,乙量也可以是甲量的几分之几。
因此,在数学概念教学中,要搞清概念之间的顺序,了解概念之间的内在联系。数学概念随着客观事物本身的发展变化和研究的深入不断地发展演变。学生对数学概念的认识,也需要随着数学学习的程度的提高,由浅入深,逐步深化。教学时既要注意教学的阶段性,不能把后面的要求提到前面,超越学生的认识能力;又要注意教学的连续性,教前面的概念要留有余地,为后继教学打下埋伏。从而处理好掌握概念的阶段性与连续性的关系。
2、加强直观教学,处理好具体与抽象的矛盾
尽管教材中大部分概念没有下严格的定义,而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。但对于小学生来说,数学概念还是抽象的。他们形成数学概念,一般都要求有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复,从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作、思维活动逐步建立起事物一般的表象,分出事物的主要的本质特征或属性,这是形成概念的基础。因此,在教学中,必须加强直观,以解决数学概念的抽象性与学生思维形象性之间的矛盾。
(1)通过演示、操作进行具体与抽象的转化
教学中,对于一些相对抽象的内容,尽可能地利用恰当的演示或操作使其转化为具体内容,然后在此基础上抽象出概念的本质属性。
几何初步知识,无论是线、面、体的概念还是图形特征、性质的概念都非常抽象,因此,教学中更要加强演示、操作,通过让学生量一量、摸一摸、摆一摆、拼一拼来让学生体会这些概念,从而抽象出这些概念。
例如“圆周率”这一概念非常抽象,有的教师在课前,布置每个学生用硬纸制做一个圆,半径自定。上课时,就让每个学生在课堂作业本上写出三个内容:(1)写出自己做的圆的直径;(2)滚动自己的圆,量出圆滚动一周的长度,写在练习本上;(3)计算圆的周长是直径的几倍。全班同学做完后,要求每个同学汇报自己计算的结果。
然后引导学生分析发现:不管圆的大小,它的周长总是直径的3倍多一点。这时再揭示:这个倍数是个固定的数,数学上叫做圆周率。再让学生任意画一个圆,量出直径和周长加以验证。这样,引导学生把大量的感性材料,加以分析、综合、抽象、概括,抛弃事物的非本质属性(如圆的大小、测量时用的单位等),抓住事物的本质特征(圆的周长总是直径的3倍多一点),形成了概念。
这样教师借助于直观教学,运用学生原有的一些基础知识,逐步抽象,环环紧扣,层次清楚。通过实物演示,使学生建立表象,从而解决了数学知识的抽象性与儿童思维的形象性的矛盾。
(2)结合学生的生活实际进行具体与抽象的转化
教学中有许多数量关系都是从具体生活内容中抽象出来的,因此,在教学中应该充分利用学生的生活实际,运用恰当的方式进行具体与抽象的转化,即把抽象的内容转化为学生的具体生活知识,在此基础上又将其生活知识抽象为教学内容。
例如乘法交换律的教学,往往让学生先解答这样的习题:一种钢笔,每盒10支,每支3元,买2盒钢笔要多少元?学生在实际解答中发现,这道题可以有两种解答思路,一种是先求出“每盒多少元”,再求出“2盒要多少元”,算式是(3×10)×2=60元;另一种是先求出“一共有多少支钢笔”,再求出“2盒多少元”,算式是3×(2×10)=60元。乘法分配律的教学也是让学生解答类似的问题,如:一件上衣50元,一条裤子30元,买这样的5套衣服需要多少元?这样借助于学生熟悉的生活情景,使抽象的问题变得具体化。同样常见数量关系中的单价、总价与数量之间的关系;路程、速度与时间的关系,工作量、工作效率与工作时间之间的关系等,都应结合学生的生活经验,通过具体的题目将其抽象出来,然后又利用这些关系来分析解决问题。这样的训练有利于使学生的思维逐渐向抽象思维过渡,逐步缓解知识的抽象性与学生思维的具体形象性的矛盾。
但是,运用直观并不是目的,它只是引起学生积极思维的一种手段。因此概念教学不能只停留在感性认识上,在学生获得丰富的感性认识后,要对所观察的事物进行抽象概括,揭示概念的本质属性,使认识产生飞跃,从感性上升到理性,形成概念。
3、遵循小学生学习概念的特点,组织合理有序的教学过程
尽管小学生获取概念有概念形成和概念同化这两种基本形式,各类概念的形成又有各自的特点,但不管以何种方式获得概念,一般都会遵循从“引入一理解一巩固一深化”这样的概念形成路径。下面就概念教学中每个环节的教学策略及应注意的问题作一阐述。
(1)概念的引入要注重提供丰富而典型的感性材料
在概念引入的过程中,要注意使学生建立起清晰的表象。因为建立能突出事物共性的、清晰的典型表象是形成概念的重要基础,因此,在小学数学的概念教学中,无论以什么方式引入概念,都应考虑如何使小学生在头脑中建立起清晰的表象。概念教学一开始,应根据教学内容运用直观手段向学生提供丰富而典型的感性材料,如采用实物、模型、挂图,或进行演示,引导学生观察,并结合实验,让学生自己动手操作,以便让学生接触有关的对象,丰富自己的感性认识。
如在一节教学分数的意义的课上,一位教师为了突破单位“l”这一教学难点,事先向学生提供了各种操作材料:一根绳子,4只苹果图,6只熊猫图,一张长方形纸,l米长的线段等,通过比较、归纳出:一个物体、一个计量单位、一个整体都可以用单位“1”表示,从而突破理解单位“1”这一难点,为理解分数的意义奠定了基础。
但概念引入时所提供的材料要注意三点:一是所选材料要确切。例如角的认识,小学里讲的角是平面角,可以让学生观察黑板、书面等平面上的角。有的教师让学生观察教室相邻两堵墙所夹的角,那是两面角,对于小学教学要求来说,就不确切了。二是所选材料要突出所授知识的本质特征。例如直角三角形的本质特征是“有一个角是直角的三角形”,至于这个直角是三角形中的哪一个角,直角三角形的大小、形状,则是非本质的。因此教学时应出示不同的图形,使学生在不同的图形中辨认其不变的本质属性。
(2)概念的理解要注重正反例证的辨析,突出概念的本质属性
概念的理解是概念教学的中心环节,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便让学生在理解的基础上掌握概念。促进对概念理解的途径有:
1)剖析概念中关键词语的真实含义
例如,分数定义中的单位“1”、“平均分”、“表示这样的一份或几份的数”,学生只有对这些关键词语的真实含义弄清楚了,才会对分数的概念有了深刻的理解。再如教学“整除”概念之后应帮助学生从以下三方面进行判断,一是判断是否具有“整除”关系的两个数都必须是自然数;二是这两个数相除所得的商是整数;三是没有余数。对定义的分析是帮助学生认识概念的又一次提高。三角形的高的定义:“从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。”这里的“一个顶点”、“垂线”、“垂足”都是一些关键词语。为了让学生理解三角形的高,除了让学生理解字面意思外,往往还需要学生通过实际操作,体会画“高”的全过程。指出画“高”的关键是画垂线,并注意限制条件:“过三角形的一个顶点(可以是任何一个顶点),作到它对边的垂线,顶点和垂足之间的线段”。这样把实际操作的过程和所画的三角形高的图形与定义所叙述的内容对照,使学生准确地理解三角形的高的定义。这实际上是在数学概念建立后,帮助学生对本质属性进行剖析,既将本质属性再次从定义中分离出来,加以明确。
2)辨析概念的肯定例证和否定例证
学生能背诵概念并不等于真正理解概念,还要通过实例突出概念的主要特征,帮助他们加深对概念的理解。教师不仅要充分运用肯定例证来帮助学生理解概念的内涵,同时要及时运用否定例证来促进学生对概念的辨析。在概念揭示后往往要针对教学要求组织学生进行一些练习,如教完三角形按角分类后,可以出示:一个三角形不是直角三角形,并且有两个角是锐角,这个三角形一定是锐角三角形。让学生进行判断,引起学生讨论来巩固三角形的分类,以深化对三角形这一概念的外延的进一步认识。再如,小数的性质揭示后,可以让学生判断0.40、0.030、20.020、2.800、10.404、5.0000各数,哪些“0”可以去掉,哪些“0”不能去掉?从而加深学生对小数性质的理解。
3)变换本质属性的叙述或表达方式
小学生理解和掌握概念的特点之一往往是:对某一概念的内涵不很清楚,也不全面,把非本质的特征作为本质的特征。例如,有的学生误认为,只有水平放置的长方形才叫长方形,如果斜着放就辨认不出来。为此,往往需要变换概念的叙述或表达方式,让学生从各个侧面来理解概念。旨在从变式中把握概念的本质属性,排除非本质属性的干扰。因为事物的本质属性可以运用不同的语言来表达,如果学生对各种不同的叙述和表达都能理解和掌握,就说明学生对概念的理解是透彻的,是灵活的,不是死记硬背的。
4)对近似的概念及时加以对比辨析
在小学数学中,有些概念其含义接近,但本质属性又有区别。如数与数字,数位与位数,奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数、质因数与互质数,周长与面积,等等。对这类概念,学生常常容易混淆,必须及时把它们加以比较,以避免互相干扰。
如学习了“整除”,为了和以前学的“除尽”加以比较,可以设计这样的练习题:下列等式中,哪些是整除,哪些是除尽?
(1)8÷2=4
(2)48÷8=6
(3)30÷7=4„„(4)8÷5=1.6
(5)6÷0.2=30
(6)1.8÷3=0.6
引导学生通过分析、比较,从而得出:第(3)题是有余数的除法,当然不能说被除数被除数整除或除尽,其他各题当然能说被除数被除数除尽了。其中只有第(1)、(2)题,被除数、除数和商都是自然数,而且没有余数,这两题既可以说被除数被除数除尽,又能说被除数被除数整除。从上面的分析中,让学生明白:整除是除尽的一种特殊情况,除尽包括了整除和一切商是有限小数的情况。
学习了比之后,可以用列表法设计比与除法、分数之间的联系的习题,从中明确“除法是一种运算,分数是一个数,比是一个关系式”的区别。
(3)重视概念的运用,发挥概念的作用
正确、灵活地运用概念,就是要求学生能够正确、灵活地运用概念组成判断,进行推理、计算、作图等,能运用概念分析和解决实际问题。理解概念的目的在于运用,运用的途径有:
1)自举实例
这是要求学生把已经初步获得的概念简单运用于实际,通过实例来说明概念,加深对概念的理解。有经验的教师,根据小学生对概念的认识通常带有具体性的特点,在学生通过分析、综合、抽象、概括出概念后,总是让他们自举例证,把概念具体化。从具体到抽象又回到具体,符合小学生的认识规律,使学生更准确把握概念的内涵和外延。
例如在学生初步获得了真分数、假分数的概念后,就可以让学生分别举一些真分数和假分数的实例;知道了圆柱的特征后,让学生说说日常生活中有哪些物品的形状是圆柱形的。
2)运用于计算、作图等
例如,如学了乘法的运算定律后,就可以让学生简便计算下面各题。
104×2
548×25
101×35×2
(80+8)×25
8×(125+50)
34×5×在掌握分数的基本性质后,就要求学生能熟练地进行通分、约分,并说明通分、约分的依据。学习了小数的性质后,就可以让学生把小数按要求进行化简或改写;学习了等腰三角形,可设计一组操作题;画一个等腰三角形;画一个顶角60度的等腰三角形;画一个腰长为2厘米的等腰直角三角形。
3)运用于生活实践
数学概念来源于生活,就必然要回到生活实际中去。教师引导学生运用概念去解决数学问题,是培养学生思维,发展各种数学能力的过程。并且,也只有让学生把所学习到的数学概念,拿到生活实际中去运用,才会使学到的概念巩固下来,进而提高学生对数学概念的运用技能。为此,教师在教学中应当根据教材内容和学生实际,在掌握小学数学教材逻辑系统的基础上,有意识地深化和发展学生的数学概念。
例如在学习圆的面积后,一位教师就设计了这样的问题:“我们已经学习了圆面积公式,谁能想办法算一算,学校操场上白杨树树干的横截面面积?”同学们就讨论开了,有的说,算圆面积一定要先知道半径,只有把树砍下来才能量出半径;有的不赞成这样做,认为树一砍下来就会死掉。这时教师进一步引导说:“那么能不能想出不砍树就能算出横截面面积的办法来呢?大家再讨论一下。”学生们渴望得到正确的答案,通过积极思考和争论,终于找到了好办法,即先量出树干的周长,再算出半径,然后应用面积公式算出大树横截面面积。课后许多学生还到操场上实际测量了树干的周长,算出了横截面面积。再如,在教学正比例应用题时,可以启发学生运用旗杆高度与影长的关系,巧妙地算出了旗杆的高度。这样通过创设有效的教学情景,教师适时点拨,不但启迪了学生的思维,而且培养了学生学以致用的兴趣和能力,也加深了对所学概念的理解。(4)注重概念之间的比较分类,深化概念
小学数学知识的特点是系统性强,前后联系密切,但是由于小学生思维发展水平和接受能力的限制,有些知识的教学往往是分几节课或几个学期来完成,这样难免在不同程度上削弱知识间的联系。对一些有联系的概念或法则,在一定阶段应进行系统的整理,使学生在头脑中建立起知识的网络,形成良好的认知结构。尤其是中高年级,可以引导学生将概念进行分类,明确概念间的联系和区别,以形成概念系统。
2.三角形螺纹计算 篇二
数控车床可以加工的螺纹种类很多, 几乎包括了所有零件上的螺纹。由于数控系统能控制螺距的大小和精度, 免去了计算和更换挂轮的麻烦。这样不但提高了螺纹加工精度, 而且也不会出现乱扣现象。螺纹切削回程可以实现快速移动, 使切削效率大幅提高。专用数控螺纹切削刀具、可以选用较高切削速度, 提高了螺纹加工的表面质量。普通螺纹、锥螺纹、端面螺纹在数控车床上可用G32、G92、G76指令来编程, 但在球面或非圆曲线上加工螺纹时并没有固定的指令, 并且目前市场上还未出现能够加工此类螺纹的软件, 那又如何加工此类螺纹呢?下面主要介绍用宏程序编写球面三角螺纹的加工方法。
2、解决思路及球面三角螺纹加工的编程实例
试编写图一所示零件中球面三角螺纹的加工程序。此题为2010年全国数控技能大赛江苏赛区选拔赛样题。
2.1 图形分析
(1) 该装配图共有5个零件组成, 每个零件基本上都涉及到内轮廓或外轮廓的加工, 其中件1、件3、件4、件5加工相对比较简单, 主要有简单曲面与轴的加工, 只需要G00、G01、G02、G03、G71、G73等指令即可完成。
(2) 件2是轴类零件, 如图二所示, 在该零件上主要有螺纹、锥面、槽及圆弧曲面的加工。其中在R40圆弧上有球面左旋螺螺纹和球面右旋螺纹, 螺纹牙型角度为60度, 螺纹深度为1.5mm, 螺距为5mm。该螺纹加工起来比较麻烦, 在所学的螺纹加工中主要有内外圆柱螺纹、圆锥螺纹、管螺纹等, 可直接用G32、G92、G76指令来完成, 但在曲面上加工螺纹还比较少见, 如何来完成该螺纹的加工呢?这是本论文重点介绍的内容。
2.2 球面三角螺纹的加工方法
先加工球面右旋螺纹, 至Z-64处, 即球面左旋螺纹和球面右旋螺纹的交汇处, 采用变量编程, 用G32指令代替G01指令插补加工球面, 在插补过程中进给量为螺纹的导程。加工过程如下:
(1) 对刀, 工件原点设在工件的右端面。
(2) 将螺纹刀定位在X80、Z-44的位置, 使刀具与球面之间留5mm的空刀导入量, 第一次切削深度为0.8mm。
(3) 设#1为螺纹切削深度变量, #2为螺纹Z方向的变量, #3为刀具每走一步X向的移动值。如下图所示, #3与#2的关系为:
(4) 使用G32指令进行螺纹插补, 由于X向和Z向都是变量, 所以取X为[#3-#1], Z为[#2-64]。Z向每次递减0.5mm, 当Z值大于等于零时, 将返回到N20继续下一步加工。直到将0.8mm切深全部完成。
(5) 将加工切削深度递增0.1mm, 再根据上述步骤完成下一根螺旋线的加工, 直到切削深度大于3mm时, 球面三角螺纹加工完成。具体加工程序如下:
球面左旋螺纹加工方法和球面右旋螺纹加工方法类似, 走刀路径为从Z负方向向Z正方向向走刀, 加工到至Z-64处, 程序略。
加工出的工件如下图所示:
2.3 加工球面三角螺纹时的注意事项
(1) G32后的F值还应该是导程值, 不是Z向变量每次变化量值;
(2) 当Z向变量每次变化大时, 则空刀导入量和空刀导出量也应变大, 否则螺纹起始端和螺纹结束端会产生不均匀现象, 建议Z向变量每次变化小, 0.5mm即可;
(3) 勿以改变圆弧半径值来改变每次径向切削深度, 这样精度不准确;
(4) 切削球面三角螺纹时主轴转速不宜过高。
3、结语
螺纹在数控车床加工中应用很广, 加工方法也很多。本文中介绍到的方法很实用, 也很方便修调及补偿, 易于控制尺寸。如果在不同的球面上加工螺纹, 只需改变圆弧的半径即可。相信该球面螺纹加工的方法在我们的生产实践中一定可以发挥重要的作用。
参考文献
[1]沈建峰, 朱勤惠.数控车床技能鉴定考点分析和试题集萃[M].化学工业出版社, 2007.8.
[2]杨琳.数控车床加工工艺与编程 (第二版[M].中国劳动社会保障出版社, 2010.1.
3.《三角形面积计算》评课稿 篇三
钟海英老师这节课讲的是五年级上册第二单元图形的面积里面的三角形面积的计算。
这节课的重点是让学生探索、总结出三角形的面积公式。在教学中,陈老师充分调动学生的积极性,不强求方法的统一,充分尊重学生的想法。教态自然、大方、亲切。能有效组织学生开展合作、探究、自主学习活动,会按规程使用多媒体教学设备。使用教具、多媒体设备熟练、规范,教学目标准确、全面,符合课程标准要求,切合学生实际,教学内容把握深浅适度、简单明了。重点突出充分,难点突破巧妙。在情境中教学,教学方法生动有趣,灵活多样,富有实效,针对学生差异和当堂反应,因材施教,因人施导,注重学法指导,突出培养能力,突出启发创新思维,学生参与面大,积极性高,学习兴趣浓厚,教学紧扣目标,教学效率高。
学生在认真观察、动手操作、动脑思维等活动中,深刻地体会到了两个完全相同的三角形可以拼成一个平行四边形,其中一个三角形的面积等于同它等底等高的平行四边形面积的一半。这样得出的结论在学生的头脑中印象深刻。公式中的除以2是教学的一个难点。她借助学生自己动手操作演示去突破这一难点,充分体现出学习的主体性。
这节课给我的印象深刻的有几点:
1、老师让学生在整个实践活动中,充分认识动手,动脑,亲身经历观察、操作、推理、交流等过程,在自主探索与合作交流中,感受到了成功的喜悦,体验深刻,掌握牢固,应用灵活。同时,学生创新意识得到了培养,实践能力不断提高。
2、老师每提出一个探究性的问题,都给了足够的时间,让学生思考。
3、通过教师巧妙的引导,让学生感悟到了如何把新的知识变为已知的.知识来解决的策略,其中蕴涵了“转化”这一重要的数学思维方法。
4、通过动手测量数据,并选取所需要的数据,培养了学生深刻理解公式,灵活运用公式解决实际问题的能力。
4.三角形面积的计算教学反思 篇四
这节课,是在学生学习了平行四边形面积计算,初步了解了转化与平移的数学思想的基础上进行学习的。教学中,我重视让学生动手操作,鼓励、引导学生以小组合作的形式,通过操作、讨论、交流等方式,探索三角形面积的计算方法,得出计算公式,学生在师生、生生及小组间的互动中解决了问题,获得了知识,体验了成功。课堂教学取得了良好的效果。
《三角形面积的计算》,对于十岁左右的儿童来说,空间观念是从经验活动的过程中逐步建立起来的。鉴于此,这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、剪、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
1、激发求知需要
创设情景,通过由长方形花坛面积过渡到三角形花坛的面积,让学生猜想三角形花坛的面积如何计算,唤起了学生的求知欲,引发学生的学习兴趣,这不仅符合学生的认知需要,发展了个性,而且让学生怀着好奇心进入自主的对新知识的探索活动中去。
2、培养合作交流的合作意识
这节课一系列活动的设计给了学生对新知探讨充足的合作交流的时间和空间,让学生通过实际操作和小组讨论尽情地表现、发展自己,充分体现了教师是课堂教学的指导者、合作者的作用。我提供了多次学生交流的机会:把学具三角形转化成学过的平面图形、讨论转化成的图形与原三角形的关系等。学生通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
3、培养实践能力
一位教育家说过:“儿童的智慧就在他的手指尖上。” 因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,因此本节课在教学思路上重视对学生的学法指导,淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼剪的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了剪剪拼拼、操作讨论的方法,找到了三角形如何转换成长方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。
4、鼓励自主探索
本课在进入新授时没有按照传统的方法灌输给学生三角形的面积公式,而是学生在实践操作后,自主得出结论,由学习中的问题,产生了思维火花的碰撞,通过不同的剪拼方法,殊途同归都能达到推导出三角形面积计算公式的目的,深化了数学知识的理解,这里较好地渗透了归纳、概括等数学思想。学生从自己的“数学现实”出发,在教师的启发诱导下自己动手、动脑“做数学”,用操作、观察等,获得体验,并作类比、分析、归纳,逐步达到数学化、严格化和形式化。
5、不足之处
但我觉得,整节课还存在很多有待改进的地方:如在摆拼转化图形时没有出示一些没有完全相同的三角形让学生摆拼;量度红领巾时没有充分让学生去量度。另外,在课本的练习中,有这样的一道题:
已知三角形的面积是36平方厘米,底是8厘米,它的高是多少厘米? 在作业时学生答案五花八门:36÷2÷8、36-8÷2、16×2÷8 „„,甚至有学生对此题束手无策。这可能与未处理好教学目标与学生探究能力之间的关系有关,部分学生对三角形与转化后平行四边形之间的联系浮于表面,还没有更深入的理解。要解决好这样的问题,在今后的课堂教学中还有待于我不断地思考和探索。
]
《三角形面积的计算》教案
义东学校
谢艳红
教学目标:
1.知识与技能:使学生理解并掌握三角形面积的计算公式,并学会运用公式计算三角形的面积。2.过程与方法:
(1)通过动手操作使学生经历计算公式的推导过程,培养学生的分析推理能力及动手操作能力。
(2)运用面积计算公式,使学生运用所学知识解决实际问题,提高学生解决问题的能力。
3.情感、态度与价值观:
(1)引导学生运用转化的方法探索知识的变化规律,培养学生分析问题和解决问题的能力。
(2)通过演示和操作使学生感悟数学知识内存联系的逻辑之美,显示对美的领略。
教学重点:理解并掌握三角形面积计算公式。教学难点:理解三角形面积计算公式的推导过程。教学过程:
一、创设情境,导入新课
师:同学们,红领巾是什么形状的?关于三角形你们知道哪些?那么三角形的面积你们会算吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)
二、探索交流、归纳新知 1.寻找思路:
师:关于面积你们会求哪些图形的面积? 长方形的面积=长×宽平行四边形的面积=底×高
师:记得平行四边形的面积公式是怎么得来的吗?(演示平行四边形面积计算公式的推导过程)
师:在推导平行四边形的面积计算公式时,是将平行四边形利用割补法转化成学过的长方形的,通过求长方形的面积推导出平行四边形面积的计算公式的。
思考:求三角形的面积时,能不能也将三角形转化成我们所学过的图形呢? 师:怎样将三角形转化成所学过的图形呢? 师:两个完全一样的三角形可以拼成一个平行四边形,也就是说一个平行四边形可以分成两个完全一样的三角形.2尝试操作
(1 将三角形转化成学过的什么图形?(2)每个三角形与转化后的图形有什么关系?
让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫。] 2.分组实验,合作学习。(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形? ②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的?能说一说你的拼法吗?
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形 3.归纳公式(1)讨论:
1、三角形的底和高与平行四边形的底和高有什么关系?
2、怎样求三角形的面积?
3、你能根据实验结果,写出三角形的面积计算公式吗? 板书:
三 角 形 面 积=底×高÷2
S=ah÷2
4、进行爱国教育
请同学们课后把85页的“你知道吗”。
三、应用新知,解决问题
五、回顾总结,深化提高:渗透数学方法
《三角形的面积》评课记录
1、教师的教学素质比较高,语言优美动听。
2、教学思路清晰,重点突出,充分利用转化的方法让学生理解三角形的面积。
3、充分发挥小组合作的力量,将新知识让小组同学在交流探索中转化成自己的知识。通过小组的合作、交流,可以提高学生的数学思维能力,学生的情感和态度也可以得到发展。
4、让学生在探索知识的过程中,注重思维方法的养成,归纳出三角形面积公式,课堂节奏有紧有松,收放适当,达到了很好的教学效果。
5、因材施教,因人施导,注重学法指导,突出培养能力,突出启发创新思维,学生参与面大,积极性高,学习兴趣浓厚,教学紧扣目标,教学效率高。
不足:
5.三角形面积计算说课稿 篇五
帮助学生认识到为什么要“÷2”
说教学过程及相关意图:
一、复习
我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。
老师随学生回答板书:S长=ab,S正=a,S平=ah
能说说这些公式是分别用什么方法得到的呢?
[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。
二、探索三角形面积计算的公式
1、学习例4
将刚才复习中的三种图形,利用课件的演示,添上一条对角线。
问:现在我们看到的图形是什么?(三角形)
课件继续演示:添上方格图,并把其中一个三角形变色。
S 表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?
板书:S=ah÷2
3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:
这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)
4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。
师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?
[例5的教学,是本课的重点。书上的例题,我着重让学生通过分组探究的方式去学习,在交流中把应掌握的知识有层次地一一呈现。这些知识是本节课的关键。
估计到学生在操作的时候,有可能会出现只用一个三角形拼平行四边形的方法,这种方法与例题方法以及与“你知道吗?”的对比,可以从多角度来强化“÷2”的理由,我觉得花一些时间还是有必要的。而且这样的做法,也是基于学生的学习实际和对传统的数学文化了解。]
三、计算公式的应用
1、完成“练一练”
电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。
继续完成p.17想想做做的第1题。
2、完成“试一试”,算出这块三角形交通标志牌的面积。
在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。
学生练习,完成想想做做的第2题
指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的.问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。
一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。
3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?
比如:
汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。
[练习的设计主要分这几个环节:第一个环节重点是放在“÷2”和“×2”的区别上。主要是因为从以往学生练习来看,这是错误中的主流,一定要引起学生的重视。
第二个环节的练习,主要是让学生能正确地应用三角形面积公式计算各个三角形的面积。在应用的过程中,规范学生的书写,培养良好的作业习惯。
第三个环节是我自己修改的练习,数据具有更多的可能性,有一定的开放性,主要还是激发学生的探索欲望。通过这个开放练习,使学生又一次地认识到三角形与对应的平行四边形面积之间的联系。]
四、全课总结:
这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?
[整节课的设计,我比较注重让学生用“旧”的方法来获取“新”的知识——用拼的方法得到平行四边形的面积,进而得到三角形的面积计算公式。这种方法同时也是后面学习梯形面积计算的方法,所以说这样的教学是为学生的后续学习做了充分的准备,对学生学习能力的获得是有帮助的。
6.三角形螺纹计算 篇六
螺纹测量方法有多种主要有综合法和单项量法两种。综合量法用于批量生产, 如用螺纹极限量规来控制螺纹的外形尺寸;单项量法则用于废品原因分析和精密螺纹检验。
单项量法主要测量螺纹中径。螺纹中径的检验方法常用“三针量法”, 它主要用于测量精密螺纹 (如丝杠、螺纹塞规) 的中径 (d2) , 它用三根直径相等的精密量针放在螺纹槽中, 然后用光学机械测量仪 (机械测微仪、光量计测量仪等) 量出尺寸M (测量尺寸) 如图, 然后根据被测螺纹已知的螺距P牙型半角及量针直径d0.可计算出螺纹半径的实际尺寸由图可知d2=M-2 (A-B) -d0
将A及B值代入上式, 则得:
对于梯形螺纹 (α=30°)
对于公制螺纹 (α=60°)
将公式 (1-1) 采用的量针直径d0、螺距P以及牙型半角值分别按理论值代入, 但实际这三个要素的值都是有误差的, 因此计算结果不够准确, 将公式 (1-1) 对α求偏导数即可求出由牙型半角误差所引起的测量误差 (△d2)
根据高等数学有关知识可求得
假设上式 (1-4) 为零, 即能得到牙型半角误差对中径d2测量结果所影响的条件。
测量时应尽量采用最佳钢针, 最佳钢针与螺纹斜边的接触点恰好在中径上, 三针量法的最大优点是测量精度较高, 螺纹量规的中径一般都采用这种方法测量。这种测量方法适用于单件, 小批量生产。
由于三针测量值M没有一定的控制范围, 只能在已知的牙型半角螺距 (P) M (测量值) 后, 按 (1-2) 或 (1-3) 式计算出中径 (d2) , 看计算出来的 (d2) 值是否符合图纸的要求。所以这样对操作者操作起来不便于控制, 计算起来比较麻烦 (因为假设经实际测量, 计算后已判断中径d2不符合图纸要求时, 要经过修磨后, 重新测量牙型半角、螺距P、三针测量值M, 然后再计算d2的值, 如此反复多次, 直到计算的d2值达到图纸要求为止.) 另外又费时费力。
现在的一般看法是:三针测量值M只是为了得到实际测量的中径 (d2) , 而并没有考虑用它来控制d2、和P。所以我们来针对这个问题进行分析讨论, 三针测量值M它的范围和所能控制的范围。只要三针测量值M的实际测量值在我们所讨论的范围内, 便可认为d2、和P均合格, 实际上只要控制三针测量值M的实测值便可间接保证d2、和P合格, 让计算次数大大减少, 只需计算一次即可, 以后无论修磨多少次三针测量值M的实际值都应控制在计算的范围内。
通过《金属机械加工工艺人员手册》可查得三针测量值M的一般式为:
d0-量针直径
2 测量尺寸的简化与分析
由 (1-8) 式可知, 、P、d2的变化对M均有影响。当、P、d2的值确定以后三针测量值M也就自然确定了。当、P和d2有误差时, 三针测量M值肯定也是有误差的。根据上述存在的情况, 将三针测量值M的误差看成为、P、d2的合成误差是可行的。如果按、P、d2的允许误差合成为三针测量值M的允许误差。而以三针测量值M在允许范围内的值来控制、P和d2的允许误差是完全可行的。又根据高等数学知识对 (1-8) 式求偏导数即得, 下面分析极限情况:
1) 当d0>d0最佳时
见 (1-5) 式
2) 当d0
见 (1-5) 式
由以上分析的两种极限情况可以看出只要按照图纸的要求计算出Mmax、Mmin范围内便能保证d2、、P合格。
综上述分析计算过程, 应用三针量法简化后的计算公式比较简单方便虽然不能直接得出d2的实际尺寸, 但可以用它来判断d2是否合格, 是行之有效的, 有便于掌握和测量精度高等优点。
摘要:本文重点介绍“三针量法”的计算方法以及三针量法的应用与简化计算方法并做了详细分析其可行性。希望再实践生产中能给广大读者带了一定帮助。
关键词:螺纹测量,三针量法,螺纹中径,牙型半角
参考文献
[1]徐孝恩.螺纹测量.北京:机械工业出版社, 1986.
[2]赵如福.金属机械加工工艺人员手册.上海科技出版社, 2006.
[3]闻邦椿.机械设计手册.5版, 机械工业出版社, 2010.
【三角形螺纹计算】推荐阅读:
认识三角形反思09-10
《三角形内角和》10-20
全等三角形教案07-09
三角形的认识教案07-20
认识三角形听课反思08-16
小班教案《认识三角形》08-20
认识三角形小测试11-15
相似三角形判定的反思07-11
相似三角形2018中考题08-27
全等三角形专题课件09-09