完全平方公式课堂实录(共12篇)
1.完全平方公式课堂实录 篇一
课题:乘法公式(完全平方公式2)一.测验讲解
利用乘法公式计算: 1.99
2.(2x5)2(2x1)(12x)
二.教学目标:
1.掌握完全平方公式的推广,学会利用换元思想进行转化; 2.掌握添括号和去括号的法则,并会灵活运用; 3.能根据题目特点选择适当的公式进行计算。
三.指导自学:
问题1:计算(abc)2;
问题2:将(abc)2中的ab看作一个整体,你会计算吗?结果有规律吗? 问题3:你能利用前面所学的知识灵活计算(x2y3)(x2y3)吗?
四.教师讲解:
归纳公式:(abc)2等于每一项的平方和加上每两项乘积的2倍。例.1.(x2yz)2.(xy1)(xy1)3.(3mnp)(3mnp)
五.当堂训练:
1.(3x5y1)(x2y)(x2y)2.(x2y3z)(x2y3z)六.落实检测:
计算:(a2b3)(a2b3)(2ab1)
小结:1.熟练掌握乘法公式及其推广; 2.注意运算中的符号问题。
布置作业
2222
2.完全平方公式课堂实录 篇二
二、教学目标:学生通过求面积的几何题了解完全平方公式的几何意义, 经历探索完全平方公式 (a+b) 2=a2+2ab+b2的过程, 并能运用公式进行简单的计算.通过自主探究, 合作交流, 让学生更好地理解公式内容, 并为公式的应用打下坚实的基础.
三、教学重点:完全平方公式的准确应用, 与平方差公式的区别.
四、教学难点:掌握公式中字母表达式的意义;灵活运用公式进行计算.
五、教学流程:问题情景—探究交流—得出结论—强化训练.
六、教学媒体:多媒体课件.
七、教学和活动过程:
(一) 课前复习, 巩固旧知 (略)
(二) 数形结合, 分析问题
1.情境导入
去年, 一位农民在一次“科技下乡活动中得到启示, 将一块边长为a米的正方形农田改成试验田, 一年来, 收益很大, 于是他想把原来的试验田边长增加b米, 形成四块试验田, 种植不同的新品种.
2.思考探索, 引入新知
师:你能用不同的方法表示新试验田的面积吗?
生:直接求法: (a+b) 2;间接求法:a2+2ab+b2.
设计意图:让学生感受到完全平方公式的几何意义.
由于所求面积相等, 因此得出两数和的完全平方公式: (a+b) 2=a2+2ab+b2;
语言叙述:两数和的平方, 等于它们平方的和, 加上它们乘积的2 倍。
思考:小明写出了如下 (a-b) 2=[a+ (-b) ]2的算式:他是怎么想的? (由猜想引出另一种完全平方公式.)
生:有理数减法的法则———减去一个数等于加上这个数的相反数。
两数差的完全平方公式: (a-b) 2=a2-2ab+b2.
语言叙述:两数差的平方, 等于它们平方的和减去它们乘积的2 倍.
3. 总结归纳
完全平方公式: (a+b) 2=a2+2ab+b2; (a-b) 2=a2-2ab+b2.
(注:公式中的字母a、b可以表示数、单项式和多项式.)
两数和 (或差) 的平方, 等于它们的平方和, 加 (或减) 它们乘积的2 倍.
为了让学生对所学知识熟练掌握, 教师根据自己的理解, 编制了一段合辙押韵的顺口溜, 学生既感到新奇, 又朗朗上口, 激发了学生的兴趣, 提高了学习效率.
记忆口诀:首平方、尾平方, 积的2 倍放中央, 中间符号同前方.
(三) 例题讲解
例1:运用完全平方公式计算: (1) (4m+n) 2; (2) (y- (1/2) ) 2.
练习巩固, 应用新知:
1.下列各式的计算错误在哪里?应该怎样改正?
例2:运用完全平方公式计算: (1) 1012; (2) 992 (利用公式可以简便运算)
练习巩固, 应用新知: (1) 1982; (2) 60.22.
(四) 拓展提升
3. 若使x2-6x+m成为形如 (x-a) 2的完全平方形式, 则m, a的值 () .
A. m=9, a=9B. m=9, a=3
C. m=3, a=3D. m=-3, a=-2
4. 已知a+b=5, ab=6, 求a2+3ab+b2的值.若求a2+ab+b2的值呢?
本环节采用竞技模式, 每组选出做题最快的同学当“题长”, 由他给本组其他同学进行试题的批改, 对速度快的个人和小组分别进行奖励, 在这一环节中, 学生解题热情高涨, 课堂气氛活跃.测试后由学生进行部分题目的讲解, 对于本节课表现积极的学生给予表扬, 鼓励该学生的同时, 促进其他学生一起进步.
(五) 课堂小结
问:通过本节课的学习, 你有什么收获和感悟?
(六) 作业
3.完全平方公式课堂实录 篇三
平方差公式首先站起来说道:“我的形象好呀,你看,我的左边是两个二项式的积,在这两个二项式中有一项完全相同,另一项互为相反数,右边是完全相同项的平方减去符号相反项的平方.”
完全平方公式毫不示弱:“我的形象不比你逊色,我的左边是一个二项式的完全平方,右边是一个二次三项式,其中(首末)两项是公式左边二项式中的每一项的平方,中间一项是二项式中两项乘积的2倍.”
乘法公式大伯说:“别吵!别吵!光形象好还不够,要有真本事才行!”
平方差公式说:“这个我可不含糊,只要符合‘两数和与两数差相乘的形式,就可用我平方差公式解决.如计算(xy+1)(xy-1)直接运用平方差公式,得(xy+1)(xy-1)=(xy)2-12=x2y2-1.”
完全平方公式说:“只要符合‘两数和(或差)的平方的形式,就可用我完全平方公式搞定,如计算(4x-3y)2,直接运用完全平方公式,得(4x-3y)2=(4x)2-2·4x·3y+(3y)2=16x2-24xy+9y2.”
……
平方差公式与完全平方公式争论不休.
乘法公式大伯:“别争了,其实你们本是一家人,都可由公式(x+p)(x+q)=x2+(p+q)x+pq(*)得到.在公式(*)中,若令p=y,q=-y,就得到平方差公式(x+y)(x-y)=x2-y2;在公式(*)中,若令p=q=y,就得到两数和的平方公式(x+y)2=2x+2xy+y2,若令p=q=-y,就得到两数差的平方公式(x-y)2=x2-2xy+y2.
有些问题单独用你们两个公式都可以解决,如x+y=5,且x-y=1,则xy=_____.
解法1:由完全平方公式,得(x+y)2=x2+2xy+y2,(x-y)2=x2-2xy+y2.
∴(x+y)2-(x-y)2=4xy,即52-12=4xy.∴xy=6.
解法2:在平方差公式(a+b)(a-b)=a2-b2中,令a=x+y,b=x-y,得2x·2y=(x+y)2-(x-y)2,即4xy=52-12.∴xy=6.
有些问题需要你们两个公式合作才能解决,如计算[(x+2)(x-2)]2,先由平方差公式,得 (x2-22)2=(x2-4)2.再由完全平方公式,得(x2)2-2·x2·4+42=x4-82+16.
再如计算:(2x+y+z)(2x-y-z),先由平方差公式,得[(2x+(y+z)][(2x)-(y+z)]=(2x)2-(y+z)2.再由完全平方公式,得4x2-(y2+2yz+z2)=4x2-y2-2yz-z2.
乘法公式大伯接着说道:“你们两个都有各自的特点,是乘法公式的重要组成部分,你们应该取长补短,齐心协力为数学王国作贡献,我劝你们不要再争什么‘老大了!”
4.完全平方公式 篇四
学生活动:学生分组讨论,选代表解答.
练习三
(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.
甲的计算过程是:原式
乙的计算过程是:原式
丙的计算过程是:原式
丁的计算过程是:原式
(2)想一想, 与 相等吗?为什么?
与 相等吗?为什么?
学生活动:观察、思考后,回答问题.
【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.
练习四
运用乘法公式计算:
(l) (2)
(3) (4)
学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.
【教法说明】 这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.
(四)总结、扩展
这节课我们学习了乘法公式中的完全平方公式.
引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.
八、布置作业
P133 1,2.(3)(4).
参考答案
5.《完全平方公式》教学反思 篇五
(1)切勿把此公式与平方差公式混淆,而随意写。
(2)切勿把“乘积项”2ab中的2丢掉。
(3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。
今后在教学中,要注意以下几点:
1、让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征。
6.《完全平方公式》教学反思 篇六
这节课我做的比较好的方面:
经历探索完全平方公式的过程,通过拼图游戏,从形到数又从数到形,让学生了解公式的几何背景,学生体会了数形结合的数学思想,并知道猜想的结论必须加以验证,本节授课思维流畅,知识发生发展过程过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极,气氛活跃,教学效果较好。
这节课采用小组自主探究,小组合作的学习方式,紧张而愉快,学生及相互交流的同时又相互合作,极大的调动了学生学习的热情同时我也比较关注那些积极动脑,热情参与的同学,及时的给予表扬和鼓励,进而促进课堂教学的有效性。
从几何意义出发,激发学生的图形观,利用拼图游戏,使学生在动手的过程中发现结论,并通过小组合作,探究归纳公式,从而突出以学生为主体的的探究性学习原则。
7.《完全平方公式》教学设计 篇七
根据公式的特征及问题的特征选择适当的公式计算.教学过程
一、议一议
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答
(1)(a+b)
(2)a +b
(3)因为(a+b)= a +2ab+b ,所以(a+b)-(a +b)=a +2ab+b-a-b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.二、做一做
例1.利用完全平方式计算1.102,2.197
师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述,教师板书.解:1.102 =(100+2)2.197 =(200-3)=100 +2 lOO 2+2,=200-2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809
例2.计算:1.(x-3)-x 2.(2a+b-)(2a-b+)
师生共同分析:1中(x-3)可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1.(x-3)-x = x +6x+9-x =6x+9
师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2.(2a+b-)(2a-b+)=[2a+(b-)][2a-(b-)]=(2a)-(b-)=4a-(b-3b+)=4a-b +3b-
三、试一试计算:
1.(a+b+c)
2.(a+b)
师生共同分析:
对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c)=[a+(b+c)]
对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.解:1.(a+b+c)=[a+(b+c)] =(a+b)+2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
P38
1五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b)= a ±b 的错误,或(a±b)= a ±ab+b(漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.六、作业
8.第二册完全平方公式 篇八
完全平方公式(教案) 贾村中学 聂盼山
一、教学目标
(1) (1) 知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2) (2) 过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点;公式结构及运用。
三、教学难点;公式中字母AB的含义理解与公式正确运用。
四、教具;自制长方形、正方形卡片
五、教学过程;
教师活动
学生活动
1、 1、 创设情景,提出问题,引入课题
(1) (1) 想一想
一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1) (1) 第一天,a个男孩去看老人,老人共给他们几块糖?
(2) (2) 第二天,个女孩子去看望老人,老人共给他们多少块糖?
(3) (3) 第三天,( )个孩子一起去看望老人,老人共给他们多少块糖?
(4) (4) 第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)
1、 1、 学生四人一组讨论。
填空:
(1)第一天给孩子 块糖。
(2)第二天给孩子 块糖。
(3)第三天给孩子 块糖。
男孩子第三天多得 块糖
女孩第三天多得 块糖。
教师活动
学生活动
(2) (2) 做一做、请同学拼图
教师巡视指导学生拼图
2、 2、 教师提问:
(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?
3、 3、 想一想
(1)(a +b )用多项式乘法法则说明
(2)( a -b )
4、请同学们自己叙述上面的等式
5、说一说,a b能表示什么?
(□+○) □+2□○+○
6、算一算
(1)(2X-3)(2)(4X+5Y)
请同学们分清a b
7、练一练
(1)(2X-3Y) (2)(2XY-3X)
8、试一试(a+b+c)
作业:P135 1、2
2、学生观察思考
(1) (1) 大正方形边长?
(2) (2) 四块卡片的`面积分别是
(3) (3) 大正方形的总面积是多少?
3、(1)学生运用多项式乘法法则推导
(a+b)=a+2ab+b说出每一步运算理由
(2)学生自己探究交流
4、学生用语言叙述公式
5、师生共同a、b对应项 教师书写
6、学生独立完成练一练展示结果
7、学生四人一组讨论交流
9.完全平方公式(一)教学设计 篇九
8.完全平方公式
(一)一、学生起点分析
学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
二、教学任务分析
教科书在学生已经学习了整式的加法、乘法,以及平方差公式的基础上,提出了本课的具体学习任务:经历探索完全平方公式的过程,并能运用公式进行简单的计算。但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。为此,本节课的教学目标是:
1.经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2.体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3.了解完全平方公式的几何背景,培养学生的数形结合意识。
4.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
三、教学设计分析
本节课设计了七个教学环节:回顾与思考、情境引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结、布置作业。
第一环节 回顾与思考
活动内容:复习已学过的平方差公式
221.平方差公式:(a+b)(a-b)=a-b;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。右边是两数的平方差。
2.应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小 1 组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力。而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要。
实际教学效果:在复习过程中,学生能够顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的相互补充,绝大多数学生也得以掌握。在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的类比学习奠定了基础。
第二环节 情境引入
活动内容:出示幻灯片,提出问题。
一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
活动目的:数学源自于生活,通过生活当中的一个实际问题,引入本节课的学习。从而在学生运用旧知计算和比较实验田的面积当中引出完全平方公式。由于实验田的总面积有多种表示方式,通过对比这些表示方式可以使学生对于公式有一个直观的认识。同时在古代人们也是通过类似的图形认识了这个公式。在列代数式解决问题的过程当中,通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发。
实际教学效果:问题提出后,学生能够主动地去寻找解决问题的方法。同时问题要求用不同的形式来表示总面积,这就要求学生从不同的角度来进行考虑,从而对于学生的思维提出了挑战。不过由于前面列代数式一部分内容的学习,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识。从而在学生的自主探索过程中引出了完全平方公式,使学生有了一个直观认识。在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽。
第三环节 初识完全平方公式
活动内容:1.通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a-b)2=a2-2ab+b2.2.引导学生利用几何图形来验证两数差的完全平方公式。
3.分析完全平方公式的结构特点,并用语言来描述完全平方公式。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
活动目的:第一个活动是让学生在上面讨论的基础上,从代数运算的角度运用多项式的乘法法则,推导出两数和的完全平方公式,并且进一步推导出两数差的完全平方公式。在教学中学生有条理的思考和语言表达能力得以培养。
第二个活动使学生再次从几何的角度来验证两数差的完全平方公式。从而学生经历了几何解释到代数运算,再到几何解释的过程,学生的数形结合意识得以培养,并且从不同的角度推导出了公式,并且加以巩固。
第三个活动在前面的基础上,加以总结,使得学生从形式上初步地认识了完全平方公式。实际教学效果:此环节的设计符合学生的认知水平和认知过程。在第一个活动的教学中 2 应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力。在第二个活动中既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握。通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能力。
第四环节 再识完全平方公式
活动内容: 例1 用完全平方公式计算:
(1)(2x−3)2 ;
(2)(4x+5y)2;
(3)(mn−a)2 2.总结口诀:首平方,尾平方,两倍乘积放中央。3.巩固练习。(1)计算:
11(2y)
2;(2xyx)2
;(n+1)2-n2
;(4x+0.5)2
;(2x2-3y2)2 25(2)纠错练习:指出下列各式中的错误,并加以改正:
(1)(2a−1)2=2a2−2a+1;
(2)(2a+1)2=4a2 +1;
(3)(a−1)2=a2−2a−1.活动目的:应用完全平方公式进行简单的计算。同时例1三个题目的设计上有一定的梯度,从而总结出进行简单计算的一般口诀,并加以巩固落实。
实际教学效果:对照公式,进行独立的简单计算,体会公式在解题中的应用,进一步熟悉公式。并通过小组交流,自我检验,巩固反馈。考察个人的实际运用能力,并及时查漏补缺。在此基础上由教师总结出口诀,帮助学生进一步认识完全平方公式,并加以巩固练习。
第五环节 又识完全平方公式
活动内容:1.例2 利用完全平方公式计算:(1)(-1-2x);(2)(-2x+1)
2.进一步完善口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。活动目的:例2是对课本内容的补充,从而使得学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题。并对上面总结的口诀进行进一步的完善。
实际教学效果:首先放手让学生独立来解决第一个题目,学生出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a与b,从而运用不同的方法和思路,解决问题。在活动中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发,在此基础上教师把上面总结的口诀再次完善,帮助学生突破难点,教师的主导作用得以体现。
第六环节 课堂小结
活动内容:1.完全平方公式和平方差公式不同:
形式不同.
222 结果不同:完全平方公式的结果是三项,即(a b)=a 2ab+b;
平方差公式的结果是两项,即(a+b)(a−b)=a−b.2.解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、3 不弄错符号、2ab时不少乘2。
3.口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
实际教学效果:学生畅所欲言自己的实际收获,达到了本节课的教学目标。
第七环节 布置作业
1.基础训练:教材习题1.13。
222.拓展练习:(a+b)与(a-b)有怎样的联系?能否用一个等式来表示两者之间的
关系,并尝试用图形来验证你的结论?
四、教学设计反思
1.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领。因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。对于这一点,教师一定要转变观念。
2.在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有些学生则既观察入微,又统揽全局,表现出了较强的观察力。教师要善于抓住这个契机,适当对学生进行学法指导,培养他们“既见树木,又见森林”的优良观察品质。
3.对于公式使用的条件既要把握好“度”,又要把握好“方向”。对于公式中的字母取值范围,不必过分强调(实际上,这个范围限定的太小了);而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。
10.完全平方公式说课课件 篇十
一、教材结构与内容简析
本节内容在全书及章节的地位:《完全平方公式》是北师大版数学七年级下册第一章第八节的内容。本课为第一课时。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。
二、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与技能目标:1.完全平方公式的推导及其应用。 2.完全平方公式的几何证明。
过程与方法目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力。
情感与态度目标:对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。
三、教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点:完全平方公式的推导过程;结构特点与公式的应用
难点:完全平方公式结构特点及其应用
教法和学法
(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。
(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
11.完全平方公式教学设计及反思 篇十一
一、学情分析:
1、学生已掌握的基本知识和技能:同类项的定义、合并同类项法则、多项式乘以多项式法则。
2、学生对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
二、学习目标:
1、会推导完全平方公式,并能运用公式进行简单的计算。
2、经历探索完全平方公式的推导过程,进一步发展符号感和推力能力,体会“特殊—一般—特殊”的认识规律。
三、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
四、教学和活动过程: 〈一〉、提出问题,导入新课 [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习兴趣和学习积极性)(m+n)=____________,(m-n)=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:
()①(a-2b)2= a2-2ab+b2()②(2m+n)2= 2m2+4mn+n2()③(-n-3m)2= n2-6mn+9m2()④(5a+0.2b)2= 25a2+5ab+0.4b2()⑤(5a-0.2b)2= 5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)2
3、你能行
①(x+y)2 =______________;②(-y-x)2 =_______________;③(2x+3)2 =_____________;④(3a-2)2 =_______________;⑤(2x+3y)2 =____________;⑥(4x-5y)2 =______________;⑦(0.5m+n)2 =___________;⑧(a-0.6b)2 =_____________.〈四〉、学生小结
你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。(2)两个平方项符号永远为正。22(3)中间项是等号左边两项乘积的2倍。(4)中间项的符号由等号左边两项的符号决定。〈五〉、胜利属于你
(1)(-3a+2b)2=________________________________(2)(-7-2m)2 =__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________
〈六〉、通过本节课的学习,你有什么收获和感悟?
学生谈收获和感悟
老师总结:本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉布置作业
五、课后反思:
本节课虽然算不上是难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,提高数学能力。
1、力。兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。让学生能在“玩中学、趣中练”,在教学中穿插一些游戏,通过游戏把枯燥的练习贯穿起来,犹如苦口的良药裹上了一层糖衣,增加了趣味性。孔子说:知之者不如好之者,好之者不如乐之者。学生们学习乐在其中,才能培养出学生不断探究的欲望。
2、。“未来的文盲不再是不识字的人,而是没有学会怎样学习的人”,这充分说明了学习方法的重要性,它是获取知识的金钥匙。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。因此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会学”。首先教会学生 “读”数学书。培养学生对数学材料的直观判断力,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。其次鼓励学生敢“议”。在教学中鼓励学生大胆发言,对于那些容易混淆的概念,没有把握的结论、疑问,积极引导学生议,真理是愈辩愈明,疑点愈理愈清。再者引导学生勤“思”。思考非常重要,它是学生对问题认识的深化和提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系等等。
3、鼓励质疑,让学生学有勇气、学贵质疑。教师不但应善于设疑答疑,更应善于鼓励学生质疑,提出一个问题往往比解决一个问题更为重要,有疑问才能促进学生去探究。系,激发质疑兴趣。心理学告诉我们,自由能使人的潜能得到最大发挥。所以,师生间应当建立一种平等、民主、亲切、和谐的关系,以保证学生智力和非智力的创造因素都处于最活跃状态。少年好奇、好问,教师应尽可能满足,应尊重和保护学生的好奇心,使学生产生成功感和自我满足感,从而引发学生在轻松愉快的氛围中敢于大胆提问。其次指导提问技巧,教给质疑方法。“授人以鱼,教人以渔,”要使学生善问,必须“教以渔”。课堂上,有时学生提问抓不住要领,有时问题简单、没有思维价值,这就要求教师通过适当的点拨归纳,指导学生提问的方向和思考问题的途径,即教给学生正确的质疑方法,这样才能使学生准确的抓住问题的实质,进而扎实的掌握知识,探究能力得到了最大限度的培养和训练。4学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造性地学习。要善于引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探究。,在培养学生的同时,我们也要不断探索,寻求更好的培养学生探究能力的方法,教学的过程实际是师生共同发展、共同提高的过程。完全平方公式(1)
一、内容简介
本节课的主题:通过一系列的探究活动,引导)学生从计算结果中总结出完全平方公式的两种形式。
二、学生分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则的正确应用。
③多项式乘以多项式法则。
2、学生对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
3、了解(a+b)²=a²+2ab+b²的几何背景。
(二)知识与技能:
经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(三)数学思考:能收集、选择、处理数学信息,并做出合理的推断
或大胆的猜测;能用实例对一些数学猜想做出检验,从而增加猜想的可信程度或推翻猜想;体会证明的必要性,发展初步的演绎推理能力。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;体验数、符号和图形是有效的描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨(http://down.wyrj.com)性以及结论的确定性;在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。
四、教学方式:
采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。充分利用动手实践,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。
3、教学评价方式
五、教学媒体:投影仪
六、教学和活动过程:
1、整个教学过程叙述:
本节课主要为数学教学活动,教材“完全平方公式”内容共含两课时。本节是其中的第一课时,需40分钟完成。
2、具体教学过程设计如下:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.4、完全平方公式的几何背景:
用不同的形式表示图形的总面积并进行比较,你发现了什么? 运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:
()①(a-2b)2= a2-2ab+b2
()②(2m+n)2= 2m2+4mn+n2
()③(-n-3m)2= n2-6mn+9m2
()④(5a+0.2b)2= 25a2+5ab+0.4b2
()⑤(5a-0.2b)2= 5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小试牛刀
①(x+y)2 =______________;②(-y-x)2 =_______________;
③(2x+3)2 =_____________;④(3a-2)2 =_______________;
⑤(2x+3y)2 =____________;⑥(4x-5y)2 =______________;
⑦(0.5m+n)2 =___________;⑧(a-0.6b)2 =_____________.〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2 =__________________________________(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习
P36 习题
七、课后反思
12.完全平方公式(二)教学反思 篇十二
观山湖区第六中学
余大华
本次课我执教的是北师大版七年级数学下册《完全平方公式》中的内容,前一节已学习了完全平方公式,这一课主要研究完全平方公式的应用。教学关键是引导学生正确理解完全平方公式的巧妙运用,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:
本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。
同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
本节课的缺憾是在新知运用这一环节中,教师根据学生出题情况,抽取两题重点讲解;学生出的题不全面教师给与补充,然后以小组为单位来完成。而小组展示这一环节没有按时完成。上完课后,我不知道没有按教案所设计的完成的真正原因。课后,我不仅自己认真的看了录像,还和学生们又共同看了一遍。原因之一:用文字语言叙述完全平方公式用了8分钟的时间。本节课我先后三次让学生用文字语言叙述完全平方公式,即两数和的完全平方公式、两数差的完全平方公式、两个公式和在一起叙述。参与的学生好、中、差均有,并且达到10人次。原因之二:学生自己编题用去3分钟时间。而我在另一个班上课时,新知运用这一环节中题目完全是由教师给出的。
如何用数学的语言既精炼又准确地来描述数学内容,这件事在我以前的教学中做得还不够扎实。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。动手实践、自主探索与合作交流是学生学习数学的重要方式!这些都需要学生具备一定的自我表达能力作为前提。指导学生怎么说,先说什么,后说什么,怎样说的既精炼又准确,我将不断探所。
在今后的教学中应具体注意从以下几个方面改进:
1.在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆。
2.必须强调学生时刻把握公式的特征及用途:
⑴特征:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是二项式中每一项的平方和,另一项是二项式中项的乘积的2倍或其相反式。
【完全平方公式课堂实录】推荐阅读:
《逆用平方差公式进行因式分解》教学反思06-27
《算术平方根》教案07-05
平方根学案08-27
初中数学平方根课件09-26
小学五年级《公顷与平方千米》教学反思09-05
篮球联赛完全版09-25
工程材料复习完全版06-22
创业完全手册打印版07-19
打印机术语完全手册06-29