分数除法应用题教学设计

2024-11-09

分数除法应用题教学设计(共8篇)

1.分数除法应用题教学设计 篇一

课题:分数除法应用题

教学内容:

教科书第34~35页复习、例l、例2及做一做的习题,练习九的第1~5题.

教学目标:1.使学生学会用方程解答已知一个数的几分之见是多少,求这个数的应用题.

2.通过分析除法应用题中的数量关系,培养学生分析问题的能力.

3.探究乘、除法应用题间的内在联系,激发学生学习的兴趣.

教学准备:多媒体电脑、PPT课件、直尺,学生每人准备小尺. 教学重难点:分析分数应用题中的数量关系,学会用方程解答这类问题。教学流程:

一、复习引入

1.下面各题中应该把哪个量看作单位“1”?

(1)棉田的面积占全村耕地面积的(2)小军的体重是爸爸体重的·

·

(3)故事书的本数占图书总数的·

(4)汽车的速度相当于飞机速度的·

2.出示课本复习题,要求学生先独立解答,完成后同桌互相说说,回答下面问题,再集体订正.

(1)把谁看作单位“1”?

(2)单位“1”的量知道吗?

(3)已知单位“1”,怎样求它的是多少呢?

(4)为什么用乘法计算?

3揭示课题.

同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?

今天这节课我们就一起来研究(板书课题:分数除法应用题).

二、探究新知

1.教学例l.

(1)读题并弄清已知条件和问题.

(2)画示意图并由图分析数量关系。

①是哪个数量的?以哪个数量为标准把它看作单位“l”?

②单位“l”的量是已知的还是未知的? ③单位“1”的是谁?在图中怎样表示?逐步完成线段图.

④谁能根据题意和一个数乘分数的意义找出等量关系式?

板书等量关系式:体重×

=体内水分的重量

⑤怎样解答呢?

(3)解答过程,引导学生小组讨论后自己列方程解答,一生板演,其余学生在练习本上做,教师巡视指导,集体订正并口述检验的方法。

(4)比较复习题与例1,两题在结构和解法上有什么相同与不同的地方?学生分小组讨论,反馈后归纳小结:

结构上:相同点:叙述的事情和数量关系都没变.

不同点:已知条件和问题互相交换.

解法上:相同点:都要先确定单位“1”的量.

不同点:复习题中单位“1”是已知的,用乘法计算.

例1中单位“l”是未知的,可用方程解答.

(5)教师强调.解答分数应用题要认真审题,确定好单位“1”,然后分析它是已知的还是未知的从而确定用什么方法解答。

(6)练习.第34页“做一做”,学生自己解答,订正时请2~3名学生说说解题思路.

2.教学例2:

一条裤子的价格是75元,是一件上衣的,一件上衣多少钱?

(1)启发学生自己画线段图.

①题中有几个量?根据题意,如果用线段图表示这两个量之间的关系,需要几条线段?

②先画表示什么价格的线段?为什么?

③表示裤子价格的线段应画多长?根据是什么?

④根据老师的提示共同逐步完成线段图.

(2)学生分小组自己分析数量关系.

(3)学生独立列方程解答,教师巡视,注意对学困生进行指导.

(4)集体订正,指名说说解题思路.

(5)练习第35页“做一做”,先画线段图,后独立解答,订正时说说数量关系式. 3.阅读课本第34~35页的内容,着重看书中想的部分.

教师强调:

例1中的表示的是部分与总体的关系,只要画一条线段即可。

例2中的表示一种量是另一种量的,要画两条线段。

三、巩固练习

1.练习九的第1题.先让学生自己读题,分小组讨论,说说把谁看作单位“1”,数量之间的相等关系怎样,再列式解答,集体订正.

2.练习九的第3题.先让学生独立解答,再把思路说给同桌听,集体订正时,指名说出自己的解题思路.

3.独立作业,练习九的第八4.5题.

四、全课小结

这节课我们研究了什么问题?解答分数应用题的关键是什么? 单位“1”已知用什么方法解答?未知呢?

五、作业

六、板书设计:

2.分数除法应用题教学设计 篇二

一、联系整数应用题进行教学

分数应用题与整数应用题之间的共性体现在它们都可根据相同的数量关系来解题。而学生对整数应用题的数量关系比较熟悉, 教学中教师要尽量帮助学生找出数量关系, 通过数量关系来解题。

如:“一辆汽车每分钟行4/5千米, 20分钟行多少千米?”

让学生找出题中的数量关系, 学生很熟悉整数应用题中的“路程=速度×时间”, 从这点上说, 它和整数应用题是一致的。

二、理清分数乘除法三类应用题的关系

这三类基本应用题是: (1) 求一个数是另一个数的几分之几。 (2) 求一个数的几分之几是多少。 (3) 已知一个数的几分之几是多少, 求这个数。其解题依据是相通的。

如:100米的3/4是多少?可根据“求一个数的几分之几用乘法”来解, 列式为, 可以转化为第二类应用题:75米是100米的几分之几?解法为。还可转化为第三类应用题:已知一条路的3/4是75米, 这条路长多少米?解法为=。由上可见:若把100米设为A, 75米设为B, 3/4设为C, 根据原题意可以得出A×C=B, 再根据乘法各部分之间的关系又可得出: (1) C=B÷A。 (2) A=B÷C, 从而把原题转化为后两道题。

教学中, 教师可利用这三类应用题的相通点, 帮学生理解题意, 并进行这三类应用题的对比练习, 学生深刻地了解了这三类应用题的联系之后, 教师再逐步加大练习难度。也可让学生自己编应用题并解答, 教师再从中渗透解决此类问题的思考方法, 让学生真正达到“自悟”。

三、帮助学生找准单位“1”的量

在分数乘除法应用题中, 解题的关键是找出单位“1”的量, 而单位“1”的量常存在于关键句中, 如何找出单位“1”的量呢:

1. 倍数与单位“1”结合理解。

(1) 鸡有50只, 鸭是鸡的5倍, 鸭有几只? (2) 鸡有50只, 鸭是鸡的1/5, 鸭有几只?这两道题的解题思路是一样的, 其实找出一倍数与找出单位“1”的量的方法是相同的, 也就是它们的意义是相同的。即:一倍数×倍数=几倍数与单位“1”的量×相对应的分率=比较量, 这里的一倍数就是分数乘除法中单位“1”的量, 倍数就是分数乘除法中相对应的分率, 几倍数就是分数乘除法中的比较量, 这样学生在学习中只要仿照以前找准一倍数的方法来找单位“1”的量就不难解决了。

2. 找准关键句, 理清解题思路。

在分数乘除法应用题中, 都有关键句。在这些关键句中常出现分数, 根据分数的概念, 找出分数中分母是把“什么”平均几份的, 而这里的“什么”即为单位“1”的量。如“一堆货物的1/4”一句中, 引导学生说出“1/4”这个分数中分母“4”是把什么平均分成4份。通过思考, 学生看出是把一堆货物平均分成4份, 那么“一堆货物”即为单位“1”的量;再如:“一年级人数是二年级人数的2/3”一句中, 抓住“是”这个字, 可以告诉学生“是”在这里和“等于”的意思是一样的, 这样学生就容易看出这里是把二年级平均分成3份, 那么“二年级”就是单位“1”的量。

一些题目的关键句叙述不完整, 如:五 (2) 班有45人, 女生占2/9, 女生多少人?关键句“女生占2/9”中只有一个量“女生”, 而另一个量省略了, 可引导学生联系前后句学着扩句子:“五 (2) 班有45人, 女生占全班人数的2/9, 女生多少人?”“女生占全班人数的2/9”, 即全班人数为标准量就是单位“1”的量。又如:“一种商品降价2/7”, 叙述更简单, 教师要引导学生理解句意, 让学生明确本句意为“现价比原价降低27”, 即原价为标准量。

四、用反推法帮助学生找出数量关系

反推法是从所求问题出发, 找出获得解决所求问题的充分条件的方法。利用反推法, 可以逐层找出解决问题的充分条件, 这些未知的充分条件必然与题中已知条件之间有着紧密的关系, 找出这些数量关系之后, 就能求出充分条件, 最终解决所求问题, 利用反推法解决, 环环紧扣, 思路清晰, 培养了学生的逻辑推理能力。

如:我校有女生150人, 正好占男生的5/9, 全校有多少人?

在解决此题时, 可以这样引导学生:要求“全校人数”, 我们必须先知道什么?题中男女生人数都是已知条件吗?只给出了女生人数, 那么男生人数如何去求呢?男生人数又和什么量之间有关系呢?这样可得出关系式:。据此求出男生人数, 再根据全校人数等于男生人数加上女生人数求出全校人数。解题过程包含了两个关系式: (1) 全校人数=男生人数+女生人数。 (2) 。

五、通过画线段图找出具体量的“对应分率”

新课标重视帮助学生建立几何直观: (1) 充分地发挥图形带来的好处; (2) 让孩子养成画图的好习惯; (3) 重视变换, 让图形动起来, 把握图形与图形之间的关系; (4) 在学生脑中留住这些图形。在分数乘除法应用题教学中, 更为重要。一旦用图形把一个问题描述清楚, 就有可能使这个问题变得直观、简单, 从而帮助发现、寻找解决问题的思路。还可帮助表述、记忆一些结果。画好线段图会把分数乘除法应用题中的一些具体量整合在一起, 使其对应的分率直观地呈现在学生眼前。

如:“男生是女生的2/3, 男生比女生少10人, 男生有多少人?”可先确定单位“1”的量, 画出表示女生的线段, 题中提出男生比女生少2/3, 所以应把表示女生的线段平均分成3份, 而男生的线段图应画成相等的2份, 男生比女生少的10人, 即为具体量, 那这个具体量如何在图中表示呢?画出以下线段图。

学生通过作图、观察, 得出:10人占了女生的1/3, 也就是说已知女生的1/3是10人, 求男生多少就用已知数量除以所对应的分率。这样问题就容易解决了。又如:一本书第一天看了1/4, 第二天看了这本书的1/4还多4页, 第三天看了40页, 正好看完, 这本书共多少页?

初看这道题较复杂, 如何着手呢?可引导学生画出线段图, 把这本书平均分成4份, 标出第一、二、三天看的页数, 如下图:

再引导看图, 同学不难发现 (4+40) 页所对应的分率应为, 即2/4, 也就是44页占这本书的2/4, 这样原本较复杂的应用题由于画出了线段图, 就轻松地解决了。

此外, 还可以采用比的知识解决分数应用题、利用学习单位“1”的量来解决比例尺的应用题……

总之, 教师应把调动学生的求知欲放在首位, 通过创造性地设计教学方法和过程, 使教学变得生动有趣, 学生的积极性就会被调动起来, 形成“我要学”的习惯。这样, 教学才有成效。

摘要:讲清数理, 寻求更直观的教学设计, 辅以适当的解题技巧。

3.浅析分数乘除法应用题教学 篇三

【关键词】小学数学 分数教学 乘除法 应用题

六年级数学分数乘除法的应用教学,历来就是教师难教,学生难学的一个知识点,尤其是中下等成绩的学生感到更为吃力。多年来,分数应用题的教学,大多采用依据分数乘除法的意义进行教学。多年的教学实践,在现行教材六年级分数应用题教学中有些教法设想,供改进教法的同行们指教。

一、提高对分数的再认识

学生对“分数的再认识”知识掌握得牢固与否,将直接影响其后续学习。美国教育心理学家奥苏伯尔的“认知结构”理论认为:学习迁移的理解是以认知结构和新知识学习的相互作用为前提的。所谓认知结构,就是学生头脑里的知识结构。广义地说,它是学习者的观念的全部内容和组织;狭义地说,它是学习者在某一特殊知识领域内的观念的内容和组织。认知结构直接影响有意义的学习。他认为,认知结构的加强能促进新的学习与保持,教学的目标就是使学生形成良好的认知结构。根据这个理论的提示,要加强分数再认识的学习,为学生后续学习打下良好的基础。怎样加强分数再认识的学习呢?要开展的意义的数学活动,创设丰富的数学情境,提高学生对分数的再认识。

二、抓住分数的本质,找准单位“1”

教学分数乘除法“问题解决”中,特别是较复杂的分数乘除法“问题解决”时,指导学生学会找单位“1”是解决问题的关键。 怎样去找单位“1”,教学中通常的做法无非就是抓题目中的“的、是、占、比、相当于”等关键词。 这种教法带来的只能是学生只会机械模仿,不会思考、不会分析。 如“男生人数是女生人数的 3/4”,是男生与女生在比,女生人数就是单位“l”等。 碰到相比关系不明显的句子怎么办,教师一般会指导学生想办法把它转换成相比关系明显的句子。如“成本降低了1/9”,句意不完整,就先把意思补充完整,使它变成“现在的成本比原来的成本降低了1/9”, 再用上面的办法,就不难找出题中的单位“l”了。 就上述情况来看,可以说这是指导学生找单位“1”的一种好方法。但我们能不能认为这就抓住了知识的根本点,可以一劳永逸,以不变应万变了呢? 如果遇到这样的分率句:“剩下的页数比已看的多全书的1/5”,从相比关系来看,这里是“剩下的”与“已看的”在比,而相比的结果是多“全书的1/5”如果只看相比关系,很容易把“已看的”看作单位“1”。这类情況下如何指导学生正确判断单位“1”呢?我们可以让学生根据分数的意义去想一想它们相比的结果, 看是以谁为标准把它平均分成若干份的,分的是“谁”,就应把谁看作是单位“1”。这道题是把全书的页数平均分成5份,剩下的页数比已看的多其中的一份,全书的页数就是单位“1”,已看的页数是全书的(1-1/5)÷2=2/5,剩下的页数是全书的 2/5+1/5=3/5。 从这里我们可以看到,让学生通过相比关系来找单位“1”,还应让学生从分数的意义上来搞清楚。上述几个相比关系不明显的句子转换成相比关系明显的句子后,还应使学生知道,“成本降低了1/9”,是把原来的成本平均分成9份的 ,降低的是其中的一份,原来的成本就是单位“1”,这样就能在进一步理解数量关系的基拙上准确地判断题中的单位“1”。分数的意义贯穿于分数有关知识学习的全过程。

教学分数乘除法知识的应用中,指导学生以以往知识经验,根据相比关系来判断单位“1”不能离开分数的意义,这才是抓住了教学的根本点,否则只能是舍本逐末,指导学生只是表面机械地找单位“l”,分数应用题的教学目标是难以全面完整达到的。

三、理清分数乘除法三类应用题的关系

这三类基本应用题是:(1)求一个数是另一个数的几分之几。(2)求一个数的几分之几是多少。(3)已知一个数的几分之几是多少,求这个数。其解题依据是相通的。

如:100 米的3/4是多少?可根据“求一个数的几分之几用乘法”来解,列式为 100×3/4=75(米),可以转化为第二类应用题:75 米是 100 米的几分之几?解法为 75÷100=3/4。还可转化为第三类应用题:已知一条路的3/4是 75 米,这条路长多少米?解法为 75÷3/4=100 米。由上可见:若把 100米设为 A,75 米设为 B,3/4设为 C,根据原题意可以得出A×C=B,再根据乘法各部分之间的关系又可得出:(1)C=B÷A。(2)A=B÷C,从而把原题转化为后两道题。

教学中,教师可利用这三类应用题的相通点,帮学生理解题意,并进行这三类应用题的对比练习,学生深刻地了解了这三类应用题的联系之后,教师再逐步加大练习难度。也可让学生自己编应用题并解答,教师再从中渗透解决此类问题的思考方法,让学生真正达到“自悟”。

四、用反推法帮助学生找出数量关系

反推法是从所求问题出发,找出获得解决所求问题的充分条件的方法。利用反推法,可以逐层找出解决问题的充分条件,这些未知的充分条件必然与题中已知条件之间有着紧密的关系,找出这些数量关系之后,就能求出充分条件,最终解决所求问题,利用反推法解决,环环紧扣,思路清晰,培养了学生的逻辑推理能力。

如:我校有女生 150 人,正好占男生的5/9,全校有多少人?

在解决此题时,可以这样引导学生:要求“全校人数”,我们必须先知道什么?题中男女生人数都是已知条件吗?只给出了女生人数,那么男生人数如何去求呢?男生人数又和什么量之间有关系呢?这样可得出关系式:男生人数×5/9=150。据此求出男生人数,再根据全校人数等于男生人数加上女生人数求出全校人数。解题过程包含了两个关系式:(1)全校人数=男生人数+女生人数。(2)男生人数=女生人数÷5/9。

综上所述,分数应用题虽然是数学中的难点,但是只要做到了这几点,有序的进行思考,形成良好的思维品质,增强了学生学好数学的自觉性,难点就分解了,解决分数问题学生就能得心应手了。

4.分数除法应用题教学反思 篇四

分数除法应用题教学反思1

分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量。我作了以下的一些教学尝试:

一、从生活入手学数学。

一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、复习时要注意三种分数应用题,即求一个数是另一个数的几分之几,求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数,三者之间的联系。

在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。

分数除法应用题教学反思2

今天我们学习了“分数乘、除法应用题对比”,对于三道例题的解决学生们显得驾轻就熟,接下来的对比分析一个人的力量显得有点薄弱,毕竟学生的差异性是存在,我们在尊重学生差异性的同时要让学生有最大的发展,如果教师和学生一个人一个人的交流效率太低,怎么办呢?我想到了我的小组学习研究,如果让学生在小组中群策群力,集中解决问题,在这个环节上应该是比较好的策略。于是,我把这个环节设计为让学生以小组为单位找出三道题目的相同点和不同点,可以采取画表格的形式由一个学生展示,也可以让小组成员分工合作一起展示。要求提出后学生们很快地进入自己小组的研究中。我则一个小组一个小组的观察、偶尔交流几句。大约6分钟后,我们开始交流,实录如下:

师:怎么样?发现什么了?

学生1:发现它们的数量没有变化,鸭12只,鹅4只,鹅是鸭1/3

学生2补充:线段图的结构都一样

师:线段图表示的是题目中的数量关系,线段图结构没有变化,其实是什么没有变啊?

生1:数量关系没有变,都是鸭的只数×1/3=鹅的只数,三道题目中都有这个数量关系。

生3:单位“1”的量也没有变化,都是鸭的只数,第一道题目从问题中找,其他两道题目从条件中找。

师:这三道题目中相同点找得很好,谁来谈谈不一样的地方

生4:问题都不一样。

生5(着急):条件也发生了变化,解答方法就不一样了。

生3:单位“1”的量,在第一道和第二道题目中是已知的,在第三道题目中是未知的,列出等量关系式后,可以用方程解答。

师:真是细心的孩子,利用一个数乘分数的意义列出等量关系式后,发现单位一的量是未知的就可以用方程解答了。

师:谁还想说?

生6:我认为解题的时候找好单位一的量,然后根据题目中的数量关系认真解答题目,做完后好好检查。

师带头鼓掌。

师小结:解答应用题,我们要“知其然还要知其所以然”,找准单位一的量,认真解答,做完后要仔细检查,就能做一个解决问题的小能手了。

在这个环节的教学中,发言的孩子是各个不同小组的,小组同学把自己小组找到的东西综合到一起,利用表格的形式展示,特别是等量关系式的运用,我没有提示,使学生在小组讨论的时候发现的,可以说是这一环节上的一个创新。但是这个环节也存在问题,我的目的是让每个学生都有发言的机会,利用集体的力量解决问题,可是有几个孩子对这个活动很漠视,一些孩子发言积极,但是不知道让其他人发言,小组的组织性还很差,需要进一步规范

分数除法应用题教学反思3

一、结合学生的生活学数学。

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。

二、参与学习过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的主导地位。

三、多角度分析问题,提高能力。

在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于“后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的数量的线段图;“知“1”求几用乘法,知几求“1”用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

分数除法应用题教学反思4

分数除法应用题是在学生已经学习了运用分数乘法解决一些实际问题的基础上进行教学的。分数除法应用题是本册教学中的难点,要突破这个难点,让学生透彻理解这类应用题,就要抓住乘、除法之间的内在联系,通过运用转化、对比等方法,使学生了解这类分数应用题的特征,再借助线段图分析题中的数量关系,找出解题规律。

这节课我首先复习了以前的知识,找出题中的单位“1”以及写出含x的代数式,这两道复习题为接下来的学习做了很好的铺垫,有利于接下来的教学,但在第二题中,缺少了线段图,赵老师给我提议可以给出线段图,让学生根据线段图列式,也可以让学生自己去画出线段图。线段图是学生必须要会画会理解的重点内容,在这一问题上,我有欠考虑。

展示出例题:某学校开设了课外兴趣小组,其中有美术小组和航模小组,并且美术小组有25人,美术小组的人数比航模小组多,航模小组有多少人?

一、我让学生大声读题并思考三个比较简单的问题,学生都表现得不错,但这里只有读题、理解题目要求及关系,并没有提出更高的有挑战的要求,是课前低估了学生的能力,把学生当成了没有良好阅读题目的习惯、解决问题的能力有限的学困生。

二、是根据题意画出线段图,在课前准备课的时候,我就思考是否让学生自己试着画出线段图,但考虑到本班学生的特殊性,放弃了这个想法,最后还是由我带着学生画出线段图。这样缺乏了学生的自主探索,没有让学生体会到画线段图的重要性。

三、让学生根据线段图列出等量关系式,这个知识点也是本班学生的一个难点,经过我再三的引导学生准确无误的说出了等量关系式。

四、根据本题的等量关系式,用方程的方法解答,分析题意得出单位“1”未知,并且要求的就是单位“1”,设未知的单位“1”为x,列出方程。将方程列出来之后,我让学生自己在草稿纸上演算解方程,请一个学生在黑板上做,经过我的观察巡视,大部分学生能够准确地解出方程。

五、我改变题意,变成了一个数比另一个数少几分之几的稍复杂的应用题,有了前面一道题的引导,学生能够较快的列出方程并能求出正确的解。这两种类型题结束之后,我展示了这两种类型题的线段图,让学生知道什么时候用“+”什么时候用“-”,然后提炼出此类题的解题方法。这个环节进行得较快,没有让学生进行细致的分析,只是浅尝辄止,这样学生可能没有清晰的理解此类题的方法。在提炼出方法的时候,应该要列出序号,这样更有条理性,学生能够看得更加的明白。

六、最后展示两道同类型的应用题,让学生及时巩固本节课的学习内容。

从本节课的教学反馈来看,学生对应用题的掌握情况不错,能够独立完成类型题,但在看线段和画线段图时不是很熟练,这是接下来我要补充教学的内容。

分数除法应用题教学反思5

分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

一、走进生活,体验生活中的数学

本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

二、使学生在学习过程中真正成为学习的主人

教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

三、方法多样化,开拓学生的思维能力

在解答应用题的时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。

分数除法应用题教学反思6

人教版六年级上册第三单元“分数除法应用题”的教学是本册的一个教学重点和难点。很多老师都深感在此处和学生说不清,教学效果不佳。我个人通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下我的一些比较成功的做法。

一、加强前后知识之间的联系,实现知识的正迁移。

要想第三单元学生学的顺利,第二单元知识的学习一定要铺垫好。

一是,一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。

二是,能快速地根据题中的关键句判断出谁是单位“1”。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“1”的方法:是“谁”几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“1”。最简单的方法是:分率前面的量就是单位“1”。

三是,学生要熟练掌握画线段图的方法。比如要先画单位“1”(因为单位“1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。

四是,能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。

例:“柳树是杨树的 ”等量关系式:杨树× =柳树

“柳树比杨树多 ”等量关系式:杨树+杨树× =柳树 或者 杨树×(1+ )=柳树 这样学生在学习用方程解决分数除法应用题时“找等量关系式”就轻松多了。

二、教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。

比如教学第三单元分数除法“解决问题”例1的时候,就要复习一下学生学习第二单元分数乘法“解决问题”例1的知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例2时,就要对应复习第二单元乘法解决问题例2和例3的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。

三、在教师的引导下提高学生读题、分析题的能力。

刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的.目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多 是多“谁”的 ?(多杨树的 )④到底多多少,具体的量怎么算?(杨树× )⑤这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)

当然,还有一种等量关系式:杨树×(1+ )=柳树 可由以下几个问题入手:①柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )②即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。

学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。

总之,我通过运用以上的教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。

分数除法应用题教学反思7

我又一次后悔自己没用录像机记录下课堂上学生精彩的辩论,要知道这种对抗式的辩论是课前无法预设的,值得庆幸的是可以赶紧利用吃饭时间回味并用文字把本学期难得遇到的这次“精彩”整理下来。

今天早上第四节课要处理第二节没处理完的《分数乘除法应用题对比练习》导学案,第二节临近下课时我说要各组把本组错误最多的题或者不会的题出示在黑板上,其中第四组的组长曲晓燕带着小黑板上了讲台,小黑板上出示的题目是:商店运来一批苹果,其中苹果有180千克,比梨多九分之一,苹果比梨多多少千克?她引导大家分析完这道题后,我心里正想着这一组抓住了这份导学案最容易出错的一道题,该如何表扬他们时,林立浩一个箭步冲上讲台,说这道题还有一种解法:算梨的重量可以用180+180÷,当时有个别学生小声嘀咕:“该用减法而不是加法,因为最后问题是苹果比梨多多少千克?”我重述后林立浩说:“我算的是梨的重量,最后再用苹果的重量减去梨的重量就行了。”还有学生欲言又止,看来有学生知道这种方法不对,但不知道为什么不对,我开始征求学生的意见:“同意曲晓燕这种做法的举手”呼啦啦几十个学生都举手了,“同意林立浩这种解法的举手”只有吴州航、吴欢欢、张翼泽等五六学生,于是我把全班分成两大组讨论你如何把对方说服,其中同意林立浩这种解法的五六个同学编为B组,围在一起讨论。

巡视时,我发现第一小组的一个学生说:“老师,照他这样算,答案都1000多了,那就不对!”还有一个学生说:“这两个算式利用的不是除法的性质。”我说:“除法的性质是什么?”他无言。另一个学生想补充但是说半截好像发现自己说错了。B组的成员已经开始在黑板上画线段图了。

辩论开始,B组的林立浩开始指着线段图为大家讲解,梨多苹果果180千克?

在讲解过程中有很多漏洞,同学们一一指出,他甚至把线段图改为多180千克?

梨苹果果

最后临下讲台时,他自言自语:“错了,错了”没想到他的两个接班人继续上来讲述他们的思路。

三个B组成员讲完之后,付晓霞才站起来反驳:单位“1”未知用除法,用几分之几对应的量除以几分之几,而你们的量和分率根本就不对应,也就是说苹果的重量180千克对应的分率不是九分之一。紧接着禹青青站起来说:他们的线段图画的就不对,苹果的重量180千克应该是这一段,她边说边上讲台用红笔标识。

梨多苹果果180千克?

而除法的性质没有同学提,在我的提示下,平时很大方的赵鹏涛才扭扭捏捏地站起来说,两个算式之间不是利用除法的性质,问起除法性质的内容,他说a÷(b+c)=a÷b+a÷c,又暴露出一个问题,此时下课铃已经响起。

分数除法应用题教学反思8

对于分数乘除法应用题,学生刚刚学完感到很乱,很难!

其实不然,我们都知道这部分知识是有规律可循的,只是学生一一学完之后就乱了,混了,针对这种情况,我把分数乘除法的所有类型全部给出了一组对比练习,内容一样,只是单位“1”不同,经过这样6组的对比练习,学生就很容易发现以前讲的规律的实用性了,进而使他记住这个规律,这一节课下来,大多数的同学都能掌握方法,但在实际应用的过程中,总是不按照讲的方法去思考,特别是后进生,你讲的全能听懂,做题多数不会,你引导这问他就会了,这就说明学生没有良好的学习习惯,不把老师归纳的知识往心里记。

还有一个问题就是计算不准的现象特别严重。列式正确,计算错误的同学不止一两个。所以在今后的教学中,要不断的给他们总结方法,也让他们养成总结规律方法的好习惯,并把计算的训练常抓不懈。

分数除法应用题教学反思9

在复习《分数乘除法应用题对比》这节课时,我真切地感受到:学生在摸索中出错比在老师的扶持下永远正确更具有教育价值,因为它把学生的无知展示给他们自己看。这种错误直达心灵、催人反思。

复习中,我通过“明察秋毫”这个小环节,让学生明确解决分数问题的关键是找准单位“1”。只有找准了单位“1”,才能找到正确的等量关系。接着,我设计了“自学时空”这个环节。我将4道类似的数学问题一次性教给学生,并提出了三点自学要求:

1、找出单位“1”,做上记号。

2、说出等量关系。

3、列式计算。在这个过程中,身为教师的我没有给任何一名学生提示或指点。短短的4分钟很快过去了,全体学生在我的引导下一起针对三个自学要求进行了交流。统计正确率时,没有一个小组能够达到100%的正确率。这和平时教学过程中我指点以后再练习的正确率相差十万八千里。这时我注意到那些出现平时成绩很好,但这次出现了错误的学生脸上流露出一丝懊悔的神情。俗话说:爬得越高,摔得越重。这些自信满满的学生在这次猝不及防的“摔倒”中发现原来自己对知识的理解和掌握还不够透彻。接下来的“观察对比”环节中,很明显的就能发现那些出现了错误的学生无论是思考还是听讲都格外认真。因为学生在无意中“获得”了一次出错的机会,因此他们都格外认真地去思考为什么有的算式中用加法,有的算式中用减法,有的算式中用乘法,有的算式中用除法。他们要知道自己为什么会出错,才能避免下次出现同样的错误。

在学生比较深刻的理解了分数乘、除法应用题的解题思路和方法的基础上,再让学生进行一组四式的独立对比练习。学生运用刚才发现的步骤和方法解决问题,正确率大大提高。从一知半解到深入理解,从有对有错到正确无误,从随意应付到认真对待,学生们的学习态度在发生转变之时,学习质量也明显提高,并从中获得了成功的喜悦。

分数除法应用题教学反思10

分数除法应用题,历来都是教学中的难点,要突破这个难点,让学生透切理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我从以下几方面入手进行组织教学:

一、走进生活,体验生活中的数学。

本来人体的机体造构对于小学生来说是一个很有趣的问题,教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多人体构造,增加了学生的知识面。

二、使学生在学习过程中真正成为学习的主人。

教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

三、寻找多种方法,开拓学生思维能力。

在解答应用题的时候,我通过鼓励学生尽量找出其它语方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

分数除法应用题教学反思11

教材分析:

本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、谈话激趣,复习辅垫

1. 师生交流

师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)

2.复习旧知

师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

学生回答后说明理由。

师:算一算你们自己体内水分的质量吧!

生答

师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

35× 5 (4 )=28(千克)

师:谁还能根据另一个信息写出等量关系式?

成人的体重× 3 (2 )=成人体内的水分的重量

2. 揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1. 课件出示例题。

2. 合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3. 学生汇报

生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

28÷ 5 (4 )=35(千克)

4. 比较算法

比较算术做法与方程做法的优缺点?

(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

5. 对比小结

和前面复习题进行比较一下,看看这题和复习题有什么异同?

(1) 看作单位“1”的数量相同,数量关系式相同。

(2) 复习题单位“1”的量已知,用乘法计算;

例1单位“1”的量未知, 可以用方程解答。

(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

单位“1”是已知还是未知的?

根据学生回答画线段图。

根据题中的数量关系找学生列出等量关系式。

学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高

1. (投影)看图口头列式,并用一句话概括题中的等量关系。

(1)

(2)

2.练一练:

(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

3.对比练习

(1)一条路50千米,修了 5 (2 ),修了多少千米?

(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

四、全课小结畅谈收获

①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

设计意图:

一、从生活入手学数学。

《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、有破度有层次地设计练习,提高学生的思维能力。

教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数除法应用题教学反思12

为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。

一、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。

因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。

二、多角度分析问题,提高能力。

在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。

四、不仅巩固知识,给不同层次的学生起到不同的教学作用,又能为归纳求“1”的量的应用题的方法奠定基础。

分数除法应用题教学反思13

德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

1、教学内容“生活化”

《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

2、解题方法“多样化”

《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

3、师生交流“情感化”

数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

4、值得商榷的几个方面:

(1)形式能否再开放一些

(2)优生“吃好”了,能否让差生也“吃饱”

分数除法应用题教学反思14

首先为本课“列方程解决问题”作铺垫,开始的时候设计了两类复习题:一类是训练学生找单位“1”,另一类是用分数乘法解决的问题。

接着,出示例4中的情境图,让学生读题,然后让学生阅读与理解,从图中你知道了什么?让学生先把题意理解透。学生很容易提出问题“小明的体重是多少千克”,重点是给足学生时间和空间,自主探究,或小组合作,解决问题。汇报的时候,;老师可适当引导学生用线段图表示题中的数量关系,从而找到等量关系并列出方程,同时复习一下方程的解法。

同时,肯定有的同学用算术解法,因为一步计算比较好理解。用方程解,只要根据分数乘法的意义,顺向思考,就能找到等量关系列出方程。所以,教材只给了用方程解的全过程。但是小学生目前还没有接触到比较复杂的,用算术解法很难解决很难理解的那样的应用题,因此对用方程解法的优越性认识不足。一些学生觉得用方程还得写设句,比较麻烦,因此喜欢用算术解法。对此,老师肯定算术解法的正确性,但是不要过于强调。主要从等量关系的角度分析,让学生顺向思维列方程解决问题。

分数除法应用题教学反思15

“已知一个数的几分之几是多少,求这个数”的应用题。是由分数乘法意义扩展到除法意义而产生的应用题。这类应用题历来是教学中的难点。由于这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,为了使学生更好地理解题目的数量关系,我在引导学生分析数量关系时,仍然按照解答分数乘法应用题的思路去分析,从而发现作单位“1”的量是未知的,可以根据求“一个数的几分之几是多少”的关系,列方程解。同时注意引导学生思考如何用算术法解?思路是怎样的?通过分析让学生感悟到用除法解题思维是分数乘法解题的逆思路。从而让学生把两种类型的应用题有机的统一在一个知识点上。通过本节课教学,我感受到以下几点。

1、充分运用对比,让学生通过分数乘法应用题理解除法应用题。

为让学生认识解答分数除法应用题的关键是什么,教学中,我抓住乘除法之间的内在联系,让学生从中发现与乘法应用题的区别,使学生了解这类分数应用题特征。接着放手让他们借助线段图,分析题中的数量关系,在学习过程中发现规律,得出这类应用题根据“已知一个数的几分之几是多少,求这个数用除法”能解决问题。

2、鼓励方法多样,让学生拓宽解题思路。

5.分数除法应用题教学反思 篇五

复习中,我通过“明察秋毫”这个小环节,让学生明确解决分数问题的关键是找准单位“1”。只有找准了单位“1”,才能找到正确的等量关系。接着,我设计了“自学时空”这个环节。我将4道类似的数学问题一次性教给学生,并提出了三点自学要求:

1、找出单位“1”,做上记号。

2、说出等量关系。

3、列式计算。在这个过程中,身为教师的我没有给任何一名学生提示或指点。短短的4分钟很快过去了,全体学生在我的引导下一起针对三个自学要求进行了交流。统计正确率时,没有一个小组能够达到100%的正确率。这和平时教学过程中我指点以后再练习的正确率相差十万八千里。这时我注意到那些出现平时成绩很好,但这次出现了错误的学生脸上流露出一丝懊悔的神情。俗话说:爬得越高,摔得越重。这些自信满满的学生在这次猝不及防的“摔倒”中发现原来自己对知识的理解和掌握还不够透彻。接下来的“观察对比”环节中,很明显的就能发现那些出现了错误的学生无论是思考还是听讲都格外认真。因为学生在无意中“获得”了一次出错的机会,因此他们都格外认真地去思考为什么有的算式中用加法,有的算式中用减法,有的算式中用乘法,有的算式中用除法。他们要知道自己为什么会出错,才能避免下次出现同样的错误。

6.分数除法应用题教学反思1 篇六

小岔乡九年制学校教师:贺佩学

分数除法应用题是在学生已经学习了运用分数乘法解决一些实际问题的基础上进行教学的。分数除法应用题是本册教学中的难点,要突破这个难点,让学生透彻理解这类应用题,就要抓住乘、除法之间的内在联系,通过运用转化、对比等方法,使学生了解这类分数应用题的特征,再借助线段图分析题中的数量关系,找出解题规律。我根据多年来的教学经验总结出一套较粗浅的分析解答分数应用题的方法,比如“是、占、比、相当于”后面的量就是单位“1”;知道单位“1”求另一个量就用乘法,要求单位“1”就用除法”等等。通过本节课教学,我感受到以下几点:

一、从生活入手学数学。

《数学课程标准》中指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”因此教学一开始,我就改变由复习旧知引入新知的传统教法,直接取材于学生的生活实际,用介绍该斑的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生亲身体验。

教学“解答分数除法应用题的关键是什么”时,我故意通过省略题中的一个已知条件,让学生发现问题,并亲身感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生真切地体会并归纳总结出:解答分数除法应用题的关键是“从题目的关键句入手找出数量之间的相等关系。”在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢对关键词语等琐碎的分析;喜欢用严密的语言进行严谨的逻辑推理。虽分析得头头是道,但容易走两个极端:或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析。这样就浪费了宝贵的课堂师生互动、生生互动的时间。教学中,我把分数除法应用题与引入的分数乘法应用题有机地结合起来教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同。挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题、应用数学的能力。

三、多角度分析问题,提高能力。

7.分数除法应用题教学设计 篇七

《分数除法的意义和分数除以整数》是人教版小学数学六年级上册第三单元第一课时的教学内容。是在学生已经学习了整数乘除法、分数乘法的相关知识的基础上教学的。本节课是学生学习分数除法的一个重要的知识点,也为学生进一步学习整数除以分数和分数除以分数的计算做好了准备。

本节课内容包括课本第28、29页例1和例2以及课本第32页练习八的1~4题。例1采用整数与分数对比、乘法与除法对比的方式,揭示出分数除法的意义与整数除法的意义相同;例2让学生在折一折、涂一涂的过程中逐步理解分数除以整数的算理,掌握算法。

●学情分析

六年级的学生已经具备了一定的自主学习能力,因此我们设计了“自主学习任务单”让学生课前自主探索学习,考虑到不同的学生学习能力之间存在的差异性,我们设计了相应的微视频,通过对学生前置学习的指导,学生能初步理解分数除法的意义,掌握分数除以整数的计算方法。

由于这是学生首次学习分数除法,学生对“分数除法的意义和分数除以整数的算理”可能并不能完全理解,因此在课堂学习中,我们设计了大量的小组交流和集体交流,重视教师的引导,使学生真正理解分数除法的意义和分数除以整数的算理。

●教学目标

知识与技能目标:理解分数除法的意义,掌握分数除以整数的计算方法。

过程与方法目标:通过课前完成自主学习任务单、微视频的学习以及课堂上的交流合作,培养主动参与、独立思考、合作交流的能力,并形成计算技能。

情感态度与价值观目标:引导通过自主探索获得成功的乐趣,并在课堂的合作交流活动中培养质疑问难的学习习惯,培养严谨的数学学习的态度。

●教学环境与准备

电子书包、自主学习任务单、微视频、多媒体教学课件PPT。

●教学过程

1.复习导入

◇课前谈话:孩子们,昨天我们已经初步预习了《分数除法的意义和分数除以整数》,这节课我们继续深入研究“分数除法的意义和分数除以整数的计算方法”。

◇学生小组交流自主学习任务单上的任务一、任务二。(如下页图1)

◇网络云平台显示学生完成的整体情况。

◇选择错误率较高的题,请学生分析错误原因并改正。

2.理解“分数除法的意义”

◇同桌相互交流自主学习任务单中的任务三。(如下页图2)

◇集体交流,指名一小组上台汇报。

◇对比分析:分数除法的意义与整数除法的意义相同吗?

设计意图:学生课前已经尝试自学了例题,但是对于“分数除法的意义”可能更多的是知其然而不知其所以然,因此课堂教学中,教师要重点引导学生通过乘法和除法算式之间的对比,以及整数运算和分数运算之间的对比,使学生从本质上理解“分数除法的意义和整数除法的意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算”。

3.学习“分数除以整数”

◇集体交流自主学习任务单中的任务四。(如图3)

1两种折纸方法与相应的算法。

a.4/(5)÷2=4÷2/(5)=2/(5)?,把4/(5)平均分成2份,就是把4个1/(5)平均分成2份,每份就是2个1/(5),就是2/(5)。

b.4/(5)÷2=4/(5)×1/(2)=?,把4/(5)平均分成2份,每份就是4/(5)的1/(2),也就是4/(5)×1/(2)。

2把4/(5)平均分成3份,每份就是4/(5)的1/(3),也就是4/(5)×1/(3),4/(5)÷3=4/(5)×1/(3)=4/(15)。

设计意图:通过“让学生折纸操作和计算”,数形结合使得抽象的算理更为直观,从而有效地突破了教学的难点。

◇教师追问:把这张纸的4/(5)平均分成3份,每份是这张纸的几分之几?有没有不同的计算方法?你们是怎样想的?

◇对比提升:1比较两种算法,说说哪一种 算法适用范围更广,为什么?2分数除以整数,可以怎样计算?3除数可以为0吗?为什么?

设计意图:引导学生比较分子能被除数整除和不能整除的区别,从而使学生能根据题目的特点灵活地选择算法。

4.课堂小结

通过今天的学习,你有哪些收获?有没有疑问?(预设问题:分数除以整数,为什么要强调“0除外”?)

5.拓展练习:闯关游戏

学生登录云空间,进行闯关游戏。(如下页图4)

设计意图:借助我校电子书包实验中的“云空间”平台,发布闯关游戏,学生可在平台上完成检测,便于及时反馈。

●教学反思

1.“教学环境”全面培养学生学习能力

根据教材需要、学生学情现状及发展目标和新课程改成的需要,在我校电子书包实验项目中,在云空间形成学习资源积淀,结合教师自身素养,将教学环境等要素进行最优化整合,突破了“辅助教学观”的局限,使信息技术成为学生学习的重要工具,成为校本资源建设生态化的途径,发展学生创新能力、培养健康的情感态度价值观的有效工具。学生通过自主学习、小组合作、交流引导等方式理解并掌握学科知识,形成自学能力。学生的发展,不仅要学习广博的知识,还要学会学习的方法,树立终身学习的理念。管理大师德鲁克说:“真正持久的优势就是怎样去学习。”所以培养学生的学习能力刻不容缓。

2. “电子书包”改变学教方式

教学模式的改变体现在课前、课中和课后。课前教师发布“自主学习任务单”和“微视频”供学生自学所需,课中学生用i Pad进行知识反馈,课后学生运用云空间进行知识检测和趣味练习。可以看到整个过程,教师由知识的传授者变为学习的组织者;以前学生是被动地接受知识,现在学生都是有备而来,由备教转向备学;以前主要是上课,现在则是教师与学生和互动讨论。一对一的教学模式有利于教师因材施教,从而提高教学的效率。

课前:依托云空间这个平台,教师课前发布自学任务,学生在任务单的驱动下,自学相关知识,进行知识的探索之旅;针对教师发布的研讨问题进行网络交流和评价;学生也可以提出问题,相互质疑和解答。

课中:发布练习,学生在“i Pad”上直接作答,可以及时反馈教学效果,针对学生错误较多的问题进行深入探讨,帮助全体学生达到最佳的学习效果。

课后:发布作业,学生能根据反馈的结果检验自己的学习情况,同时错误的题目都会有反馈和解释,帮助学生巩固学习内容。学生的错题会自动形成错题集,便于学生继续练习,直到掌握为止。

学生在课前、课中、课后所有的学习情况都有记录,便于教师及时了解学生的学习情况,便于个别指导;同时家长也可以及时掌握孩子的学习状态,对学生也是一种监督。

3.巧妙运用微视频,整合学习资源,突破教学重难点

分数除法的意义和分数除法的算理比较抽象,而学生个体之间又存在着学习的差异性,考虑到学生独立完成自主学习任务单可能具有一定的困难,设计了微视频。

8.“分数与除法”教学解析及建议 篇八

“分数与除法”错例解析

分数是小学生对数的概念一次重要扩展,也是小学生对数的认识的一次重大飞跃。它对学生更好地理解数的连续性与可分割性起着非常重要的作用。分数概念不但抽象,而且复杂,是学生认识和理解时最容易出现问题的概念。特别是学生进入分数学习的第二阶段——五年级《分数的意义和性质》时,各种各样的问题如雨后春笋般陆续暴露出来。学生在学习的过程中出现诸多的不适应性和盲目性,发生的错误也随之增多。在教学“分数与除法关系”一课后,笔者的感触尤为深刻。

“分数与除法”的教学内容,是在理解了分数的意义,分数单位等知识的基础上进行教学的。在巩固的基础上,作业练习中会出现一些应用辨识性的数学问题,学生面对这些类型的题都是屡屡中招。(见典型错题1、典型错题2)

“分数与除法”归因分析

数量分率:分不清 在学习小数除法时,解决每段长多少米时正确率很高。在教学完分数的意义后,学生解决每段是这根绳子的几分之几时正确率也很高,但现在将情境融合,把两个问题整合在一起提问时,学生思绪混乱,错误不断。之所以出现错误,根源在于学生没能很好地认清分数的两种身份:既可表示分率(关系),也可表示具体数量。分数表示关系可以通过运算得到,也可以通过平均分得到。分数表示数量可以通过度量得到,也可以通过计算得到。分数的双重含义都可以通过计算得到,方法的共享让学生的学习产生了负迁移。再则,学生从三年级开始接触的分数都是以分率的身份出现,平均分中只涉及连续量平均分。在教师教学或学生学习时,因缺少沟通,两种身份在头脑中相互干扰,从而导致错误。

分数意义:不深刻 人教版五年级下册教材中,用份数定义的方式描述分数的意义。虽然贴近学生的生活,但也出现一些倾向性的弊端。一份或几份的说法,没有超出自然数的范围,没有显示出这是一种新的数。从教材提供的例题来看,选择的素材和呈现的情境局限在部分和整体单一的纬度上。从生活情景直接跳跃到纯粹的数学概念,没有经验支撑的抽象水平和丰富的内涵表征,学生接受分数概念的内在结构就会不稳定。另外,分数意义的核心——单位“1”,学生对它的认识存在不少问题,主要表现在以下几个方面:倾向于自我假设在同一情境中出现的各个分数具有相同的单位“1”;信息量超过自己的处理能力时,便会配合其处理能力,自行更改单位“1”或分解单位“1”。构建抽象灵活的单位“1”概念是学生构建分数概念过程中的主线。教师在教学时必须予以充分的重视。

除法意义:不领会 如果对以上典型错题的这4个问题的本质追根溯源的话,它们都是小学低段的自然数除法意义的生长延伸。二年级除法的起始课《平均分》,例2和例3就渗透了两类基本的除法。在练习三中出现两类除法的题组(如图A)。第一小题属于等分除问题15÷5=3,利用的数学模型是总数÷份数=每份数。第二小题属于包含除问题15÷3=5,利用的数学模型是总数÷每份数=份数。新课程背景下的课堂教学,教师为了避免被扣上“穿新鞋走老路”之嫌,不再强调总数、每份数、份数等数学术语,而寄望学生借助生活经验和对运算意义的理解,解决此类问题。渐渐地,弱化了数量关系模型的抽象、提炼和建构,淡化了解题方法的训练。有的学生通过观察数据信息成功体验到万能解题方法——大数除以小数得出正确结果,有些学生借助具体情境也能顺利地解决问题。在这种美好的表象下,教学似乎非常成功。殊不知,对数量关系式有效建构的缺失,给学生进入高段学习埋下了可怕的隐患,因为高段数学运算已经突破了较小数不能成为被除数的界限。

均分概念:不到位 在二年级下册除法的初步认识中,学生首次学习平均分概念。到了三年级上册分数的初步认识,学生应用平均分概念获得几分之一或几分之几的分数。在这两个阶段的教学时,教师特别注重两个目标问题的研究:什么叫平均分?怎么平均分?为了达成这些目标,教师主要采取动手操作的教学方式帮助学生理解平均分的意义,获得平均分的方法。但对于平均分的要领——“谁被平均分”的关注不够。进入高段学习后,数系的扩张和计算方法的泛化,学生面对具体的情境,可以提问的方式不再唯一(如典型错题案例2的问题)。如果仅明白平均分含义,忽视了解题关键的命脉——“谁把谁平均分”的明确指向,学生的判断只能跟着感觉走。没有清晰的思路,解题错误也就不可避免地产生了。

“分数与除法”解题策略

丰富表征信息,完善学生的认知结构 学生对知识顿悟的前提是对需要的信息有一个完整清晰的表征信息。尤其是对那些学习比较困难的学生来说,更需要一种形象化的程序性知识,能够让学生在头脑中迅速表征出图像来。在这种情况下,一般的对策是紧密联系学生的生活经验和已有知识,引导学生借助生活经验和数学知识相似性的特点,将新知纳入到原有的知识结构中去,使学生的知识得以同化和顺应。为了让学生找到分数具有分率即关系(比)和具体数量的双重意义完整清晰的表征信息,教师必须十分注重相应知识模块的专项训练。运用说、议、画等手段,丰富个性体验,逐步完善学生的认知结构。

加强题组对比,深化所学知识的意义建构 数学中的各部分知识是相互联系、相互依存的。教师从数学知识的整体出发,把有相关性的数学知识设计成具有联系性的题组让学生进行比较练习。就好像为学生搭了一个梯子,使他们沿着台阶一步一步往上走,在掌握基本知识和技能的同时,渗透比较分析归纳的思想。通过有相互联系又有区别的题组进行比较练习,既梳理了数学知识间的联系,又加深了学生对数学知识的理解。在新概念形成、新知识掌握以后,将一些形式上相似,实质不同,容易混淆的知识点加以精心设计并进行对比练习。让学生在比较中鉴别,不仅可以提高正确率,还可以加深对数学知识理解和解题方法的掌握。endprint

解析数量关系,提升问题解决能力 解析数量关系是传统应用题解决的最重要的策略,新课程背景下的教学同样离不开数量关系的分析解构。随着年级的增长和知识的积累,题中呈现的数学信息量会随着思考角度的变化而变得复杂。如果教师在教学时不善于引导学生把握变化的特征和规律本质,面对问题情境,学生很难在自己已有的知识经验基础上建构“原生态”的数量关系。这时,学生往往能理出数据,却理不出头绪。见如下教学片断:

师:解决每段长几米的问题,就需要考虑谁被平均分?以谁为标准去分?分成了几份?

生1:这里是绳子被平均分。

生2:应该是绳子的长度2米被平均分。

生3:按段为标准平均分,分成了3段就是3份。

师:所以,被分的数做被除数,标准的数做除数。

师:看着这幅图,老师想到了一个问题——每米有几段呢?能解决吗?

生:每米是1.5段。

师:你是怎么想的?

生:因为这个绳子是2米长,1米的话就是在中间切开,正好把中间的一段绳子切开得到一半是0.5段,再加上1段,就是1.5段。

师:你分析的很有道理。谁能用算式简洁地表示出来?

生:3÷2=1.5(段)。

师:理由呢?

生:因为这里被分的是3段绳子就做被除数,按2米去平均分,可以分成2份做除数。

师:结果除了用小数外,还能用分数表示吗?(并相机提示分数与除法的关系)

生:能,。

师:这样的分数,同学们感觉是不是很陌生,像刚才一半用表示,再和1合并也能得到一个分数,这些分数就是我们后几节课要学的知识。

新课程理念下解决问题不要求学生规范地表达数量之间的关系,但这并不表明,教学仅停留在解决问题的策略和日常生活经验,而忽视问题的本质。探索时,学生展示的方法是其经验认知的体现。交流时,教师应有意识地引导学生对各种方法进行比较分析,形成思维水平的策略或数学模型。在上述教学片断中,由于数的范围的拓宽,以往不能解决的问题从不可能变成了可能。一组对应的数学信息:2米长和3段,通过不同的提问方式,解析得到两组不同的数量关系:每段长度=总长度÷段数,每米段数=总段数÷米数。面对这类问题,教师要善于追根刨底,点破解决要领,及时概括总结,学生的思维才能从无序走向有序、从混沌走向清晰,数学思维能力才会有质的提高。

上一篇:2015幼儿园园务总结下一篇:论实现大学信息技术课堂高效的方法