2023高考数学_(真题+模拟新题分类)_推理与证明_理

2024-10-30

2023高考数学_(真题+模拟新题分类)_推理与证明_理

1.2023高考数学_(真题+模拟新题分类)_推理与证明_理 篇一

J单元 计数原理

J1 基本计数原理

J2 排列、组合7.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()

A.60种B.70种

C.75种D.150种

7.C [解析] 由题意,从6名男医生中选出2名,5名女医生中选出1名组成一个医

21疗小组,不同的选法共有C6C5=75(种).

J3 二项式定理

6313.[2014·全国卷](x-2)的展开式中x的系数为________.(用数字作答)

6r6-rr13.-160 [解析](x-2)的展开式的通项为Tr+1=C6x(-2),令6-r=3,解得r

333=3.因为C6(-2)=-160,所以x的系数为-160.J4 单元综合2.[2014·汕头一模] 某同学有2本同样的画册,3本同样的集邮册,从中取出4本赠送给4位朋友,每人1本,则不同的赠送方法共有()

A.4种B.10种

C.18种D.20种

12.B [解析] 本题可分两类:一是取出1本画册,3本集邮册,此时赠送方法有C4=

24(种);二是取出2本画册,2本集邮册,此时赠送方法有C4=6(种).故赠送方法共有10

种.

3.[2014·惠州调研] 某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案的种数为()

A.12B.14

C.16D.10

43.B [解析] 从6人中选4人的方案有C6=15(种),没有女生的方案只有1种,所以

满足要求的方案共有14种.4.[2014·成都一诊] 世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数为()

A.12B.1.C.8D.6

34.D [解析] 把甲、乙作为一个整体后全排列,则不同的分法共有A3=6(种).

上一篇:冬季养生讲稿下一篇:对煤矿工人的感受