化工分离与传质 作业

2024-06-18

化工分离与传质 作业(共2篇)

1.化工分离与传质 作业 篇一

非线性色谱的非平衡热力学分离理论Ⅱ.非线性-传质动力学过程的0-1模型

在制备色谱的优化设计和控制过程中,若试图把基于偏微分方程(PDE)-Eulerian描述的Wilson色谱理论框架和基于离散时间状态的优化控制方法(如Markov决策过程(MDP)和模型预测控制(MPC)等)衔接在一起时,就会出现明显的障碍.本文提出基于Lagrangian-Eulerian描述(L-ED)的非线性传质色谱(NTC)的.0-1模型来克服这些障碍.该模型把一个溶质微元单元划分为在流动相中并以其线速度移动的流动相溶质微元(SCm)和在固定相中其移动速度为0的固定相溶质微元(SCs).引入由溶质微元的序号集合、溶质微元的位置矢量、固定相溶质浓度矢量和流动相溶质浓度矢量组成的热力学状态矢量Sk,并用其来描述色谱过程的局域热力学路径(LTP)和宏观热力学路径(MTP).在非线性-理想-传质色谱的理论分析和数值实验中,0-1模型的数值解表现出很好的一致性、稳定性、守恒性及精确性等.该模型能很好地与控制论中的Markov决策过程或其他基于离散时间状态的优化控制方法相衔接.

作 者:梁恒 贾振斌 LIANG Heng JIA Zhenbin 作者单位:西安交通大学,生物医学信息工程教育部重点实验室,分离科学研究所,陕西,西安,710049刊 名:色谱 ISTIC PKU英文刊名:CHINESE JOURNAL OF CHROMATOGRAPHY年,卷(期):25(6)分类号:O658关键词:非线性色谱 非线性传质色谱 Lagrangian-Eulerian描述 Markov决策过程

2.化工分离与传质 作业 篇二

1 采用PBL教学模式

基于问题式学习 (Problem-Based Learning, 简称PBL) 的教学模式最早出现在20世纪60年代中期的美国医学教育中。PBL教学强调把学习设置于复杂的、有意义的问题中, 通过让学生合作解决实际问题来学习隐含于问题背后的科学知识, 培养学生解决问题的技能和自主学习的能力[2]。课堂上, 教师将自己的课堂教学思维方法“复制”传授给学生, 让学生掌握本知识系统所需的合理思维路线和基本分析方法, 在听课的同时与老师一起参与分析构筑知识体系, 使学生的思维过程与教师的讲课过程并行演进 (对较好的或大部分学生) , 或随后沿思维“路标”跟进 (对反应相对较慢的学生) , 实现学生的能动思维。课堂外, 精心设计问题, 根据学生已经掌握的知识水平和下一步希望学生掌握的内容进行问题设计, 同时要确保学生在分析问题和解决问题过程中具有足够的可利用资源、资料收集的多途径和良好的探究学习环境, 便于学生的自主活动。利用参考书和文献提高学生的阅读量, 培养学生的专业兴趣和工程思维, 给学生提供更丰富、更真实的学习经历。PBL模式的教学过程逐渐形成教师和学生间的学术对话, 锻炼学生提问题、想问题和辨问题能力, 促进学生思维的培养和探究知识的兴趣提升, 同时也是对教师自身教学方法、能力和知识水平的更高考验。

2 改变考核方式

注重在实践中培养学生的综合能力, 改变传统以解题式作业为主的方式, 强调学生的主动探索创新精神。尝试大作业与小作业相结合的作业模式, 在利用小作业强化学生建模及计算能力的同时, 采用研究型和调研型的大型作业。可以考虑学习完一种新型分离方法后, 让学生与实习工厂实际联系, 运用课本知识和查阅文献资料, 完成工艺改进并以小论文的形式提交。初步的教学改革实践表明, 学生独立获取、归纳、综述信息和科技写作能力得到改善, 创新能力和实践能力有了明显进步, 课堂教学效果也有了很大提高。

3 树立新型教学理念

3.1 关注科技前沿

随着社会的发展, 分离工程的使用已不限于化学工业和石油工业, 它已逐渐渗透到核能开发、生物技术研究、环境保护和信息工程等行业[3]。同时, 生产对分离技术的要求越来越高, 安排介绍科学发展前沿及化学行业的具体应用必不可少。新型分离技术发展迅速, 膜分离、新型萃取分离、色谱分离、电渗析、特种精馏、泡沫吸附分离、层析技术、耦合与集成技术等新技术层出不穷。在授课中, 充分利用多媒体工具, 介绍和展示分离过程的原理、工艺图及设备图和学科前沿的新进展。这些新型分离技术普及给化工类学生, 可以使学生适应高新技术快速发展的步伐, 使毕业生在化工分离过程方面具有初步的创新与应变能力, 满足人才市场的需要。

3.2 强化工程意识, 建立清洁观念

学生通过工业实习, 对工厂中各种常规和特殊分离过程及其各种形式的分离设备有了一定的了解。利用工厂实例来弥补课堂教学的缺陷, 引导学生的思维方式从以科学、严谨、抽象、演绎为主的“理”与以综合、归纳、合理简化为主的“工”结合起来, 使其建立用理论指导工程技术及技术经济的观点[4]。通过处理工厂实际问题和独立设计并完成实验, 不仅提高了课堂教学的吸引力, 并最终能达到强化学生工程意识, 提高学生创新能力和总体素质的目的。另外, 帮助学生建立清洁工艺的观念。清洁工艺是面向21世纪社会和经济可持续发展的重大课题, 将生产工艺和防治污染有机地结合起来, 将污染物减少或消灭在工艺过程中, 从根本上解决工业污染问题。此过程离不开对传统分离技术的改进, 对新型分离技术的研究、开发和工业应用, 以及分离过程之间、反应与分离过程之间的集成耦合。讲授时注意结合各类分离方法的发展情况, 有选择的针对新型分离技术、工艺及设备进行经济和环境保护方面的分析比较, 使学生能适应化学工业清洁化发展的要求。

3.3 注重实践教学

实践教学是实现培养人才目标的重要方面, 对提高学生的综合素质, 培养学生的动手操作能力和动脑思考能力, 提高学生创造性思维能力, 使学生成为一个复合型人才具有不可替代的作用。具体措施包括: (1) 调整理论教学与实践教学的比例。在坚持“厚基础、宽专业”的原则下, 适当压缩一些理论教学课时, 提高实践教学的比例。 (2) 增加实践教学的环节。实践教学形式可多样化, 包括教学实验、实习课程设计、业务实习过程实践、社会调查研究、课外科技活动、科研训练、各类学科竞赛和参加生产实践等。在实践教学中, 充分尊重学生的主体地位, 允许学生按照教学要求自行设计实验方案, 发挥学生的想像力和创造力。 (3) 制订相对独立的实践教学计划。围绕学生必须具备的能力和技能来设计实践教学环节, 统筹安排, 并用教学文件的形式固定下来。 (4) 建立现代的综合实验教学模式。在实验内容上实现由验证性试验向综合性、设计性试验转变, 突出创新性和实践性, 以培养学生的专业基本操作为中心, 鼓励学生自主设计分离路线, 进行相关物质的纯化, 培养学生利用所学知识分析解决问题的能力。

3.4 教学科研结合

在教学过程中, 把相关的科研工作内容带入课堂, 结合教材内容加以分析和发挥, 丰富了课堂教学内容, 加深了学生对所学化工分离工程知识的理解, 激发了他们的学习积极性、求知欲和探索精神, 有利于培养其创新思维方法和能力, 为其将来从事科研工作、开发和利用本地资源生产化工产品提供思路、奠定理论基础, 同时对报考研究生的学生也具有引导作用。当然, 这也督促教师要不断钻研该课程的前沿知识, 提高自身科研素质和教学水平。

4 加强学生计算机编程和计算机软件应用能力的培养

分离过程研究开发的方法包括解析法和模型法。它是在对过程有了一定深度的理解后, 利用化学工程分析及基础数据建立理论模型, 再利用现有生产装置或类似生产装置的结果与计算机计算结果对比, 修正模型后以此为根据进行新的设计计算[5]。计算过程复杂, 多采用计算机编程求解, 过程的实现需要学生具有一定的计算机能力。但教学中发现许多学生的计算机编程解决实际问题的能力不够, 因此建议在分离工程课程教学前开设相关化工计算软件课程。化工模拟软件在化工计算与设计中显示出越来越重要的作用, 可以实现数值计算及流程模拟等多种功能[6,7]。采用模拟技术提高计算效率、开阔思路、巩固基本概念、进行多因素考察和实现整体优化。随着CHEMCAD、ASPENPLUS、PRO II等模拟软件的出现, 学生可以使用这些通用模拟软件完成化工分离过程计算, 计算效率大幅提高, 教学重点也可由编程转变为过程分析, 深化了学生对分离过程本质的理解, 激发了学生的学习兴趣, 从而达到拓展教学内容和强化能力培养的目的。同时此类软件紧密联系工业生产, 有助于增加学生的就业机会。

5 开通网络课程

网络课件是河南省教育厅“新世纪网络课程建设工程”项目, 它是以现代化的信息技术为手段, 开发出适合远程传输的便于交互式学习的大信息量的网上教育软件[8]。课件主要板块包括:课程首页, 内容导航, 课程简介, 教学大纲, 练习思考, 在线习题, 网络课程, 相关链接, 师生交流和网上答疑。网络课件通过形象生动的教学媒体介入, 为学生提供了丰富准确的教学内容及详实科学的教学资料。网络的跨时空性、强大的交互功能又可加快分离工程知识的补充更新, 帮助学生了解本学科相关的最新科技动态, 拓展了本课程教育的时间与空间。网络课件更为学生利用课后时间自学提供了极大的方便, 使学生的学习富于独立性和创造性, 能充分发挥学生自我管理、自我教育的实践功能, 从而促使学生独立观察、分析能力的发展和主动获取信息、处理信息能力的培养。

6 合理结合多媒体与传统教学手段

多媒体教学是指在多媒体平台上, 借助预先制作的多媒体教学课件来组织实施的教学活动。它具有直观性、容量大、可重复性和深刻性等优点, 变抽象为形象, 将传统教学手段难以展示的各分离单元操作及其设备工作原理用动画、影像、图像等方式在课堂上模拟演示[9,10], 为学生提供了丰富的教学内容及详实的教学资料, 使得课堂教学生动有趣。但其弊端在于颠倒了教与学的主导与主体关系, 不利于课堂师生情感交流, 不利于发挥学生的想象力, 不能突出课堂内容的重难点。因此多媒体的使用应取决于课堂教学的内容, 要根据具体内容进行传统板书与多媒体教学的合理结合, 既发挥多媒体教学的优势, 又发挥教师的主导作用。通过对教学过程的设计和灵活多变的操作, 把握好多媒体使用时机, 正确处理好多媒体和粉笔、黑板、普通教具、语言表达等传统教学手段之间的关系, 正确处理好多媒体教学时间与课堂讲解、板书、交互、反思时间的关系, 通过两者的优势互补, 突出教学重难点, 使多媒体在教师的驾驭下发挥最佳教学功能, 从而达到预期的教学目的。

7 结语

经过数十年来对化学工程专业《化工分离工程》课程的教学改革和探索, 我们已经初步建立了一套可行的教学方法, 提高了学生分析解决问题的能力, 有利于学生工程素质的培养, 使学生初步具有了从事化学工程行业的环境适应能力、技术改造能力和科学技术能力, 切合了化学工程专业的培养目标。今后, 我们还需要积极不断地研究和探索新的教学方法, 使课程教学质量得到更大的提高。

参考文献

[1]朱靖, 刘永光.化工分离工程教学改革与实践[J].河北理工大学学报:社会科学版, 2011, 11 (3) :100-102.

[2]张惠燕.PBL教学法在高职生化分离工程教学中的探索[J].教学方法, 2008, 19 (8) :86-87.

[3]张景亚, 王宪龄, 李朋伟.制药工程专业制药分离工程教学改革的探索[J].价值工程, 2011, 25 (6) :230-231.

[4]吴如春, 谢涛.化工分离工程课程教学改革新尝试[J].广西民族学院学报:自然科学版, 2005, 11 (2) :101-104.

[5]李士雨, 齐向娟.采用CHEMCAD软件强化“化工分离过程”课程教学[J].化学工业与工程, 2005, 22 (1) :61-62.

[6]李伟, 朱家文, 徐心茹, 等.现代化工模拟软件在分离工程课程教学中的应用[J].化工高等教育, 2007, 11 (2) :66-67.

[7]黄国文, 魏丹丹, 高焕方, 等.拓展汽液平衡计算提高分离工程教学质量[J].广东化工, 2011, 38 (7) :191-192.

[8]李华, 胡国勤, 熊跃龙.《制药分离工程》网络课件的设计与开发[J].化工高等教育, 2008, 19 (5) :84-87.

[9]叶庆国, 徐东彦, 钟立梅.多媒体与传统教学在分离工程教学中的结合[J].现代教育技术, 2008, 19 (13) :52-54.

上一篇:业务员每周计划表2020下一篇:《哀王孙》原文及翻译