高一数学集合题型总结(精选10篇)
1.高一数学集合题型总结 篇一
概念、方法、题型、易误点及应试技巧
例
9、已知函数f(x)4x22(p2)x2p2p1在区间[1,1]上至少存在一个实数c,使f(c)0,求实数p的取值范围。(答:(3,))
3考点7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。例10在下列说法中: ⑴“p且q”为真是“p或q”为真的充分不必要条件;
⑵“p且q”为假是“p或q”为真的充分不必要条件; ⑶“p或q”为真是“非p”为假的必要不充分条件; ⑷“非p”为真是“p且q”为假的必要不充分条件。其中正确的是__________(答:⑴⑶)
考点8.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若﹁p 则﹁q” ;逆否命题为“若﹁q 则﹁p”。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“ABBA”判断其真假,这也是反证法的理论依据。例
11、“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为; C90,则A,B不都是锐角)
例
12、命题p:“有些三角形是等腰三角形”,则┐p是()A.有些三角形不是等腰三角形B.所有三角形是等腰三角形
C.所有三角形不是等腰三角形D.所有三角形是等腰三角形
解析:像这种存在性命题的否定命题也有其规律:命题p:“存在xA使P(x)成立”,┐p为:“对任意,它恰与全称性命题的否定命题相反,故的答案为C。xA,有P(x)不成立”
例
13、用反证法证明:已知x、y∈R,x+y≥2,求 证x、y中至少有一个不小于1。证明:假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y≥2矛盾, ∴ 假设不成立∴ x、y中至少有一个不小于
1[注]反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。
考点9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若AB,则A是B的充分条件;若BA,则A是B的必要条件;若A=B,则A是B的充要条件。
例14给出下列命题:①实数a0是直线ax2y1与2ax2y3平行的充要条件;②若“若xy0,则x0或y0”的a,bR,ab0是abab成立的充要条件;③已知x,yR,
(答:在ABC中,若
逆否命题是“若x0或y0则xy0”;④“若a和b都是偶数,则ab是偶数”的否命题是假命题。其中正确命题的序号是_______(答:①④);
例15设命题p:|4x3|1;命题q:x2(2a1)xa(a1)0。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是(答:[0,])
考点10.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为axb的形式,若
a0,则x
ba
;若a0,则x
ba
;若a0,则当b0时,xR;当b0时,x。
例16已知关于x的不等式(ab)x(2a3b)0的解集为(,),则关于x的不等式
(a3b)x(b2a)0的解集为_______(答:{x|x3})
考点11.一元二次不等式的解集(联系图象)。设a0,x1,x2是方程ax2bxc0的两实根,且x1x2,例17解关于x的不等式:ax(a1)x10。(答:当a0时,x1;当a0时,x1或x当a1时,1a
x1)
1a
;当0a1时,1x
1a
;当a1时,x;
考点12.对于方程ax2bxc0有实数解的问题。首先要讨论最高次项系数a是否为0,其次若a0,则一定有b24ac0。对于多项式方程、不等式、函数的最高次项中含有参数时,注意同样的情形。
例
18、a2x2a2x10对一切xR恒成立,则a的取值范围是_______(答:(1,2]);
例19若在[0,
]内有两个不等的实根满足等式cos2x
2xk1,则实数k的范围是_______.(答:[0,1))
考点13.二次方程、二次不等式、二次函数间的联系。二次方程ax2bxc0的两个根即为二次不等式22
axbxc0(0)的解集的端点值,也是二次函数yaxbxc的图象与x轴的交点的横坐标。例20
ax
例21若关于x的不等式axbxc0的解集为(,m)(n,),其中mn0,则关于x的不等
32的解集是(4,b),则a=__________(答:
18);
式cxbxa0的解集为________(答:(,
例23不等式3x2bx10对x[1,2]恒成立,则实数b的取值范围是_______(答:)。
1m)(
1n,));
2.高一数学集合题型总结 篇二
一、直接法
从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法
将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
高一数学复习答疑
问题1:我的基础还可以,上课老师讲的也都能听懂,但是一到自己做就做不出来了,帮忙分析一下原因。
答:数学这个东西是靠着逻辑吃饭的,是靠着逻辑演绎向前推进和发展的。当一个老师把你抱到了逻辑的起点上,告诉你这个逻辑关系是怎样的,比如说饿了就应该找饭吃,下雨了就应该找伞来打,告诉你了这个逻辑规则,你自己肯定会按照逻辑的顺序往前跑,这就叫为什么上课听得懂。
为什么课下自己不会做了呢?是因为课下你找不到逻辑的起点,就像一个运动员空有一身本领,跑得飞快,没有找到起点,没有到起点做好认真的准备,结果人家一发令,你没反应。
有两种学习的模式,一种是靠效仿,老师给我变一个数,出两道类似的练习题,照老师的模子描下来,结果做对了,好象我学会了,这就是效仿的方式来学数学,这种方式在小学是主要手段,在初中,这种手段还占着百分之六七十的分量,但是到了高中就不行了,靠模仿能得到的分数也就是五六十分,其他的分数都要靠你的理解。
所谓理解就是听了老师的一段讲解,看了老师的一个解题过程,你要把他提炼、升华成理性认识,在你的头脑中,应该存下老师讲解的这一段知识和解答的这一道题,他所体现出来的规律性的东西。当你遇到新问题、新试题的时候,你应该拿着这个规律去面对它,这样的话,你就可以把老师讲解的东西很自然地、流畅地用在你的解题里,这就是所谓通过理解,通过顿悟来学习数学。那么高中数学百分之六七十的成分是要靠着这种方式进行学习的。
问题2:我有时候看基础知识的时候定义都没有问题,但是一做题的时候,就转不过来了,耗的时间比较多,怎么办?
答:那你就看看定理、定义、公式都是怎么使用,除了背下它们之外,关键是要把握住这些数学的定义、定理、公式、法则,在解题中是如何运用的,建议你好好从课本出发,如何利用刚才讲的这个定理或者定义去解题的,把它先搞清楚,适当的时候自己做做笔记,问问自己,这个定义是怎么使用的,在这个定理里怎么用的,你自己在旁边注上一两句话。若是一句话也写不出来,显然以后你还不会用。
问题3:现在高考数学题讲究的是通性通法,最后是不是应该加强这方面的训练,再突破一些难题?
答:目前的高考是确实通性通法,但是中等题和难题体现的不完全一样,比如说中等题,在体现通性通法方面就比较暴露,比较直接。
在综合性题目里面,这个通性通法的使用就比较灵活,必须剥掉几层皮之后才能看到。
鉴于这种情况,针对不同层次的同学们,你们对通性通法可以做这样不同层次的追求,比如我市高考数学分数期望值在一百到一百一十几分之间的这样一个档次的,你就要特别注重通性通法在同等题里面的应用,要保证在中等题里面运用通性通法做到万无一失。
如果做得再好一点,你这个分数的期望值完全可以做到的。
在难题里运用通性通法,这个外壳剥不开,个别看不透问题不太大。
如果你期望值是一百二十分以上,甚至达到一百四十几分,相信你在选择填空和中等题方面是有基础和把握的,你们攻克的要点就是通性通法在综合题中间怎么使用,怎么穿破这个迷魂阵,能够剥出里面的,把通性通法用上,这是大家要攻克的,当然这个堡垒比前一个要困难一些。
问题4:老师,关于填空、选择这样小题我现在应该怎样准备?而对于函数数列解析不等式等主体知识,哪部分是现在我应该重点把握的,应该怎样来复习?
答:现在关于选择和填空题,一般的安排是这样,因为我不了解你的学习状况,你的数学水平,所以我只能泛泛的说。
对于一般同学来讲,剩下这四五十天,你可以每天,指的是中等以下,中等或中等以下的同学,每天都做一个选择和填空题的训练,做一次。
如果程度较好的同学你可以两天做一次选择和填空题的训练,这个就是所谓经常热身。另外在热身中,寻求解题的成功率和提高解题速度。
至于说解答题中的属于主体内容的那些大的解答题,应该怎么复习。
首先应该抓住解答题的前三个中等题,一般的考试里面,我们要求考生中等题基本上不丢分,或者丢分不超过5分,看看你是否达到了这个要求。
我们为什么提出这个要求,因为解答题的前三个题,考什么有章可循,题目的难度比最难的选择和填空题都要容易,而且它是凭步骤给分,所以应该说得分是相对较为容易,是我们得分的基础。
至于说最后两道难题,你可以把你做过的属于这个范畴内的题目进行归类和总结,看看这类题的一般解题规律,你在解这类题中的得与失,这样备考也就足够了。
问题5:老师,我现在基础知识还不清楚,现在看高考大纲还能解决问题吗?
答:看考试大纲只是了解高考的考试内容,考试要求,试卷的组成等等,看这个并不能提高你的应试能力,因此还是要回到基础,回到课本上去。
问题6:在考前最后一个月里,数学应该怎样复习才能保证高考能够达到正常的分数?
答:学习方法、准备方法确实是个大问题。大家不要小看这件事情。
比如说,明天就要高考数学了,今天晚上你做什么,如果事先不做好准备,这天晚上过得忙乱的话,想看书看不进去,看书的时候又不知道看哪篇好,是看解析几何还是看代数呢?是看片子呢还是看书呢?还是看参考书呢?
如果事先不计划好,当时很忙乱的话,会给你的心理造成负面影响,使得你当天心理不踏实,晚上睡觉也睡不好,那会直接影响第二天的考试。所以最后这二十几天,学习方法和准备方法是非常非常重要的。
在这里,我给大家关于这方面提几点建议。
第一,应该认识到,就数学知识和数学能力而言,你经过这一年的复习,到了这个时候,基本上已经定型了,你是哪个级别的,那么基本上二十几天不会对这个级别产生更大的变化。因此,我们的工作关键是要把你这一年来复习工作的收获尽量地归纳、提炼、总结。
比如说,我们可以做这样一些工作,按照数学的各个章节,比如说函数,比如三角函数,三角变换,不等式、数列等等,按照课本的这样一个自然的章节顺序,把每一章主要的知识点、基本方法、典型例题,是不是可以做成卡片。
一天做一章,数学有11个左右章节,你11天可以完成这个工作。
这个工作完全之后,有这样的好处,使得我们对知识重新归纳、整理又梳理了一遍,那么知识的网络结构我们就比较清楚了,这一章涉及到的通性通法我也就明白了,再上一点选择例题,作为借鉴,作为参考,这是非常有意义的。
当你做好了这十一张卡片之后,那么你明天高考数学,今天晚上干什么?我就看我自己做的卡片就好了,我把这十几张的卡片从头到尾细细回味一下,冲个澡,踏踏实实睡一觉,因为把数学又重新过了一遍,非常有好处,而且对你大脑的刺激非常明显,短时间内大量的信息进入大脑,使得你对数学的掌握又快又好。这是一个工作要做的,这个工作做好了,对你这二十几天,甚至考前的晚上都会有很好的作用。
其次是你的练习卷子,一定要整理好。按照你做题的先后顺序,把它整理好,装订好。
然后,你就花时间在数学复习里面,就沿着你这一年走过的足迹好好地翻阅你做过的练习,翻阅这个练习,要确定一个主题思想,比如我现在确定这样一个主题,就看我立体几何试题做得如何,那好,这一年做过的卷子,就光看立体几何题,选择填空中的立体几何试题,都看完了,而且一遍做一遍做笔记,这个题亏了,当时做错了,一道题就得了这么一点分,吃亏在什么地方,哪个地方没过来,你想一想,做点笔记,这样的话,这一年走过的足迹,短时间之内在你脑子里又过了一遍电影,好坏得失就归纳开来,这样等于立体集合又复习了一遍。
第二个,可以复习函数或者数列,从知识的角度确定主题,确定十几个、二十几个,一天解决一个。
另外一方面,你的主题可以是考试过程,考试方法和答题技巧,看看这张卷子选择题,你回忆一下当时用了多长时间,第二张卷子当时用了多长时间,一直到最后一张卷子,用了多长时间,看看是不是时间用得越来越少,还有成功率是不是保持在85%左右,如果你能在二十到二十五分钟之内把12道题都做完,而且成功率达到85%,那么我告诉你,祝贺你,高考选择题这一段你已经达到要求了,在选择题上已经有了相当的基础了。
比如说这次考试我是按照题号答的题,看看你的成败得失,下一份试卷是按照我会的题先做,不会的题后做,看看那次考试情况怎么样,总结一下哪个方法最适合你。
3.高一数学集合的概念教学设计 篇三
本资料为woRD文档,请点击下载地址下载全文下载地址课
题:1.1集合-集合的概念教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教
具:多媒体、实物投影仪内容分析:
.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:
一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)
二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、c、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人
(不确定)(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素
(B)3个元素
(c)4个元素
(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
当x∈N时,x∈G;
若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明:在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G
证明:∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=+=+∵a∈Z,b∈Z,c∈Z,d∈Z∴∈Z,∈Z∴x+y=+
∈G,又∵=且不一定都是整数,∴=不一定属于集合G
四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
八、附录:康托尔简介
发疯了的数学家康托尔(Georgcantor,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷
康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果,许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列,通过严格证明得出了许多惊人的结论
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院
真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世
4.高一数学集合题型总结 篇四
(可以考虑分两个教时授完)
教材: 单元小结,综合练习
目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。过程:
一、复习:
1.基本概念:集合的定义、元素、集合的分类、表示法、常见数集2.含同类元素的集合间的包含关系:子集、等集、真子集3.集合与集合间的运算关系:全集与补集、交集、并集
二、苏大《教学与测试》第6课习题课(1)其中“基础训练”、例题
三、补充:(以下选部分作例题,部分作课外作业)
1、用适当的符号(,,,,=,;0 ; {x|x2=0};
{x|x2-5x+6=0} = {2,3};(0,1) {(x,y)|y=x+1};
{x|x=4k,k Z};{x|x=3k,k{x|x=2k,kZ}; {x|x=a2-4a,aR} {y|y=b2+2b,bR}
2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。① 由所有非负奇数组成的集合; {x=|x=2n+1,nN} 无限集② 由所有小于20的奇质数组成的集合; {3,5,7,11,13,17,19} 有限集③平面直角坐标系内第二象限的点组成的集合; {(x,y)|x<0,y>0} 无限集④ 方程x2-x+1=0的实根组成的集合; 有限集⑤ 所有周长等于10cm的三角形组成的集合;
{x|x为周长等于10cm的三角形}无限集
3、已知集合A={x,x2,y2-1}, B={0,|x|,y} 且 A=B求x,y。解:由A=B且0B知 0A
若x2=0则x=0且|x|=0 不合元素互异性,应舍去 若x=0 则x2=0且|x|=0 也不合 ∴必有y2-1=0 得y=1或y=-1
若y=1 则必然有1A,若x=1则x2=1|x|=1同样不合,应舍去
若y=-1则-1A 只能 x=-1这时 x2=1,|x|=1A={-1,1,0} B={0,1,-1} 即 A=B
综上所述: x=-1, y=-14、求满足{1} A{1,2,3,4,5}的所有集合A。
解:由题设:二元集A有 {1,2}、{1,3}、{1,4}、{1,5}
三元集A有 {1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5} 四元集A有 {1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,3,4,5} 五元集A有 {1,2,3,4,5}
5、设U={xN|x<10}, A={1,5,7,8}, B={3,4,5,6,9}, C={xN|0≤2x-3<7}求: A∩B,A∪B,(CuA)∩(CuB),(CuA)∪(CuB),A∩C, [Cu(C∪B)]∩(CuA)。
解:U={xN|x<10}={0,1,2,3,4,5,6,7,8,9},C={xN|3
≤x<5}={2,3,4}
A∩B={5}A∪B={1,3,4,5,6,7,8,9}∵CuA={0,2,3,4,6,9}CuB={0,1,2,7,8}
∴(CuA)∩(CuB)={0,2}(CuA)∪(CuB)={0,1,2,3,4,6,7,8,9}A∩C=又 ∵C∪B={2,3,4,5,6,9}∴Cu(C∪B)={0,1,7,8}∴[Cu(C∪B)]∩(CuA)={0}
6、设A={x|x=12m+28n,m、nZ}, B={x|x=4k,kZ} 求证:1。8A2。A=B 证:1。若12m+28n=8 则m=
7n2
m均不为整数当n=3l+2(3
当n=3l或n=3l+1(lZ)时 lZ)时 m=-7l-4也为整数 不妨设 l=-1则 m=3,n=-1∵8=12×3+28×(-1)且 3Z-1Z
∴8A
2。任取x1A即x1=12m+28n(m,nZ)
由12m+28n=4=4(3m+7n)且3m+7nZ 而B={x|x=4k,kZ} ∴12m+28nB 即x1B 于是AB 任取x2B即x2=4k, kZ
由4k=12×(-2)+28k 且-2kZ 而A={x|x=12m+28n,m,mZ} ∴4kA 即x2A 于是 BA 综上:A=B7、设 A∩B={3},(CuA)∩B={4,6,8},A∩(CuB)={1,5},(CuA)∪(CuB)
={xN*|x<10且x3} , 求Cu(A∪B), A, B。
解一:(CuA)∪(CuB)=Cu(A∩B)={xN*|x<10且x3} 又:A∩B={3}U=(A∩B)∪Cu(A∩B)={ xN*|x<10}={1,2,3,4,5,6,7,8,9}
A∪B中的元素可分为三类:一类属于A不属于B;一类属于B不属于A;一类既
属A又属于B
由(CuA)∩B={4,6,8}即4,6,8属于B不属于A 由(CuB)∩A={1,5}即1,5 属于A不属于B 由A∩B ={3}即3 既属于A又属于B ∴A∪B ={1,3,4,5,6,8} ∴Cu(A∪B)={2,7,9}
A中的元素可分为两类:一类是属于A不属于B,另一类既属于A又属于B∴A={1,3,5}
同理B={3,4,6,8} 解二(韦恩图法)略
8、设A={x|3≤x≤a}, B={y|y=3x+10,xA}, C={z|z=5x,xA}且B∩C=C求实数a的取值。
解:由A={x|3≤x≤a} 必有a≥3 由3≤x≤a知 3×(3)+10≤3x+10≤3a+10
故1≤3x+10≤3a+10 于是 B={y|y=3x+10,xA}={y|1≤y≤3a+10} 又 3≤x≤a∴a≤x≤35a≤5x≤8 ∴C={z|z=5x,xA}={z|5a≤z≤8} 由B∩C=C知 CB由数轴分析:3a108
5a1且 a≥3
2 综上所得3
≤a≤4 且都适合a≥3
:a的取值范围{a|23
≤a≤4 }
9、设集合A={xR|x2+6x=0},B={ xR|x2+3(a+1)x+a21=0}且A∪B=A求实数a的取值。
解:A={xR|x2+6x=0}={0,6}由A∪B=A 知 BA
当B=A时B={0,6}
3(a1)6
当BAa10
a=1此时 B={xR|x22
+6x=0}=A时
1。若 B 则 B={0}或 B={6}
由 =[3(a+1)]24(a21)=0 即5a2+18a+13=0 解得a=1或 a=
当a=1时 x2=0∴B={0}满足BA 24
当a=12
时 方程为 x2∴B={
5x144250x1=x2=125
2。若B=5
}则 BA(故不合,舍去)即 0 由 =5a2+18a+130解得
此时 B= 也满足BA 5
a1
综上:
1310、方程5
a≤1或 a=1 x2ax+b=0的两实根为m,n,方程x2bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=+,A,A且},P={x|x=,A,A且},若已知S={1,2,5,6,9,10},P={7,3,2,6, 14,21}求a,b,c的值。
解:由根与系数的关系知:m+n=amn=bp+q=bpq=c又: mnPp+qS 即 bP且 bS
∴ bP∩S 又由已知得 S∩P={1,2,5,6,9,10}∩{7,3,2,6,14,21}={6} ∴b=6
又:S的元素是m+n,m+p,m+q,n+p,n+q,p+q其和为
3(m+n+p+q)=1+2+5+6+9+10=33∴m+n+p+q=11即 a+b=11 由 b=6得a=5
又:P的元素是mn,mp,mq,np,nq,pq其和为
mn+mp+mq+np+nq+pq=mn+(m+n)(p+q)+pq=732+6+14+21=29 且 mn=bm+n=ap+q=bpq=c
即 b+ab+c=29再把b=6 , a=5 代入即得c=7 ∴a=5, b=6, c=7
5.高一数学集合题型总结 篇五
集合运算符号的记忆
主要知识点有3个.1 交集 并集 补集
▼
集合本身并没什么好考的,因为它是属于数论的范畴。为了考试需要,它需要一个搭档,那就是初等函数.所以一般你看到的集合题,其实都是伪集合题。事实上它考的是简单的二次函数的两根式、初等函数的值域、定义域等.既然是简单加初等,那就不会高到哪里去。显然,函数问题,需要坐标轴,然而集合一般涉及的只是单变量问题,所以只需要最简单的一维坐标轴就够了.【结论】
一维坐标、二次函数都是初中知识,对高中生而言,当然没有理由不会做.▼
【评价】
这道题集合了一般集合题可能会涉及到的多数问题.但归根到底是一道简单题.然而在实际测试中,错误率却相当高.问:为什么简单的问题还做错?
原因1:不懂概念(你需要的是一本教科书);
原因2:没完全读懂题目,符号不认识;
原因3:做题不仔细(非常可惜).【分析】
【解析】
重点回顾:
(1)基础概念,符号记忆(可以用联想记忆,不吐槽).(2)做题方法,数形结合,一维坐标轴.(3)细节注意:①问题是求集合还是求元素个数;②集合元素是点,还是区间;③边界问题,等号是否可取.二
集合的自我修养
含参数的集合题.【注意】
▼ 后记
6.高中数学思想方法题型总结 篇六
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次是函数图象。
2.面对含有参数的初等函数来说,在研究的时候应该抓住参数有没有影响到函数的不变的性质。如所过的定点,二次函数的对称轴或是„„; 如果产生了影响,应考虑分类讨论。
3.填空中出现不等式的题目(求最值、范围、比较大小等),优选特殊值法;
4.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
6.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式问题;
7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可(多观察图形,注意图形中的垂直、中点等隐含条件);个别题目考虑圆锥曲线的第二定义。
9.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
10、向量问题两条主线:转化为基底和建系,当题目中有明显的对称、垂直关系时,优先选择建系。
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
12.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知(即有平方关系),可使用三角换元来完成;
13.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
14.与图象平移有关的,注意口诀“左加右减,上加下减”只用于函数
7.考研数学线性代数题型总结 篇七
》考研复习的强化阶段已经结束,在这段时间,大家应该把所学的知识系统化综合化。数学题目千变万化,有各种延伸和变形,考生如果想在考研数学中取得好成绩,就一定要认真仔细的复习,重视三基(基本概念、基本方法、基本性质),多思考多总结,做到融会贯通。教材把线性代数的内容分为了六章:行列式、矩阵、线性方程组、向量、特征值和特征向量、二次型。考生在做题过程中,应该能发现,线性代数部分考察的知识点和题型都相对固定,以下我们针对考研数学,对线性代数部分的常考题型进行总结:
一、行列式常考的题型有:1.数值型行列式的计算,2.抽象型行列式的计算。
二、矩阵常考的`题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。
三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。
四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。
五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。
8.高一数学集合题型总结 篇八
离考研还有两个月的时间,对于考研数学的复习,应该更加的趋于理性。数学的运算量很大,需要理解性的的学科。题做多了自然有帮助,但是题做得太多了反而让人更不容易理解。所以数学复习的做题量应该掌握,练习一道题就要吃透一道题。建议考生,找一册好题,逐题解答并去理解,越多越好,而不能只注重量。
归纳知识点,总结题型
复习数学的过程中重点的知识要重点进行掌握,每道题都有自己独特的地方也有关系基础知识的.知识点,我们在练习时会遇到各种题型,解题方法多样,大家光理解了方法不可以,还必须能够对题目有感觉,在以后的学习中如果还遇到相同的题型,要能反映到用什么方法。这就需要大家对于解题方法的沉淀。对知识点进行归纳总结,将相关的题型和知识点进行整理,长期下来你就会发现其实很多知识点都是可以串联的,而且总结的多了再遇到类似题型你往往会很快的得出解题的思路。对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。做题很关键但是总结做题的过程更关键,我们做过的题目经常就会忘记,下次见了只会觉得眼熟而不能立刻做出解答,这个时候总结题型就帮了我们加深记忆的大忙。
不同题目运用不同的解题方法
9.高一数学集合题型总结 篇九
一、容斥原理
容斥原理是2004、2005年中央国家公务员考试的一个难点,很多考生都觉得无从下手,其实,容斥原理关键就两个公式:
1.两个集合的容斥关系公式:A+B=A∪B+A∩B
2.三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
请看例题:
【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是()
A.22 B.18 C.28 D.26
【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。
【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?
【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;
A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。
二、作对或做错题问题
【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?
A.12 B.4 C.2 D.5
【解析】
方法一
假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.方法二
作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B
三、栽树问题
核心要点提示:①总路线长②间距(棵距)长③棵数。只要知道三个要素中的任意两个要素,就可以求出第三个。
【例题1】李大爷在马路边散步,路边均匀的栽着一行树,李大爷从第一棵数走到底15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树是共用了30分钟。李大爷步行到第几棵数时就开始往回走?
A.第32棵 B.第32棵 C.第32棵 D.第32棵
解析:李大爷从第一棵数走到第15棵树共用了7分钟,也即走14个棵距用了7分钟,所以走没个棵距用0.5分钟。当他回到第5棵树时,共用了30分钟,计共走了30÷0.5=60个棵距,所以答案为B。第一棵到第33棵共32个棵距,第33可回到第5棵共28个棵距,32+28=60个棵距。
【例题2】为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:()
A.8500棵 B.12500棵 C.12596棵 D.13000棵
解析:设两条路共有树苗ⅹ棵,根据栽树原理,路的总长度是不变的,所以可根据路程相等列出方程:(ⅹ+2754-4)×4=(ⅹ-396-4)×5(因为2条路共栽4排,所以要减4)
解得ⅹ=13000,即选择D。
四、和差倍问题
核心要点提示:和、差、倍问题是已知大小两个数的和或差与它们的倍数关系,求大小两个数的值。(和+差)÷2=较大数;(和—差)÷2=较小数;较大数—差=较小数。
【例题】甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲班和乙班各有图书多少本?
10.高一数学集合题型总结 篇十
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,„„
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { „ } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
常用数集及其记法:
1. 非负整数集(即自然数集)记作:N
2. 正整数集N*或 N+
3. 整数集Z
4. 有理数集 Q
5. 实数集 R
集合的三要素: 1元素的确定性;2元素的互异性;3元素的无序性
(例子 略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 aA,相反,a不属于集A 记作 aA(或aA)
例:见P4—5中例
四、练习P5 略
五、集合的表示方法:列举法与描述法。。
1. 列举法:把集合中的元素一一列举出来。
例:由方程x-1=0的所有解组成的集合可表示为{1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
2. 描述法:用确定的条件表示某些对象是否属于这个集合的方法。
① 语言描述法:例{不是直角三角形的三角形}再见P6例
② 数学式子描述法:例不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}或
{x:x-3>2}再见P6例
六、集合的分类
1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略
3.空集不含任何元素的集合
七、用图形表示集合P6略
八、练习P6
小结:概念、符号、分类、表示法
【高一数学集合题型总结】推荐阅读:
高一数学集合新课教案06-16
高一数学集合与简易逻辑测试卷08-27
高一数学教案:集合的表示方法10-03
高一期中数学总结08-18
高一数学教育实习个人总结07-01
高一数学期中考试总结与反思06-28
高一上期数学备课组工作总结08-01
高一第一学期数学总结10-07
高一数学备课计划06-29