高等数学各大定理证明

2024-08-16

高等数学各大定理证明(10篇)

1.高等数学各大定理证明 篇一

智立方教育初一数学“命题、定理与证明”练习

1、判断下列语句是不是命题

(1)延长线段AB(不是)

(2)两条直线相交,只有一交点(是)

(3)画线段AB的中点(不是)

(4)若|x|=2,则x=2(是)

(5)角平分线是一条射线(是)

2、选择题

(1)下列语句不是命题的是(C)

A、两点之间,线段最短B、不平行的两条直线有一个交点

C、x与y的和等于0吗?D、对顶角不相等。

(2)下列命题中真命题是(C)

A、两个锐角之和为钝角B、两个锐角之和为锐角

C、钝角大于它的补角D、锐角小于它的余角

(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有(B)

A、1个B、2个C、3个D、4个

3、分别指出下列各命题的题设和结论。

(1)如果a∥b,b∥c,那么a∥c

(2)同旁内角互补,两直线平行。

(1)题设:a∥b,b∥c结论:a∥c

(2)题设:两条直线被第三条直线所截的同旁内角互补。

结论:这两条直线平行。

4、分别把下列命题写成“如果„„,那么„„”的形式。

(1)两点确定一条直线;

(2)等角的补角相等;

(3)内错角相等。E

C(1)如果有两个定点,那么过这两点有且只有一条直线 D(2)如果两个角分别是两个等角的补角,那么这两个角相等。

(3)如果两个角是内错角,那么这两个角相等。

5、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF

证明:∵AB⊥BC,BC⊥CD(已知)

∴∠ABC=∠BCD=90°(垂直定义)

∵∠1=∠2(已知)

∴∠EBC=∠BCF(等式性质)∴BE∥CF(内错角相等,两直线平行)

6、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。

证明:∵AC⊥BC(已知)

A D∴∠ACB=90°(垂直定义)

∴∠BCD是∠DCA的余角

∵∠BCD是∠B的余角(已知)∴∠ACD=∠B(余角定义,同角的余角相等);

7、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。

D

证明:∵AB∥CD(已知)∴∠4=∠BAE(两直线平行同位角相等)∵∠3=∠4(已知)

∴∠3=∠BAE(等量代换)∵∠1=∠2(已知)C E

∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAE=∠CAD∴∠3=∠CAD(等量代换)

∴AD∥BE(内错角相等,两直线平行)

8、已知,如图,AB∥CD,∠EAB+∠FDC=180°。F

求证:AE∥FD。

B

证明:∵AB∥CD

D

∴∠AGD+∠FDC=180°(两直线平行,同旁内角互补)∵∠EAB+∠FDC=180°(已知)∴∠AGD=∠EAB(同角的补角相等)∴AE∥FD(内错角相等,两直线平行)

9、已知:如图,DC∥AB,∠1+∠A=90°。

求证:AD⊥DB。证明:∵DC∥AB(已知)

B

∴∠A+∠ADC=180°(两直线平行,同旁内角互补)即∠A+∠ADB+∠1=180°∵∠1+∠A=90°(已知)∴∠ADB=90°(等式性质)∴AD⊥DB(垂直定义)

10、如图,已知AC∥DE,∠1=∠2。求证:AB∥CD。

证明:∵AC∥DE(已知)

∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)

∴∠1=∠ACD(等量代换)

∴AB∥CD(内错角相等,两直线平行)

11、已知,如图,AB∥CD,∠1=∠B,∠2=∠D。求证:BE⊥DE。

B

C

EB

D、证明:作EF∥AB∵AB∥CD B

∴∠B=∠3(两直线平行,内错角相等)∵∠1=∠B(已知)

∴∠1=∠3(等量代换)

D∵AB∥EF,AB∥(已作,已知)

∴EF∥CD(平行于同一直线的两直线平行)∴∠4=∠D(两直线平行,内错角相等)∵∠2=∠D(已知)∴∠2=∠4(等量代换)

∵∠1+∠2+∠3+∠4=180°(平角定义)∴∠3+∠4=90°(等量代换、等式性质)即∠BED=90°

∴BE⊥ED(垂直定义)

12、求证:两条平行直线被第三条直线所截,内错角的平分线互相平行。已知:AB∥CD,EG、FR分别是∠BEF、∠EFC的平分线。求证:EG∥FR。

B 证明:∵AB∥CD(已知)

1∴∠BEF=∠EFC(两直线平行,内错角相等)G

∵EG、FR分别是∠BEF、∠EFC的平分线(已知)F

∴2∠1=∠BEF,2∠2=∠EFC(角平分线定义)∴2∠1=2∠2(等量代换)∴∠1=∠2(等式性质)

∴EG∥FR(内错角相等,两直线平行)

13、如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D. 试说明:∠A=∠F.

考点:平行线的判定与性质. 专题:证明题.

分析:先根据对顶角相等结合∠1=∠2推出∠3=∠4,然后根据内错角相等,两直线平行证明BD∥CE,再根据两直线平行,同位角相等得到∠5=∠C,从而推出∠5=∠D,再根据内错角相等,两直线平行证明AC∥DF,然后根据两直线平行,内错角相等即可得证.

解答:∴∠3=∠4,∴BD∥CE,∴∠5=∠C,∵∠C=∠D,∴∠5=∠D,∴AC∥DF,∴∠A=∠F.

证明:如图,∵∠1=∠3,∠2=∠4,∠1=∠2,

2.高等数学各大定理证明 篇二

关键词:高等数学,定理,逆命题,反例

高等数学中很多定理的逆命题往往是不成立的, 而这些不成立的逆命题又很容易被学生误以为是正确的, 从而用到解题过程当中, 造成错误的解法和结果.于是, 在教学过程中如何简明扼要地推翻这些不成立的逆命题便显得尤为重要.我们都知道, 高等数学中要证明一个命题是正确的, 需要非常严密的论证过程, 而要说明一个命题是错误的, 只需举出一个推翻结论的例子就可以了, 也就是我们通常所说的反例.在讲解一些逆命题不正确的定理时, 合理利用反例不但可以简单明了地让学生掌握所学定理, 而且可以让学生深入思考、理解定理的本质, 激发他们研究数学问题的兴趣, 提高学习效率.下面结合我们在高等数学教学过程中的具体实践, 对一些容易引起学生混淆且教科书并未明确讲解的定理逆命题的反例进行归纳性研究.

1.无界变量不一定是无穷大量

无穷大量一定是无界变量, 这是一个很容易证明的定理, 但其逆命题不真, 而学生往往很容易误以为无界变量也一定是无穷大量.这里可举反例:, k为正整数.

当n→∞时, xn是无界变量, 但由于n→∞时, 子数列1n0, 显然xn不是无穷大量.

2.有原函数的函数不一定连续

连续函数一定有原函数, 这是在不定积分一章提出而在微积分基本定理一节得以证明的定理, 很多同学认为有原函数的函数也一定是连续的, 其实有原函数的函数并不一定是连续的.可举反例:

F (x) ={x2sin1xx00x=0.

由于

F (x) =f (x) ={2xsin1x-cos1xx00x=0 (F (x)

在x=0处的导数要用定义来求) , 所以F (x) 为f (x) 的一个原函数, 但是f (x) 在点x=0是不连续的.

3.多元函数可微分, 其偏导数不一定连续

在多元函数全微分一节中有定理:若函数z=f (x, y) 的偏导数zxzy在点 (x, y) 连续, 则函数在该点可微分.该定理在教材中已经严格证明, 但其逆命题却不真, 也就是说, 若函数z=f (x, y) 在点 (x, y) 可微分, 其偏导数zxzy在点 (x, y) 并不一定连续.如果直接告诉学生这个结论的话, 可能会很难让他们立刻接受.可举反例:利用偏导数的定义易求得fx (0, 0) =0, fy (0, 0) =0, 所以Δz-[fx (0, 0) Δx+fy (0, 0) Δy]=[ (Δx) 2+ (Δy) 2]sin1 (Δx) 2+ (Δy) 2, 则容易得出当ρ= (Δx) 2+ (Δy) 20时, Δz-[fx (0, 0) ·Δx+fy (0, 0) ·Δy]是较ρ高阶的无穷小, 即函数f (x, y) 在点 (0, 0) 处是可微分的.另一方面, 由于当x2+y2≠0时, zx=fx (x, y) =2xsin1x2+y2-xx2+y2cos1x2+y2, 则lim (x, y) (0, 0) fx (x, y) 0, 同理可得lim (x, y) (0, 0) fy (x, y) 0, 所以偏导数zxzy在点 (0, 0) 不连续.举此反例不但可以让学生了解该逆命题是不真的, 而且可以让学生进一步明确如何去判定多元函数在一点的可微性, 可谓一举多得.

4.收敛的交错级数不一定满足莱布尼茨条件

若交错级数n=1 (-1) n-1un满足条件: (1) unun+1 (n=1, 2, 3, …) ; (2) limnun=0, 则交错级数n=1 (-1) n-1un收敛.这是无穷级数一章已经证明的一个定理, 但其逆命题是个假命题.很多同学在学习完这个定理后, 会误认为收敛的交错级数一定要满足定理中的两个条件 (莱布尼茨条件) , 事实上, 收敛的交错级数不一定满足莱布尼茨条件.可举反例:n=2 (-1) n-1n+ (-1) n-1, 容易观察到该交错级数中, 1n+ (-1) n-1不是一直大于1n+1+ (-1) n的 (如n=5时) , 即该级数不满足定理中的莱布尼茨条件.将该级数的一般项分子分母同乘以n- (-1) n-1, 则n=2 (-1) n-1n+ (-1) n-1=n=2 (-1) n-1n-1n2-1=n=2 (-1) n-1nn2-1-n=21n2-1, 右侧是两个收敛级数的差仍收敛.由此可见, 不满足莱布尼茨条件的交错级数亦可收敛.

以上是我们在教学过程中归纳出来的, 容易让学生理解且教材中并未提及的四个反例.在高等数学的教学过程中, 适当的引入一些反例, 对帮助学生正确理解和运用定理, 掌握所学知识的本质, 提高课堂学习效率都会起到良好的促进作用.因此, 在教学过程中, 正确运用反例来提高教学效率是必要的.

参考文献

[1]同济大学数学系.高等数学 (第六版) [M].北京:高等教育出版社, 2007.

[2]吴赣昌.高等数学 (第二版) [M].北京:中国人民大学出版社, 2007.

[3]朱勇.高等数学中的反例[M].武汉:华中工学院出版社, 1986.

3.高等数学各大定理证明 篇三

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

已知:在⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC(如图一),求证:∠BAC= ∠BOC。

分析:圆周角∠BAC与圆心O的位置关系有三种:(1)圆心O在∠BAC的一条边AB(或AC)上(如图二);(2)圆心O在∠BAC的内部(如图三);(3)圆心O在∠BAC的外部(如图四)。

在第一种位置关系中,圆心角∠BOC恰为△AOC的外角,这时很容易得到结论;在第二、三两种位置关系中,均可作出过点A的直径,將问题转化为第一种情况,同样可以证得结论。这充分体现了一种重要的数学思想——化归思想。

数学问题的解决几乎都离不开化归,只是体现的形式有所不同。计算题是利用规定的运算法则进行化归,证明题是利用公理、定理或已经证明了的命题进行化归,应用题利用数学模型化归,因此,离开了化归,数学问题将无法解决。通过一定的转化过程,把待解决的问题转化为已经解决或比较容易解决的问题或这类问题的某种组合,这种思想被称之为化归思想。从化归的途径上来看,大致可以分为下面两种:

一、新知识向已有知识的转化

在初中阶段,有许多新知识的获得或新问题的解决都是通过转化为已知知识或已解决的问题来完成的,也就是将新知识向已有知识进行转化,从而使问题得到解决。下面就以解方程为例来进行分析。

解一元二次方程时有以下四种基本解法:

(一)如果方程的一边是关于X的完全平方式,另一边是个非负数,则根据平方根的意义将形如(x+m)2=n(n≥0)的方程转化为两个一次方程而得解,此为直接开平方法。

(二)如果将方程通过配方恒等变形,一边化为含未知数的完全平方式,另一边为非负数,则其后的求解可由思路一完成,此为配方法。

(三)如果方程一边能分解成两个一次因式之积,另一边为零,就可以得到两个因式分别为零的一次方程,它们的解都是原方程的解,此为因式分解法。

(四)如果以上三条思路受阻,便可把方程整理为一般形式,直接利用公式求解。

纵观以上四种方法,不难发现,方法一是依据平方根的意义将二次方程转化为一次方程,完成了由“二次”向“一次”的转化。方法二中的“配方”仅完成了方程的恒等变形,把问题转移到“可开方”上来,并未完成“降次转化”这一实质性工作,但已经为“二次”向“一次”转化创造了条件,因而习惯上称之为“配方法”,配方法的实质就是通过转化为开平方来解决的。方法三即因式分解法也顺利地实现了由“二次”转化为“一次”的目的。方法四即所谓公式法,对一般的一元二次方程,通过配方,转化为开平方求得一般结论,即求根公式。公式法实际上已将解方程转化成为代数式的求值问题,而公式的得到则是化归思想的典型体现。纵观整个初中教材,不难发现除了解方程问题,还有许多知识的转化都属于新知识向已有知识的转化。

二、一般情况向特殊情况的转化

本文开头圆周角定理的证明就是先解决特殊条件或特殊情况下的问题,然后通过恰当的化归方法把一般情况下的问题转化为特殊情况下的问题来解决,这也是顺利解决某些问题的一种重要的化归途径,特别是在中考题的最后一题中,往往也有许多时候是需要先解决特殊条件下的问题,然后再通过化归把一般情况下的问题转化为特殊条件下的情形来解决。

三、化归思想方法的教学策略

从上面的分析中,我们不难发现化归思想在初中数学的学习中有着举足轻重的作用,是一种非常重要的数学思想。那么如何在日常教学中更好的渗透和落实化归思想呢?

(一)夯实基础知识,完善知识结构是落实化归思想方法教学的基础。教学过程中,可从以下几个方面做起:

1、重视概念、公式、法则等基本数学模型的教学,为寻求化归目标奠定基础。从某种意义上说,中学数学教学实际上是数学模型的教学,建立数学模型是实现问题的规范化和程序化,运用模型的过程即是转化与化归的过程。

2、养成整理、总结数学方法的习惯,为寻求化归方法奠定基础。差生之所以拿到基本题没有思路,其根本原因是其知识结构残缺不全。

3、完善知识结构,为寻求化归方向奠定基础。在平时教学中帮助学生完善知识结构,例如做好单元小结,其中画知识结构图或列知识表是完善知识结构使知识系统化、板块化的有效方法之一。通过表格或网络图,知识之间的相互联系、依存关系一目了然,为问题的转化提供了准确的方向。

(二)培养化归意识,提高转化能力是实现化归思想方法教学的关键

数学是一个有机整体,它的各部分之间相互联系、相互依存、相互渗透,使之构成了纵横交错的立体空间,我们在研究数学问题的过程中,常需要利用这些联系对问题进行适当转化,使之达到简单化、熟悉化的目的。要实施转化,首先须明确转化的一般原理,掌握基本的化归思想和方法,并通过典型的问题加以巩固和练习。因此,在平时的教学中,我们不断教会学生解题,通过仔细的观察、分析,由问题的条件、图形特征和求解目标的结构形式联想到与其有关的定义、公式、定理、法则、性质、数学解题思想方法、规律以及熟知的相关问题解法,由此不断转化,建立条件和结论之间的桥梁,从而找到解题的思路和方法。

(三)掌握化归的一般方法,是实现数学化归思想方法教学的基本手段

化归的实质是不断变更问题,因此,可以从变形的成分这个方面去考虑,也可以从实现化归的常用方法直接去考虑。在实际运用中,这两个方面又是互相渗透、互相补充的。初中阶段常用的化归方法有恒等变换法,具体包括分解法、配方法、待定系数法等:其次是映射反演法,具体包括换元法、坐标法等。

(四)深入教材,反复提炼与总结是实现化归思想方法教学的基本途径

4.高等数学各大定理证明 篇四

在考研数学中,有关中值定理问题的证明是一个比较难的考点,很多考生反映在做中值定理证明时没有思路,虽然看例题能明白,但自己做题时还是比较困难,之所以出现这种情况,主要原因在于这些同学没有掌握中值定理证明题的分析方法和技巧,没有掌握其证明规律,为了使大家能够掌握恰当的方法,下面中公考研数学辅导老师就以几个证明题为例来跟大家谈谈如何做分析证明题。

一、中值定理问题的证明分析方法

首先,做证明题同其它题一样,也要先仔细审题,认真解读题目的条件和要证的结论,理解其含义;

其次,做证明题需要先进行分析推理,分析的方向有两个,一个是根据题目的条件来向结论所在方向推导,另一个是由结论倒推条件,直到结论与条件挂上钩,二者联系在一起;

最后,也是做中值定理证明题不同于其它问题的地方,就是要充分理解各个中值定理的关键使用条件和方法,必要时作相应的辅助函数来进行证明。

二、中值定理问题证明实例

全国高校报录比汇总 全国高校报录比汇总

全国高校报录比汇总 全国高校报录比汇总

全国高校报录比汇总 全国高校报录比汇总

此等式变形为某一个函数的导数的形式,并以此函数作为辅助函数来证明结论。对于中值定理问题的证明,大家还应该多做一些练习题来进一步提高解题能力。最后预祝各位学子在2016考研中能实现自己的梦想。

5.高等数学各大定理证明 篇五

知识与技能目标:了解命题、真命题、假命题、定理的含义.能识别真假命题。会区分命题的题设和结论。

过程与方法目标:通过命题的真假,培养分类思想。通过命题的构成,培养学生分析法。通过命题的构成,培养语言推理技能。

情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。通过学习命题真假,培养学生尊重科学、实事求是的态度。通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。

重点:命题、定理的概念;区分命题的题设和结论。

难点:区分命题的题设和结论;会把一些简单命题改写成“如果„„那么„„ ”的形式。

一、学前准备

预习疑难:。

二、探索与思考

(一)命题:

1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;

②等式两边都加同一个数,结果仍是等式;

③对顶角相等;

④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断

2、定义:,叫做命题

3、练习:下列语句,哪些是命题?哪些不是?

(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?

(3)经过直线AB外一点P, 可以作一条直线与AB平行.请你再举出一些例子。

(二)命题的构成:

1、许多命题都由和两部分组成..2、命题常写成“如果……那么……”的形式,这时,“如果”后接的部分是, .....

“那么”后接的的部分是.......

(三)命题的分类真命题:。

(定理:)

假命题:。

三、应用:

1、指出下列命题的题设和结论:

(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;

(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°

2、把下列命题改写成“如果……那么……”的形式:

(1)互补的两个角不可能都是锐角:。(2)垂直于同一条直线的两条直线平行:。(3)对顶角相等:。

3、判断下列命题是否正确:(1)同位角相等

(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角.四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测:

1、判断下列语句是不是命题

(1)延长线段AB()

(2)两条直线相交,只有一交点()

(3)画线段AB的中点()(4)若|x|=2,则x=2()(5)角平分线是一条射线()

2、选择题

(1)下列语句不是命题的是()

A、两点之间,线段最短C、x与y的和等于0吗?

B、不平行的两条直线有一个交点 D、对顶角不相等。B、两个锐角之和为锐角

(2)下列命题中真命题是()A、两个锐角之和为钝角

C、钝角大于它的补角D、锐角小于它的余角(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有()

A、1个B、2个

3、分别指出下列各命题的题设和结论。

(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。

4、分别把下列命题写成“如果……,那么……”的形式。

(1)两点确定一条直线;(2)等角的补角相等;

C、3个

D、4个

(3)内错角相等。

5、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推当的根据:

(1)∵a∥b,∴∠1=∠3(_________________);(2)∵∠1=∠3,∴a∥b(_________________);(3)∵a∥b,∴∠1=∠2(__________________);

(4)∵a∥b,∴∠1+∠4=180º(_____________________)(5)∵∠1=∠2,∴a∥b(__________________);(6)∵∠1+∠4=180º,∴a∥b(_______________).6、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF 证明:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()

7、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。证明:∵AC⊥BC(已知)∴∠ACB=90°()∴∠BCD是∠ACD的余角

∵∠BCD是∠B的余角(已知)

∴∠ACD=∠B()

8、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。

D

证明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)

∴∠3=∠()∵∠1=∠2(已知)C∴∠1+∠CAF=∠2+∠CAF()即∠=∠∴∠3=)

∴AD∥BE()

F

C D E

b2 ac4

理填上适

D A

6.高等数学各大定理证明 篇六

1.1 假设条件

假设1:无摩擦市场假设

 不考虑税收;

 公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用;  无关联交易存在;

 不管举债多少,公司和个人均无破产风险;

 产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄断、外部性、信息不对称、公共物品等市场失灵状况;不存在帕累托改善;等等;

 资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会;  投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。

假设2:一致预期假设

 所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全理性的前瞻性分析,因此大家对证券价格预期都是相同的,且投资者对组合的预期收益率和风险都按照马克维兹的投资组合理论衡量。

1.2 MM定理第一命题及其推论

MM定理第一命题:

有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。

第一命题的含义:

即公司的市场价值(即债权的市场价值+股权的市场价值,不含政府的税收价值)与公司的资本结构无关,而只与其盈利水平有关。这说明未来具有完全相同的盈利能力的公司市场价值相同,但由于其负债程度不同等因素,故它们的净资产可能有很大差异。

MM定理第一命题证明过程:证明方法是无套利均衡分析法。

基础假定:我们假定有两家公司—公司A和公司B,它们的资产性质完全相同但资本结构完全不同。A公司没有负债(这是一种极端假设,但作为比较基准更能说明问题);B公司的负债额度是D,假设该负债具有永久性质,因为可持续盈利的公司总可以用新发行的债券来偿还老债券(这与宏观经济学中的庞兹计划完全不同,那是没有收入来源且信息不对称下导致的终生借债消费计划无效)。

细节假设:

 B公司当前债务利率为r(固定值);  A、B两公司当前的股本分别是SA和SB(固定值);

 A、B两公司当前权益资本预期收益率(即市场的资本化率,也就是其股票的预期收益率)分别是rA和rB(固定数值,因为仅指当前的预期收益率);

 A、B两公司任何年份的息税前利润(EBIT)相同,数额都为EBIT(随机变量,每年的数值都是它的一个数据点);  A、B两公司当前的市场价值分别记为PVA和PVB(固定值);

 A、B两公司当前股票的市场价格与其真实价值完全一致,分别为MPA和MPB(固定值);

 A、B两公司当前的股东权益分别记作SEA和SEB(固定值)。

注:假定中固定值较多是因为静态考察公司当前价值。

考虑一个套利策略:卖出A公司1%的股票;同时买入B公司1%的股票和1%的债券(上述比例可任意假定,但必须均为同一值)。这种套利策略产生的即时现金流和未来每年的现金流见表1。

表1 上述套利策略的现金流

头寸

即时现金流

未来每年现金流

卖出1%A股票

0.01* PVA

-0.01*EBIT

买入1%B股票

-0.01*SB*MPB

0.01*(EBIT-D*r)买入1%B债券

-0.01*D

-0.01* D*r 净现金流

NC

0

首先,任何公司的资产都等于账面的负债加权益,A公司无负债,因此有

PVASEA;PVBDSEB

其次,任何公司的股票价格都等于其股东权益与股本的比值:

MPAPVA/SA;MPB(PVBD)/SB①

再次,市场不应该存在无风险套利机会,故NC=0,也就是

0.01*PVA0.01*SB*MPB0.01*D0 MPB(PVAD)/SB②

由①②推得:PVAPVB③,命题证毕。

MM定理第一命题推论一:

债转股后如果盈利未变,那么企业的股票价格也不变。

证明:假设B公司的债务权益比为k,则:

kD/SEB

1k(SEBD)/SEBPVB/SEBPVA/SEBSA/SB④

将③④代入①得:

MPAPVA/SAPVB/(SB(1k))(DSEB)/(SB(1k))SEB(1k)/(SB(1k))MPB

证毕。

MM定理第一命题推论二:

股东期望收益率会随财务杠杆的上升而上升。

含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。

证明:B公司的资产负债率(RDA)和股东权益比率(REA)分别为:

RDABD/PVBD/(DSEB)k/(1k)REABSEB/PVBSEB/(DSE)1/(1k)

由于公司所有税前收益均优先用于分派股息,而且市场有效性保证了股票的价格反映股票价值。则由股票收益现值模型可得A、B两公司的股票预期收益率rA和rB分别满足:

MPAEBIT/SAEBIT jSA*rAj1(1rA)(EBITR*D)/SBEBITR*D j(1rB)SB*rBj1MPB同时EBIT>r*PVB,因为这表示即使公司全部举债经营,公司产生的税息前收益也足够支付利息,也就是说股票的收益率大于债券的收益率,由于系统风险和预期收益相匹配的结果导致这个不等式必然成立。故可推导出:

rBEBITr*DEBITr*DEBITEBITEBITrA,证毕。

SEBPVBDPVBPVASA*MPAMM定理第一命题推论三:

股东每股盈利也会随着财务杠杆的上升而上升。

含义:正常情况下,债券转为股票之后,公司股东的每股盈利也会下降。证明:A、B两公司每股盈利分别为:

EAEBIT(EBITR*D);EB⑤ SASB将④代入⑤的第二式得: EB(EBITR*D)(1k)(EBITR*D)k*EBIT(1k)*R*D⑥ EASBSASA由于EBIT>r*PVB,再将前面RDAB定义式代入,可以推得:

kEBITk*EBIT(1k)*R*D(1k)(EBITR*D)(1k)*D(r)0⑦

1kPVB由⑥⑦得:EBEA,证毕。

注:数学基础非常少的人有可能会觉得上述三个推论感性理解上有相互矛盾的地方,故须深入思考现实过程。

1.3

MM定理第二命题:

公司加权平均资本成本(WACC)与公司的资本结构无关。

证明:由于公司A仅有股权融资,故WACCArA MM定理第二命题及其推论

WACCBrBSEBDEBITEBITrrA①,证毕。PVBPVBPVBPVAMM定理第二命题推论:

有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。

(是不是和CAPM、多因子模型、套利定价和单证券定价模型有点像啊,呵呵)

证明:由①(重新编号)得:

rB2 PVBr*DDrArA(rAr)rAk(rAr),证毕。SEBSEBSEB有税收条件下的MM定理 2.1

假设条件

考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。

2.2 MM定理第一命题及其推论

MM定理第一命题:

在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。

证明:假定A、B两公司的所得税税率都是T(固定税率制,累进税率制等也一样的),那么两公司的税后收益(EAT)分别为:

EATA(1T)*EBIT

EATB(1T)*(EBITr*D)r*D(1T)*EBITT*r*DEATA,证毕。

其中T*r*D即税盾效应,与A公司税后盈利相比,这是B公司多出来的部分,这是由于B公司的财务杠杆起作用了:公司价值是股权市价加债权市价,A公司每年产生的现金流EBIT都要交所得税,而B公司中EBIT仅有一部分交所得税,故省出一部分价值计入到公司的债权价值中。或者也可以理解为没有负债的公司举债时,政府需要把原来征的税的一部分退给公司的债主,或者说举债成本里T*r是政府买单的(机会成本的角度讲),而公司举债的成本仅是(1T)*r,这是从金融的角度或者说机会成本的角度讲的,就如经济利润和会计利润的差别一样,而证券定价的基准正是从金融的角度给出才能准确。

显然A、B两公司的税前价值仍然一样,相当于不考虑税收。我们用带撇号的字母表示考虑税收的变量,则有税收情况下A、B两公司的市场价值分别为:

PVA/PVA(1T)

(1T)r*PVBr*D)DPVA/D(1)PVA/① EBITEBIT(1T)r*PVB)叫做税盾的市场价值。其中D(1EBITPVB/PVB(1T)(1

MM定理第一命题推论一:

在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。

证明:考虑税收,A公司股票预期收益率为:

/rAEBIT(1T)EBIT(1T)EBIT(1T)rA② //SA*MPAPVA(1T)PVA由不考虑税收推论二证明的最后一个公式和①(重新编号)得B公司股票的预期收益率为:

rD(EBITrD)(1T)rD(EBITrD)(1T)rD(EBITrD)(1T)rD1TrB///(1T)*rD*PVBrDSB*MPBPVBDPVA(1)PVA/EBITEBITEBITrD//再由②得:rBrArDrDPVA(1T)(1)EBIT③,由于EBIT>rD(盈利足够付利息,保//证不破产),故rB,证毕。rA

MM定理第一命题推论二:

考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。

证明:A、B两公司每股盈利分别为:

/EA(1T)EBIT/(1T)(EBITrD)rD④;EBSASB将第一部分第一命题推论一下面的④代入④得:

/EB(1k)(1T)(EBITrD)rDSA/EATrDk(1T)(EBITrD)rDSA/EA

因EBIT>rD,故上不等式成立,证毕。

MM定理第一命题推论三:

在考虑税收情况下,WACC与公司资本结构有关。(证略)

根据CAPM模型,有税收后的贝塔系数/和无税收情况下的贝塔系数的关系为/(1(1T)D)(证明从略),由此得出股权预期收益,然后再根据公司计算出SEWACC,显然WACC是受资本结构影响的。MM定理第一命题推论四:

在考虑税收情况下,有负债的公司的权益资本成本仍然大于同一风险等级的无负债公司的权益资本成本,风险补偿的形式也更复杂(证明如③)。

注:一个延伸,PV/PV(1(1Tc)(1Ts))D,Tc表示企业所得税率,Ts表示股票收入的税

1Td率,Td表示利息收入的税率,个人可试着证明一下子。

公司税MM定理命题二

在考虑所得税情况下,负债企业的权益资本成本率(KSL)等于同一风险等级中某一无负债企业的权益资本成本率(KSU)加上一定的风险报酬率。风险报酬率根据无负债企业的权益资本成本率和负债企业的债务资本成本率(KD)之差和债务权益比所确定。其公式为:

7.原创正弦定理证明 篇七

即c=

∴abc,c=,c=.sinAsinBsinCacbcabc== sinAsinBsinC

2.斜三角形中

证明一:(等积法)在任意斜△ABC当中

S△ABC=absinCacsinBbcsinA

两边同除以abc即得:

证明二:(外接圆法)

如图所示,∠A=∠D ∴aaCD2R sinAsinD

bc=2R,=2R sinBsinC12121212abc== sinAsinBsinC

同理

证明三:(向量法)

过A作单位向量j垂直于AC

由 AC+CB=AB

两边同乘以单位向量j 得 j•(AC+CB)=j•AB 则•+•=•

∴|j|•|AC|cos90+|j|•|CB|cos(90C)=| j|•|AB|cos(90A)

∴asinCcsinA∴ac= sinAsinC

cbabc同理,若过C作j垂直于CB得: =∴== sinCsinBsinAsinBsinC

正弦定理的应用 从理论上正弦定理可解决两类问题:

1.两角和任意一边,求其它两边和一角;

2已知a, b和A, 用正弦定理求B时的各种情况

:

⑴若A为锐角时: absinA无解absinA一解(直角)

bsinAab二解(一锐, 一钝)ab一解(锐角)

已知边a,b和A

a

无解a=CH=bsinA仅有一个解

CH=bsinA

8.余弦定理证明过程 篇八

解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得: a2=CD2+BD2

∵在Rt△ADC中,CD2=b2-AD2

又∵BD2=(c-AD)2=c2-2c·AD+AD2

∴a2=b2-AD2+c2-2c·AD+AD2=b2+c2

9.中心极限定理证明 篇九

高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且

那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理

设是独立随机变量序列,假设存在,若对于任意的,成立

称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明

其中.由于,因此

故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理

在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则

用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得

第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?

解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:

因为很大,于是

所以

利用标准正态分布表,就可以求出的值.某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,故取.于是

取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有

其中,即有

四、林德贝格-勒维中心极限定理

若是独立同分布的随机变量序列,假设,则有

证明:设的特征函数为,则的特征函数为

又因为,所以

于是特征函数的展开式

从而对任意固定的,有

而是分布的特征函数.因此,成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令

用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有

设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有

由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:

p222EX32,33,34,3

5五、林德贝尔格条件

设为独立随机变量序列,又

令,对于标准化了的独立随机变量和的分布

当时,是否会收敛于分布?

除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,这时

(1)若是连续型随机变量,密度函数为,如果对任意的,有

(2)若是离散型随机变量,的分布列为

如果对于任意的,有

则称满足林德贝尔格条件.以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明:令,则

于是

从而对任意的,若林德贝尔格条件成立,就有

这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件

设是独立随机变量序列,又,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理

引理1对及任意的,证明:记,设,由于

因此,其次,对,用归纳法即得.由于,因此,对也成立.引理2对于任意满足及的复数,有

证明:显然

因此,由归纳法可证结论成立.引理3若是特征函数,则也是特征函数,特别地

证明定义随机变量

其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理

定理设为独立随机变量序列,又.令,则

(1)

与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分

(2)

显然(3)

(4)

以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)

这时

因此林德贝尔格条件化为:对任意,(6)

现在开始证明定理.设是任意固定的实数.为证(1)式必须证明

(7)

先证明,在费勒条件成立的假定下,(7)与下式是等价的:

(8)

事实上,由(3)知,又因为

故对一切,把在原点附近展开,得到

因若费勒条件成立,则对任意的,只要充分大,均有

(9)

这时

(10)

对任意的,只要充分小,就可以有

(11)

因此,由引理3,引理2及(10),(11),只要充分大,就有

(12)

因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性

先证由林德贝尔格条件可以推出费勒条件.事实上,(13)

右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,当时,当时,因此

(14)

对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性

由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)

上述被积函数的实部非负,故

而且

(16)

因为对任意的,可找到,使,这时由(15),(16)可得

故林德贝尔格条件成立.八、李雅普诺夫定理

设为独立随机变量序列,又.令,若存在,使有

10.余弦定理证明 篇十

余弦定理证明

在任意△ABC中, 作AD⊥BC.

∠C对边为c,∠B对边为b,∠A对边为a -->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC=AD+DC

b=(sinB*c)+(a-cosB*c)

b=sinB*c+a+cosB*c-2ac*cosB

b=(sinB+cosB)*c-2ac*cosB+a

b=c+a-2ac*cosB

所以,cosB=(c+a-b)/2ac

2

如右图,在ABC中,三内角A、B、C所对的.边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根据三角函数的定义知D点坐标是 (acos(π-C),asin(π-C)) 即 D点坐标是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可证 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可证 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)[(√2(a^2+c^2)-b^2)]

mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

4

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

上一篇:浅析当前我们面临的环境问题下一篇:浅谈基于移动搜索的网页设计优化研究论文