八年级数学几何题证明技巧

2024-10-31

八年级数学几何题证明技巧(精选11篇)

1.八年级数学几何题证明技巧 篇一

几何证明题的技巧

1)证明线段相等,角相等的题,通常找到线段所在图形,证明全等

2)隐藏条件:比如特殊图形的性质自己要清楚,有些时候几何题做不出来就是因为没有利用好 隐藏条件 3)辅助线起到关键作用

4)几何证明步骤:依据—结论—定理 切记勿忽略细微条件 5)遇到面积问题,辅助线通常做高,遇到圆,多为做半径,切线 6)个别题型做辅助线:

通过连结,延长,作垂直,作平行线等添加辅助线的方法,构造全等三角形。2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中心,使分散的条件汇集起来。

3遇到求边之间的和,差,倍数关系时,通常采用截长补短的方法,求角度之间的关系时,也一样。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等

1.两全等三角形中对应边相等。2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。5.直角三角形斜边的中点到三顶点距离相等。6.线段垂直平分线上任意一点到线段两段距离相等。7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。*12.两圆的内(外)公切线的长相等。13.等于同一线段的两条线段相等。

二、证明两个角相等

1.两全等三角形的对应角相等。2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。4.两条平行线的同位角、内错角或平行四边形的对角相等。5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。*11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3.延长短线段为其二倍,再证明它与较长的线段相等。4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明 角的和差倍分

1.与证明线段的和、差、倍、分思路相同。2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明线段不等

1.同一三角形中,大角对大边。2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。*5.同圆或等圆中,弧大弦大,弦心距小。6.全量大于它的任何一部分。

八、证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

*4.同圆或等圆中,弧大则圆周角、圆心角大。5.全量大于它的任何一部分。

九、证明比例式或等积式

1.利用相似三角形对应线段成比例。2.利用内外角平分线定理。3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。6.利用比利式或等积式化得。

十、证明四点共圆

*1.对角互补的四边形的顶点共圆。*2.外角等于内对角的四边形内接于圆。

*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。*4.同斜边的直角三角形的顶点共圆。*5.到顶点距离相等的各点共圆 基本图形的辅助线的画法 1.三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。2.平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰

(5)过梯形上底的两端点向下底作高(6)平移对角线

(7)连接梯形一顶点及一腰的中点。(8)过一腰的中点作另一腰的平行线。(9)作中位线

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。常见的辅助线做法

1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

所谓“倍长中线”,就是加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。常用于构造全等三角形。中线倍长法多用于构造全等三角形和证明边之间的关系(一般都是原题已经有中线时用,不太会有自己画中线的时候)。

说简单一点,倍长中线就是指:延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,构造全等三角形。

截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。截长就是在一条线上截取成两段,补短就是在一条边上延长,使其等于一条所求边

截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。

补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。

2.初中数学几何证明题解题方法探讨 篇二

【关键词】树立信心  几何思想  答题思路  答题步骤

中图分类号:G4     文献标识码:A DOI:10.3969/j.issn.1672-0407.2015.05.058

几何类题目在卷面上大都体现为几何证明题,本文就如何帮助学生攻克几何证明题这一难关提出了相关建议。

一、树立面对几何证明题的信心

纵观整个数学学科,几何证明类题目称得上是初中数学的一大难点,也是初中数学试卷上占有较大分值的一个题目,多数学生在此类题目上失分,进而影响了整体的数学成绩。有的学生甚至对此类题目产生恐惧情绪,一看到几何证明类题目,就自动跳过,主观上认为这类题目的难度太大,自己一定做不出。学生的这种恐惧心理自然而然成为了他们攻克此类题目的一大障碍。作为老师应该清楚,还没读题就打退堂鼓是解题的一大禁忌。学术研究本身就具有一定的冒险精神,断然不可以对问题产生恐惧心理。老师讲解题目的时候,应当更多地引导学生自主思考,抛出一些直接的线索,让学生自然而然想到接下来的解题思路,树立学生的自信心。老师最好能总结出几何证明题的一般规律,告诉学生几何证明类题目有规律可循。最终让学生克服恐惧,树立信心,让学生能感受到其实几何证明类题目并不难,只需要掌握一定的规律,并能将理论知识与几何图相结合,这类问题就迎刃而解了。经过老师们长时间的引导,学生对于这类题目的自信心必然能够大大提高。

二、带领学生看图读图,培养几何思想

几何证明类题目最大的难点就在于读图,而解决此类题目的突破口往往隐藏在几何图形中。然而只有少数学生能够从几何图中发掘到线索,拿到高分。究其原因,大多是因为学生做惯了文字类题目,习惯性从文字中获得线索和解题关键,读图能力弱,分析几何图形的思想不够牢固,容易忽略几何图中所揭示的重要线索。作为老师,若想强化学生几何证明题的软肋,首先要做的,就是提高学生的读图能力,培养学生的几何思想。

第一类几何思想是指数形结合的思想。老师要在授课过程中给学生养成乐于读图,并能从图中获得线索的习惯,提高学生对于几何图的分析能力,最终要让学生能自如地将课本上的理论知识与几何图紧密地结合起来,树立起数形合一的几何思想,看到几何图就能轻松写出相应的数学公式和数值。老师千万不要以解题为目的进行讲解,而是要以教会学生分析几何图为目的进行讲解。例如我们做过的经典例题,老师可以反复拿出题目中的几何图,抛开例题所设的问题,就图论图,带领学生分析几何图,或者指派学生分析,检验教学成果。

第二个需要培养的几何思想就是整体变换的思想,整体变换,顾名思义就是要将部分结合到整体,从整体中分离个体。这就需要老师多在讲解题目的过程中花心思了,逐步引导,找出部分线索,向学生抛出问题,如何将这一部分线索与整体联系起来,要让学生能够主动的思考部分与整体的关系,例如,让学生养成一看到直线就要思考是否有与已知直线平行或垂直的直线。

第三种几何思想,就是分类讨论思想。我们常常遇到一些综合性强的证明类题目,既需要学生的逻辑性,也需要学生计算部分数值来作为证明的条件,这时可能会出现答案不唯一的情况,而粗心的学生往往会漏掉部分情况。例如一些题目要求证明两个三角形全等,已知某一角度,需要求出另一角度与之相等,计算时可能会出现多种答案,而答案只能取其中之一,这时,老师需要要求学生解出所有答案,分类讨论,列出某个答案不符合条件的理由,并舍去,这样学生才能拿到满分。在分类讨论的题目上失分是很可惜的,老师需要多给学生准备些需要分类讨论的题目,要让学生看到题目能及时想到分类讨论的情况。第四种必备的几何思想是逆变化思想,指的是从要证明的部分出发,倒推条件。对于某些难度稍大的题目,往往正推会比较困难,思路很难理清,这时就需要老师来教会学生逆变化的几何思想,引导他们反方向解题,平时多加训练,加深他们对逆变化思想的印象和理解。如此一来,学生做起几何证明题才能得心应手,拿到高分。有了这些几何思想,便能初步攻克几何证明题的大门。

三、帮助学生理清答题思路

证明题的解答必须要有清晰的思路和很强的逻辑性,然而很多学生答题时的思路混乱,想起什么就写什么,完全不依据逻辑,即使他们掌握了几何思想,发掘出几何图中的线索,也未必拿得到满分。混乱的思路和解题步骤必然会给阅卷老师留下思路混乱的误导,使他们对学生的解题能力产生怀疑,进而影响得分。

作为老师,在培养完成学生的几何思想之后,第二步就是要帮助学生理清答题思路。分析出题目的所有线索后,需要条理清晰地从所有线索中提取要点,并将它们有机结合,组合成一条完整的思路,最终体现到卷面上,这是完成一道几何证明题的关键一步。首先,老师上课时的思路一定要是清晰明了的,结合课本上的理论知识,让学生体会到此类题目的依据和逻辑性,要让学生明白,思路是来源于理论知识体系。再者,老师要尽可能将解题思路简单化、通俗化,采取平铺直叙,开门见山式的讲解方法,能让学生更直观地了解到老师想要表达的解题思路。这两点可以给学生建立解题需要清晰直白的思路的思维模式。同时,老师不能一味地讲解,要留给学生独立的思考空间,培养学生独立建立理清思路的习惯。

四、规范答题步骤

3.初二数学几何证明题 篇三

2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。

3.。如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。

4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。

5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC且与AB的延长线交与点E,求证四边形AECD是等腰梯形?

6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。

1.求证四边形ABCD是菱形。

2.若∠AED=2∠EAD,求证四边形ABCD是正方形。

4.中考数学几何证明压轴题 篇四

(2)E是梯形内一点,F是梯形外一点,且∠EDC=

∠FBC,DE=BF,试判断△ECF的形状,并证

明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠DCBEC=135°时,求sin∠BFE的值.2、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形 BEDF是菱形,则四边形AGBD

是什么特殊四边形?并证明你的结论.

F3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测

量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长

线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜

想还成立吗?若成立,请证明;若不成立,请说明理由.

A(B(E)图13-1 图13-

2图13-

31.[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM

(2)等腰三角形.证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC 21.即DC=BC.2

所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90 即△ECF是等腰直角三角形.(3)设BEk,则CECF

2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k3

2.[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .

∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 22

∴AE=CF

∴△ADE≌△CBF .

(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.

∵四边形ABCD是平行四边形,∴AD∥BC .

∵AG∥BD,∴四边形 AGBD 是平行四边形.

∵四边形 BEDF 是菱形,∴DE=BE .

∵AE=BE,∴AE=BE=DE .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠ADB=90°.

∴四边形AGBD是矩形 3[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF.

又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.

(2)BM=FN仍然成立.

(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.

∴∠MBO=∠NFO=135°.

5.八年级数学几何题证明技巧 篇五

1.(北京卷理12)如图,⊙O的弦ED,CB的 延长线交于点A.若BD⊥AE,AB=4, BC=2,AD=3,则DE=_______;CE=_______.2.(广东卷理14)如图3,AB,CD是半径为 a的圆O的两条弦,它们相交于AB的中点P,PD2a

3,∠OAP=30°,则CP=______.3.(广东卷文14)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CDa

2,点E,F

分别为线段AB,AD的中点,则EF=__________.4.(湖南卷理10)如图1所示,过⊙O外一点P 作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT =4,则弦AB的长为________.5.(湖北卷理15)设a>0,b>0,称2ab/a+b a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做 半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图

中线段OD的长度是a,b的算术平均数,线段________的长度是a,b的几何平均数,线段 _______的长度是a,b的调和平均数.6.(陕西卷理15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD/DA= _____.7.(陕西卷文15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以

AC为直径的圆与AB交于点D,则BD=______cm.8.(天津卷理14)如图,四边形ABCD是

圆O的内接四边形,延长AB和DC相交于

点P,若PB/PA=1/2,PC/PD=1/3,则BC/AD的值为 ____.9.(天津卷文11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若

PB=1,PD=3,则BC/AD的值为___________.10.(江苏卷21①)AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线

交AB延长线于C,若DA=DC,求证:AB=2BC

11.(辽宁卷理22)如图,ABC的角平分线AD的延长线交它的外接圆于点E

(I)证明: ABEADC.(II)若ABC的面积S

12.(全国Ⅰ新卷理22文22)如图:已知圆上的,过C点的圆的切线与BA的延长线交 ACBD弧12ADAE,求∠BAC的大小.于 E点,证明:

(Ⅰ)ACEBCD

6.七年级下几何证明题(精华版) 篇六

1、直接根据图示填空:

(1)∠α=_________(2)∠α=_________(3)∠α=_________(4)∠α=_________(5)∠α=_________(6)∠α=_________

(1)(2)(3)

(4)(5)(6)

2、填空完成推理过程:如图,∵AB∥EF(已知)

∴∠A +=1800()∵DE∥BC(已知)

∴∠DEF=()2.∠ADE=()

3. 已知:如图,∠ADE=∠B,∠DEC=115°. 求∠C的度数.

D

A

D B

F

4.已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.

B3.E

C

5.已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=______

AC

5.43BD

4.6.已知:如图4,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数

6.7.8.7.直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数. 8. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.9.如图,AB∥CD,交

CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数.9.D B

AE

12.G

B

C210.D

11.b

10.如图,已知:1=2,D=50,求B的度数。

11.已知:如图,AB∥CD,∠B=40,∠E=30,求∠D的度数 12.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.13,如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,求∠D的度数.14.AC

E

F

D

C

D

13.B

A

B

E

14.AB//CD,EF⊥AB于点E,EF交CD于点F,已知∠1=600.求∠2的度数.15.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.15.A

GB

M

E

D

FN

C

16.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP

C

D

B

A

PC

D

B

AC

P

BD

AC

P

BD

(1)(2)(3)(4)

17.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.

A

E

E

C

DN

D

M

B

C

第17题图

第18题图

A

第19题图

B

18.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.

19.如图AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的大小. 20.如图5-24,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.(1)判断CD与AB的位置关系;

(2)BE与DE平行吗?为什么?

21.如图5-25,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?

(3)BC平分∠DBE吗?为什么.

F

EA

M

20.B

N

图5-2

522.如图5-28,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.

F

B

图4

E

D

23.22.24..23如图,CD是∠ACB的平分线,∠EDC=25,∠DCE=25,∠B=70

7.八年级数学几何题证明技巧 篇七

1.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.

(1)请判断四边形EFGH的形状,并给予证明;(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。

2.如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.

(1)线段A1C1的长度是,∠CBA1的度数是.

(2)连接CC1,求证:四边形CBA1C1是平行四边形.

C B

3.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;

(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.⑴求证:BEDG;

⑵若∠B60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.C F B A1 P E

5.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交 BC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

B F C D E

C

6.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.(1)求证:△ABE≌△

ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.B

A

7.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.(1)求证:△ABE≌△DFE

(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.ED

B C

8.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;

(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

F

C B

D

9.如图,在平行四边形中,点E,F是对角线BD上两点,且BFDE.

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对全等三角形进行证明.

10.在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;

(2)若DEBECE,求证:四边形ABFC是矩形.2D B

11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.(1)求证:DA⊥AE

(2)试判断AB与DE是否相等?并说明理由。

CB E

12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)

(2)当AB=10时,四边形EDF的周长是多少? A(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.E

8.八年级数学几何题证明技巧 篇八

例12013年上海市黄浦区中考模拟第24题

已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).

(1)求此二次函数的解析式;

(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.

①求正方形的ABCD的面积; ②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.

动感体验 请打开几何画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

请打开超级画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

思路点拨

1.数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD=AB.

2.通过计算∠PAE与∠DPO的正切值,得到∠PAE=∠DPO=∠PDA,从而证明△PAD∽△PEA.

满分解答

(1)将点P(0, 1)、Q(2, -3)分别代入y=-x2+bx+c,得

c1,b0,解得 c1.42b13.

所以该二次函数的解析式为y=-x2+1.

(2)①如图1,设点A的坐标为(x, -x2+1),当四边形ABCD恰为正方形时,AD=AB.

此时yA=2xA. 解方程-x2+1=2x,得x1所以点A

1.因此正方形ABCD的面积等于1)]212

②设OP与AB交于点F,那么PFOPOF11)31)2.

PF所以tanPAE1.

AF又因为tanPDAtanDPO

OD

1,OP

所以∠PAE=∠PDA.

又因为∠P公用,所以△PAD∽△PEA.

图1图

2考点伸展

事实上,对于矩形ABCD,总有结论△PAD∽△PEA.证明如下:

如图2,设点A的坐标为(x, -x2+1),那么PF=OP-OF=1-(-x2+1)=x2.

PFx2

所以tanPAEx.

AFx

又因为tanPDAtanDPO

OD

x,OP

所以∠PAE=∠PDA.因此△PAD∽△PEA.

例22013年江西省中考第24题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:

在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).

①AF=AG=

AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.

2(2)数学思考:

在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;

(3)类比探究:

在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.

1动感体验

请打开几何画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

请打开超级画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

思路点拨

1.本题图形中的线条错综复杂,怎样寻找数量关系和位置关系?最好的建议是按照题意把图形规范、准确地重新画一遍.

2.三个中点M、F、G的作用重大,既能产生中位线,又是直角三角形斜边上的中线. 3.两组中位线构成了平行四边形,由此相等的角都标注出来,还能组合出那些相等的角?

满分解答

(1)填写序号①②③④.

(2)如图4,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形ACE斜边上的高,所以F、G分别是AB、AC的中点.

又已知M是BC的中点,所以MF、MG是△ABC的中位线.

所以MF

1AC,MGAB,MF//AC,MG//AB. 2

2所以∠BFM=∠BAC,∠MGC=∠BAC.

所以∠BFM=∠MGC.所以∠DFM=∠MGE.

因为DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,所以EG

AC,DFAB. 22

所以MF=EG,DF=NG.

所以△DFM≌△MGE.所以DM=ME.

(3)△MDE是等腰直角三角形.

图4图5

考点伸展

第(2)题和第(3)题证明△DFM≌△MGE的思路是相同的,不同的是证明∠DFM=∠MGE的过程有一些不同.

如图4,如图5,∠BFM=∠BAC=∠MGC.

9.八年级数学几何题证明技巧 篇九

第十九章几何证明

19.1 命题和证明

1、我们现在学习的证明方式是演绎证明,简称证明

2、能界定某个对象含义的句子叫做定义

3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题

4、数学命题通常由题设、结论两部分组成

5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论

19.2 证明举例

平行的判定,全等三角形的判定

19.3 逆命题和逆定理

1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题

2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理

19.4线段的垂直平分线

1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

2、逆定理:和一条线段的两个端点距离相等的点,在这条线段垂直平分线上。

19.5 角的平分线

1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。

2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。

19.6 轨迹

1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线

2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线

3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆

19.7 直角三角形全等的判定

1、定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等

2、(简记为H.L)

3、其他全等三角形的判定定理对于直角三角形仍然适用 / 2

沪教版数学八年级(上)第十九章几何证明知识点汇总

19.8 直角三角形的性质

1、定理2:直角三角形斜边上的中线等于斜边的一半

2、推论1:在直角三角形中,如果一锐角等于30,那么它所对的直角边等于斜边的一半

3、推论2:在直角三角形中,如果一条直角边等于斜边的一般,那么这条直角边所对的角等于30 19.9 勾股定理

1、定理:在直角三角形中,斜边大于直角边

2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方

3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形

19.10 两点间距离公式

10.七年级下数学几何证明 篇十

∴∠F+∠E=180°(两直线平行,同旁内角相等)

∵EF∥DC(已知)

∴∠E+∠D=180°(两直线平行,同旁内角相等)

∴∠F=∠D(同角的补角相等)

又 ∵BC∥DE,(已知)

∴∠D+∠C=180°(两直线平行,同旁内角相等)

∵DC∥AB(已知)

∴∠B+∠C=180°(两直线平行,同旁内角相等)

∴∠B=∠D(同角的补角相等)

∴∠F=∠B(等量代换)

2、如图,已知AD∥BC,BCDBAD,试说明AB∥CD。

证明:AD∥BC

D1

2BCDBAD,12

3

4AB∥CD

CABBCD1BAD22题图

3.已知:CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.证明: CB⊥AB

B90 3题图

 CE平分∠BCD,DE平分∠CDA

1ADE,2BCE

∠1+∠2=90°

ADEBCE90 

A360BADCDCB90

 DA⊥AB.4、已知;如图 2-87,DF//AC,∠C=∠D,求证:∠AMB=∠ENF

证明: DF//AC

ABDD

又∠C=∠D

ABDC

 BD//CE

ENFDMN

又AMBDMN

∠AMB=∠ENF

5.如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG∥AB.C

证明:∠EFB+∠ADC=180°

又FDAADC180

FDABFE

EF∥AD

1EAD

又∠1=∠2

2EAD

11.八年级数学几何题证明技巧 篇十一

23.将图8(1)中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图8(2)中的△ABC,除△ADC与△CBA全等外,你还可以指出哪几对全等的三...角形(不能添加辅助线和字母)?请选择其中一对加以证明.

B C

图8(2)

2007年

21.如图10,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.

(1)请指出图中哪些线段与线段CF相等;

(2)试判断四边形DBCF是怎样的四边形?证明你的结论.

BF图10

2008年

21.如图8,在△ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E,F,BECF.

(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.

(注意:在试题卷上作答无效).........

E D 图8 C

2009年

23.如图11,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,APB60°,OP与弦AB交于点C,与⊙O交于点

D.

(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).

图1

12010年

21.某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知ACBC8m,A30°,CDAB,于点D.

(1)求ACB的大小.(2)求AB的长度.C A D 图8 B

23.如图10,已知Rt△ABC≌Rt△ADE,ABCADE90°,BC与DE相交于

EB.点F,连接CD,(1)图中还有几对全等三角形,请你一一列举.(2)求证:CFEF.A DF B C 图10

2011年

23.如图,点B、F、C、E在同一直线上,并且BF=CE,∠B=∠C.(1)请你只添加一个条件(不再加辅助线),使得△ABC≌△DEF.

你添加的条件是:. F(2)添加了条件后,证明△ABC≌△DEF.

2012年

22.如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.

(1)图中有哪几对全等三角形?请写出来;

(2)试判断OE和AB的位置关系,并给予证明.

2013年

23、如图11,在菱形ABCD中,AC是对角线,点E、F

分别是边BC、AD的中点。C E

(1)求证:ABE≌CDF。

(2)若∠B=60°,AB=4,求线段AE的长。

上一篇:小学班级经典诵读稿下一篇:大浪和小浪的说课稿