二次函数教案word(精选10篇)
1.二次函数教案word 篇一
一、由实际问题探索二次函数
某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量
(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?
(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产 量
y=(100+z)(6005x)=-5x2+100x+ 60000.
二、想一想
在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?
我们可以列表 表示橙子的总产量随橙子树的增加而变化情况.你能根据 表格中的数据作出猜测吗 ?自己试一试.
x/棵
y/个
三.做一做
银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利 息自动按一年定期储蓄转存. 如 果存款额是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税).
四、二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)
注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为 零。
例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数.我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子.
随堂练习
1.下列函数中(x,t是自变量),哪些是二次 函数?
y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t
2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.
(1)写出y与x之间的关系表达式;
(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?
五、课时小结
1. 经历探索和表 示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。
2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。
六、活动与探究
若 是二次函数,求m的值.
七、作业
习题2.1
1.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t , 填 表表示物体在前5s下落的高度:
t/s 1 2 3 4 5
h/m
⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。
(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?
(2) 如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?
2.21.1二次函数教案 篇二
一、教材分析:
本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反比例函数的概念及图象与性质进行了学习,因此在本节课的学习方法上学生已经有了一定的经验。但二次函数,它是进一步学习函数知识,体现函数知识螺旋发展的一个重要环节。同时在此节后,我们还将循序渐进,在此基础上由简到繁逐步展开二次函数的研究。二次函数的图像是抛物线,是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。可以说这节课既是承上启下,同时本节课的学习也能让学生体会到数学的实用及美感。其地位及作用不可小看。
二、设计思想
1.函数及其图象在初中数学中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,初二时的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,具有一定的片面性。本节课,力图让初三学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。
2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:
(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。(3)通过课堂教学活动向学生渗透数学思想方法。
三、教学目标
1、知识技能:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。直接给学生出示y= x2,并作图及观察性质,这样,让学生能通过运用过去的知识经验去发现新知识,解决新知识,从而实现由掌握到迁移运用的过程。
2、数学思考:能够利用描点法作出y= x2的图象,并能根据图象认识和理解二次函数y= x2的性质。学生通过画图,观察,分析,得出有关结论,培养学生观察,比较,概括的逻辑思维能力。
3、解决问题:能够作出二次函数y=-x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系。提高学生的观察、交流、概括、总结及表达的能力,而且更进一步让学生体会到数、形的转化。
4、数学体验:学生通过自己画图,观察,比较得出有关结论,使学生有一种获得成功的喜悦,提高学生的学习积极性;通过画图使学生更能体会到数形可以互相转化的关系,激发了学生探究新知的欲望。【来源:21•世纪•教育•网】
四、教学重点
会画y=ax2的图象,通过观察图象理解其性质。
五、教学难点
描点法画y=ax2的图象,体会数与形的相互联系。
六、教学方法:
学习二次函数关键是学习其性质(开口方向,顶点坐标,对称轴,单调区间等),而用描点法画函数图像是我们发现函数图象的特征和了解其性质的一个重要途径。因此,在教学过程中应让学生画出函数图象,引导学生观察图像的特点,概括出函数的性质。在此过程中,可用“特殊----一般,具体----抽象“的方法来学习二次函数的图像和性质,给学习足够的探索和交流的时间,让学生在自己动手体验中得出结果。2-1-c-n-j-y
七、教学过程
一 复习旧知,引入新课
1.提问:请同学们回顾二次函数的概念和一般形式是什么? 2.下列函数中哪些是二次函数?
y=3x-1
y=3x2
y=3x2+2x2
y=x2-x(1-x)
y=3x3-2x2
y=2x2-2x+1 3.一次函数的图像,正比例函数的图像,反比例函数的图像各是怎么样的呢?它们各有什么特点,又有哪些性质呢?2•1•c•n•j•y 上节课我们学习了二次函数的概念,掌握了他的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图像和性质。21教育名师原创作品(设计说明:利用前面学过的函数的图像启发学生思考二次函数的图像。将本节课的内容与已有知识联系起来,便于学生类比学习。同时,通过设问让学生了解本节课所要探索的问题,激发学生的探索兴趣。)
二
探究活动:二次函数的图像与性质
1、引导学生画出函数 y=x2的图像。
(1):在x的取列表值范围内列出函数对应值表: x „ -3 -2 -1 0 1 2 3 „ y … 9 4 1 0 1 4 9 …
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
(4)让学生概括图像的特点,提示学生从开口方向、对称性等方面考虑。学生互相交流、讨论、回答:图像是曲线,开口向上;它是轴对称图形,对称轴是y轴。21世纪教育网版权所有
(5)肯定学生的表现,讲解:抛物线。它有一条对称轴,抛物线与它的对称轴的交点叫做抛物线的顶点。
(6)请学生对照解析式对得出的性质进行一些解释(对称性、顶点、开口方(设计说明:在此问题上,教师不必按课本上的问题一一叠列给学生,而是 充分发挥学生的观察能力;再者学生已研究过正比例函数、一次函数、反比 例函数,已经积累了一定的研究函数图象的方法和能力,积累了研究函数图象 要“研究什么”的经验,有了一定“模式”,即: ① 图象形状:抛物线(教师给出)② 与x、y轴交点; ③ y随x的增减性; ④ 图象的对称性。及系数与图象的关系。请每组的学生代表一一发表自己的观察结果,(在此 过程中,教师不能作裁判,应及时表扬学生,同时把评判权交给学生,注意 培养学生语言的规范化、条理化。)然后按课本的问题加以总结和整理,做 到有放有收。注意学生的解析式方式思考解释。)
2.指导学生“做一做”。让学生在同一坐标系中分别画出题目y=x2与y=-x2中函数的图像,概括出他们的共同点和不同点。学生积极动手,在同一坐标系内画出函数的图像。通过比较发现:
(1),(2)中两个函数图像关于x轴对称,开口方向相反;两个函数图像的对称轴都是y轴,顶点是原点。(提示学生从图像开口方向,顶点坐标,对称轴几方面分析函数图象的共同点和不同点。)3.肯定学生的表现,总结:函数 y=ax2的图像是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。21•世纪*教育网
4.提问:在同一坐标系中画出, y=2x2的图像,试比较其与y=x2反应了什么性质?你能通过解析式说明吗?学生互相交流,讨论,尝试归纳总结。5.肯定学生的表现,指出y=x2, y=2x2的图像特点是:
当a>0时,抛物线y=ax2 开口向上,在对称轴的左边,曲线自左向右下降:在对称轴的右边,曲线自左向右上升。顶点是抛物线上位置最低的点。
当 a>0 时,二次函数y=ax2具有这样的性质:当 x <0
时,函数值 y 随 x 的增大而减小:当 x>0 时,函数值 y 随 x 的增大而增大:当x=0 时,函数取最小值y=0.jy*com 3 已知a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数y=2x2上的图像上,则y
1、y
2、y3的大小关系是什么?4.指导学生完成课后练习。若正方形的边长为a,面积为s,试求出面积s与边长a的关系式,并画出图象。(设计说明:在实际应用的问题上,教师先不要进行过多的提醒,让学生进一步体会自变量“x”的取值范围的特殊性。学生独立完成以后,让他们发表自己的看法,辨证出图象只在第一象限存在。)四 课堂总结 布置作业
1、学生谈一谈收获
我们通过观察总结得出二次函数y=ax2的图象的一些性质: ①、图象——“抛物线”是轴对称图形;
②、与x、y轴交点——(0,0)即原点;
③、a的绝对值越大抛物线开口越大,a﹥0,开口向上,当x﹤0时,(对称轴左侧),y随x的增大而减小(y随x的减小而增大)当x﹥0时,(对称轴右侧),y随x的增大而增大(y随x的减小而减小)a﹤0,开口向下,当x﹤0时,(对称轴左侧),y随x的增大而增大(y随x的减小而减小)当x﹥0时,(对称轴右侧),y随x的增大而减小(y随x的减小而增大)
2、今天我们通过观察收获不小,其实只要我们在日常生活中勤与观察,勤与思考,你会发现知识无处不在,美无处不在。
3.作业:课后练习3.4题。拓展:
1.已知函数y=3x2,(x1,y1)(x2,y2),是这个函数图像上的两点,当x1< x2< 0 y1, y2的大小关系样?
2.已知函数 y=ax2 的图像过点(1,4)(2,6),试判断这个函数的图像是否过点(-1,4);(3,7)?为什么?
3.二次函数数学教案 篇三
一、重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求
三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点
4.二次函数教案(第一课时) 篇四
第1课时 二次函数的应用(1)教学目标:
【知识与技能】
经历探究图形的最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验.【过程与方法】
经历探索问题的过程,获得利用数学方法解决实际问题的经验,感受数学模型和数学应用的价值,通过观察、比较、推理、交流等过程,发展获得一些研究问题与合作交流的方法与经验.【情感态度】
通过动手做及同学之间的合作与交流,让学生积累经验,发展学习动力.【教学重点】
会根据不同的情况,利用二次函数解决生活中的实际问题.【教学难点】
从几何背景及实际情景中抽象出函数模型.教学过程:
一、情景导入,初步认知
问题:某开发商计划开发一块三角形土地,它的底边长100米,高80米.开发商要沿着底边修一座底面是矩形的大楼,这座大楼地基的最大面积是多少?
二、思考探究,获取新知
探究:在第21.1节的问题中,要使围成的水面面积最大,则它的边长应是多少米?它的最大面积是多少平方米?
根据题意,可得,S=x(20-x)问题:①这是一个什么函数?
②要求最大面积,就是求 的最大值.③你会求S的最大值吗? 将这个函数的表达式配方,得 S=-(x-10)2+100(0<x<20)这个函数的图象是一条开口向下抛物线中的一段,如图,它的顶点坐标是(10,100),所以,当x=10时,函数取最大值,即 S最大值=100(m2)此时,另一边长=20-10=10(m)答:当围成的矩形水面边长都为10m时,它的面积是最大为100m2.你能总结此类题目的解题步骤吗?
【归纳结论】在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决.其步骤为:
第一步设自变量; 第二步建立函数的解析式; 第三步确定自变量的取值范围;
第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内).三、运用新知,深化理解
1.教材P37例2.2.求下列函数的最大值或最小值.(1)y=2x2-3x-5;(2)y=-x2-3x+4.【分析】由于函数y=2x2-3x-5和y=-x2-3x+4的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.(让学生自主完成)
3.要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?
【分析】先写出函数关系式,再求出函数的最大值.解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>0,所以0<x<10.围成的花圃面积y与x的函数关系式是y=x(20-2x),即y=-2x2+20x.配方得y=-2(x-5)+50 所以当x=5时,函数取得最大值,最大值y=50.因为x=5时,满足0<x<10,这时20-2x=10.所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大.四、师生互动、课堂小结
5.数学《二次函数》优秀教案 篇五
2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
3.教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;
6.二次函数的图象和性质教案 篇六
(一)梅
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
二、重点、难点
1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法
(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前
ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;
(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;
(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;
(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):
如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC
ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这
ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
三、例题的意图
本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.
例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.
四、课堂引入
1.复习引入
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.
ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.
反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.
ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】
三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
五、例题讲解
例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.
解:略(AD=3,DC=5)
例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.
ABACBCAB解:略(DE103).
六、课堂练习
1.(选择)下列各组三角形一定相似的是()
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)
七、课后练习
1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.
3.如图,DE∥BC,)
(1)如果AD=2,DB=3,求DE:BC的值;
7.二次函数教案word 篇七
一、教学目标
1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.
二、课时安排 1课时
三、教学重点
掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.
四、教学难点
运用二次函数的知识解决实际问题.
五、教学过程
(一)导入新课
引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:
(二)讲授新课 活动1:小组合作
如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)设矩形的一边AB=xm,那么AD边的长度如何表示?
(2)设矩形的面积为ym,当x取何值时,y的值最大?最大值是多少?
2解:1设ADbm,易得b3x30.4 332yxbx(x30)x230x4432x20300.4b4acb2或用公式:当x20时,y最大值300.2a4a活动2:探究归纳
先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲
例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
解:由4y7xx15.得y157xx.4x2157xxx2
窗户面积S2xy2x()2427157152x2x (x)22214225
.56b154acb2225 当x1.07时,s最大值4.02.2a144a56即当x≈1.07m时,窗户通过的光线最多.此时窗户的面积为4.02m.(四)归纳小结
“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测
1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm.
2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.
23.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.
(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?
4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y 12,要使△DEF为等腰三角形,m的值应为多少? m
5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求出自变量x的取值范围.(2)生物园的面积能否达到210平方米?说明理由.
【答案】 1.12.5 2.根据题意可得:等腰三角形的直角边为2xm矩形的一边长是2xm,其邻边长为20422x21022x,
1所以该金属框围成的面积S2x1022x2x2x
2 10当x30202时,金属框围成的图形面积最大.322此时矩形的一边长为2x60402m,另一边长为10221032210210m.
S最大3002002m2.3.解;(1)设矩形广场四角的小正方形的边长为x米,根据题意 得:4x+(100-2x)(80-2x)=5 200,整理得x-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则
y=30[4x+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x-3 600x+240 000,配方得 y=80(x-22.5)+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元. 4.⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,22222∴BFBEy8x, ∴ CECDxm8xx2即y
m
8xx212,化成顶点式: yx42 ⑵当m=8时,y888xx12(3)由y,及y得关于x的方程: mmx28x120,得x12,x26
∵△DEF中∠FED是直角,∴要使△DEF是等腰三角形,则只能是EF=ED,此时,Rt△BFE≌Rt△CED,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5.解:(1)依题意得:y=(40-2x)x. ∴y=-2x+40x.
x的取值范围是0< x <20.
(2)当y=210时,由(1)可得,-2x+40x=210. 即x-20x+105=0.
∵ a=1,b=-20,c=105,∴(20)2411050,∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计
2.4.1二次函数的应用 2
2探究: 例题:
“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.七、作业布置 课本P47练习练习册相关练习
8.二次函数教案word 篇八
§3.2.3 二次函数模型(三)教案
§3.2.3 二次函数模型(三) 【教学目标】 1) 熟练掌握二次函数的图象和性质,二次函数的三种关系式。 2) 学会根据已知条件求二次函数的关系式,数形结合思想的应用。 3) 培养学生合作学习、大胆创新,让他们充分的展现才能,同心协力, 【教学重点】 求二次函数关系式。 【教学难点】 数形结合思想的应用 【教学方法】 这节课主要采用启发式教学法和讲练结合法. 【板书设计】 §3.2.3 二次函数模型(三) 例: 学生板演 【教学过程预设】 一、情境导入 要求学生写出二次函数的一般形式,并写出它图象的顶点坐标。 y=ax2+bx+c (a≠0),顶点坐标为(-,)。 要求学生写出二次函数的顶点式,并写出它图象的顶点坐标。 y=a(x+h)2+k (a≠0),顶点坐标为(-h,k)。 二次函数y=x2+2x-3的`图象与x轴的交点坐标为(-3,0)和(1,0); 二次函数y=(x+3)(x-1)的图象与x轴的交点坐标为(-3,0)和(1,0); [教师指出]: 我们把y=a(x-x1)(x-x2)叫做二次函数的交点式。其中,x1,x2是图象与x轴交点的横坐标。 (因此交点式也叫双根式,截距式) 顺势揭示课题,板书节名 二、例题讲解 例1、已知二次函数图象的顶点为(2,3),且经过点(3,1),求这个二次函数的关系式。 [分析]:已知二次函数的顶点坐标,能否写出他的顶点式。 y=a(x+h)2+k (a≠0),顶点坐标为(-h,k) 这里h=?,k=?,a=? 待定系数法的一般步骤? [教师引导学生完成解题][巡视辅导,点评] 解:∵二次函数图象的顶点为(2,3) ∴设二次函数的关系式为y=a(x-2)2+3 又∵二次函数图象过点(3,1) ∴1=a(3-2)2+3 解得a=-2 ∴所求二次函数的关系式为y=-2(x-2)2+3即y=-2x2+8x-5 [教师引导学生总结]: 当已知条件有顶点,或对称轴,或最值,或单调区间, 通常设顶点式y=a(x+h)2+k (a≠0)。 [巩固练习]: 已知二次函数的图象是以直线x=-2为对称轴,函数有最小值-3,又经过点(0,1)。 求该二次函数函数的表达式。 [教师巡视辅导,点评练习] 解:由题意可设此函数的表达式为y=a(x+2)2-3 ∵二次函数图象过点(0,1) ∴1=a(0+2)2-3 解得a=1 ∴所求二次函数的表达式为y= (x+2)2-3即y=x2+4x+1 例2 已知二次函数f(x)函数值f(2)=0,f(4)=0,f(-1)=30。求这个二次函数的表达式。 [分析]:函数的表达式有哪几种?应该怎么设函数解析式。 [教师讲解三元一次方程组的解法[。 解:由已知设f(x)=ax2+bx+c (a≠0), 则有 解得: ∴所求二次函数的表达式为f(x)=2x2-12x+16 [教师引导学生总结]: 当已知条件有图像上三点,通常设一般式y=ax2+bx+c (a≠0)。 [思考]:还有没有其他的解法? J 二次函数f(x)函数值f(2)=0,你能发现什么吗? &二次函数f(x)与x轴的交点为(2,0),(4,0)。 可设其表达式为f(x)=a(x-2)(x-4) 解:∵f(2)=0,f(4)=0 ∴f(x)与x轴的交点为(2,0),(4,0) ∴设f(x) =a(x-2)(x-4) 又∵f(-1)=30 ∴设30=a(-1-2)(-1-4) 解得a=2 ∴所求二次函数的表达式为f(x)=2(x-2)(x-4) 即f(x)=2x2-12x+16 [教师引导学生总结]: 当已知条件有与x轴的交点的坐标,通常设双根式y=a(x-x1)(x-x2) [巩固练习] 已知二次函数y=ax2+bx+c的最大值是7,且y≥0的解集是{x|-1≤x≤3}, 求函数的解析式。 [学生展开讨论] [教师总结] 三、课堂小结 当已知条件有顶点,或对称轴,或最值,或单调区间,通常设顶点式y=a(x+h)2+k (a≠0)。 当已知条件有图像上三点,通常设一般式y=ax2+bx+c (a≠0)。 当已知条件有与x轴的交点的坐标,通常设双根式y=a(x-x1)(x-x2)。对称轴是x= 三元一次方程组的解法。 四、作业 课课练,P37-38 五、教学反思
9.鲁教版初三数学二次函数教案 篇九
鲁教版初三数学二次函数教案
资源名称:鲁教版初三数学二次函数教案 资源分类:初中第五册教案 资源版本:鲁教版 文件类型:doc 学习目标: 1.探索并归纳二次函数的定义,能够表示简单变量之间的二次函数关系. 2.让学生学习了二次函数的定义后, 能够利用尝试求值的方法解决实际问题. 3.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用. 学习重点:二次函数的`定义,能够表示简单变量之间的二次函数关系 学习难点:经历探索和表示二次函数关系的过程,利用二次函数解决实际问题
10.初中数学二次函数教案 篇十
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)
4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗?
[因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)]
5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?
二、解决问题
由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -6 -4 -2 -2 -2 -4 -6 …
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2
三、做一做
1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?
教学要点
(1)在学生画函数图象的同时,教师巡视、指导;
(2)叫一位或两位同学板演,学生自纠,教师点评。
2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
教学要点
(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;
y=ax2+bx+c
=a(x2+x)+c
=a[x2+x+ 2-()2]+c
=a[x2+x+()2]+c-
=a(x+)2+
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/ 2a ,顶点坐标是(-,)
四、课堂练习
课本练习第1、2、3题。
五、小结
通过本节课的学习,你学到了什么知识?有何体会?
六、作业
1.同步练习
2.选用课时作业优化设计。
课时作业优化设计
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;
(2)抛物线y=2x2-2x-的开口_______,对称轴是_______;
(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;
(4)抛物线y=-x2+2x+4的对称轴是_______;
(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=3x2+2x; (2)y=-x2-2x
(3)y=-2x2+8x-8 (4)y=x2-4x+3
【二次函数教案word】推荐阅读:
二次函数教学教案参考10-02
二次函数基本练习08-16
二次函数增减性问题07-20
二次函数压轴题专题09-02
函数单调性教案(简单)10-24
函数模型应用实例教案11-25
《二次函数的应用》教学反思07-15
二次函数听课评课评语06-19
二次函数测试题及答案08-28
二次函数复习课说课稿11-03