数学竞赛教案讲义(9)——不等式(共6篇)
1.数学竞赛教案讲义(9)——不等式 篇一
第十章 直线与圆的方程
一、基础知识
1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x2+y2=1是以原点为圆心的单位圆的方程。
.2 求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。
3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。
4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:
xx1yy1xy1;(5)两点式:;(6)法线式方程:abx2x1y2y1xcosθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:xx0tcos(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, yy0tsiny)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tanθ=
k2k1kk1,tanα=2.1k1k21k1k26.平行与垂直:若直线l1与l2的斜率分别为k1, k2。且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。
227.两点P1(x1, y1)与P2(x2, y2)间的距离公式:|P1P2|=(x1x2)(y1y2)。
8.点P(x0, y0)到直线l: Ax+By+C=0的距离公式:d|Ax0By0C|AB22。
9.直线系的方程:若已知两直线的方程是l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则过l1, l2
交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2=0;由l1与l2组成的二次曲线方程为(A1x+B1y+C1)(A2x+B2y+C2)=0;与l2平行的直线方程为A1x+B1y+C=0(CC1).10.二元一次不等式表示的平面区域,若直线l方程为Ax+By+C=0.若B>0,则Ax+By+C>0表示的区域为l上方的部分,Ax+By+C<0表示的区域为l下方的部分。
11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x和y表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。12.圆的标准方程:圆心是点(a, b),半径为r的圆的标准方程为(x-a)2+(y-b)2=r2,其参数方程为xarcos(θ为参数)。
ybrsinDE,,半径为2213.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)。其圆心为1D2E24F。若点P(x0, y0)为圆上一点,则过点P的切线方程为 2x0xy0x0xy0yDE22yF0.① 14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x2+y2+Dix+Eiy+Fi=0, i=1, 2, 3.则它们两两的根轴方程分别为(D1-D2)x+(E1-E2)y+(F1-F2)=0;(D2-D3)x+(E2-E3)y+(F2-F3)=0;(D3-D1)x+(E3-E1)y+(F3-F1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。
二、方法与例题
1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。
例1 在ΔABC中,AB=AC,∠A=900,过A引中线BD的垂线与BC交于点E,求证:∠ADB=∠CDE。
例2 半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为60。
2.到角公式的使用。
例3 设双曲线xy=1的两支为C1,C2,正ΔPQR三顶点在此双曲线上,求证:P,Q,R不可能在双曲线的同一支上。
3.代数形式的几何意义。例4 求函数f(x)
4.最值问题。
例5 已知三条直线l1: mx-y+m=0, l2: x+my-m(m+1)=0, l3:(m+1)x-y+m+1=0围成ΔABC,求m为何值时,ΔABC的面积有最大值、最小值。
0x43x26x13x4x21的最大值。
5.线性规划。
1xy4,例6 设x, y满足不等式组
y2|2x3|.(1)求点(x, y)所在的平面区域;
(2)设a>-1,在(1)区域里,求函数f(x,y)=y-ax的最大值、最小值。
6.参数方程的应用。
例7 如图10-5所示,过原点引直线交圆x2+(y-1)2=1于Q点,在该直线上取P点,使P到直线y=2的距离等于|PQ|,求P点的轨迹方程。
7.与圆有关的问题。
例8 点A,B,C依次在直线l上,且AB=ABC,过C作l的垂线,M是这条垂线上的动点,以A为圆心,AB为半径作圆,MT1与MT2是这个圆的切线,确定ΔAT1T2垂心 的轨迹。
例9 已知圆x2+y2=1和直线y=2x+m相交于A,B,且OA,OB与x轴正方向所成的角是α和β,见图10-7,求证:sin(α+β)是定值。
例10 已知⊙O是单位圆,正方形ABCD的一边AB是⊙O的弦,试确定|OD|的最大值、最小值。
例11 当m变化且m≠0时,求证:圆(x-2m-1)2+(y-m-1)2=4m2的圆心在一条定直线上,并求这一系列圆的公切线的方程。
三、基础训练题
1.已知两点A(-3,4)和B(3,2),过点P(2,-1)的直线与线段AB有公共点,则该直线的倾斜角的取值范围是__________.2.已知θ∈[0,π],则y3cos的取值范围是__________.2sin3.三条直线2x+3y-6=0, x-y=2, 3x+y+2=0围成一个三角形,当点P(x, y)在此三角形边上或内部运动时,2x+y的取值范围是__________.4.若三条直线4x+y=4, mx+y=0, 2x-3my=4能围成三角形,则m的范围是__________.5.若λ∈R。直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,比较大小:d__________42.6.一圆经过A(4,2), B(-1,3)两点,且在两个坐标轴上的 四个截距的和为14,则此圆的方程为__________.7.自点A(-3,3)发出的光线l射到x轴上被x轴反射,其反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切,则光线l所在的方程为__________.8.D2=4F且E≠0是圆x2+y2+Dx+Ey+F=0与x轴相切的__________条件.29.方程|x|-1=1(y1)表示的曲线是__________.10.已知点M到点A(1,0),B(a,2)及到y轴的距离都相等,若这样的点M恰好有一个,则a可能值的个数为__________.11.已知函数S=x+y,变量x, y满足条件y2-2x≤0和2x+y≤2,试求S的最大值和最小值。12.A,B是x轴正半轴上两点,OA=a,OB=b(a
(2)当∠AMB取最大值时,求OM长;
(3)当∠AMB取最大值时,求过A,B,M三点的圆的半径。
四、高考水平训练题
1.已知ΔABC的顶点A(3,4),重心G(1,1),顶点B在第二象限,垂心在原点O,则点B的坐标为__________.2.把直线3xy230绕点(-1,2)旋转30得到的直线方程为__________.3.M是直线l:
0xy1上一动点,过M作x轴、y轴的垂线,垂足分别为A,B,则在线43段AB上满足AP2PB的点P的轨迹方程为__________.w.w.w.k.s.5.u.c.o.m 4.以相交两圆C1:x+y+4x+y+1=0及C2:x+y+2x+2y+1=0的公共弦为直径的圆的方程为__________.5.已知M={(x,y)|y=2a2x2,a>0},N={(x,y)|(x-1)+(y-3)=a,a>0}.MN,a
222
2的最大值与最小值的和是__________.6.圆x+y+x-6y+m=0与直线x+2y-3=0交于P,Q两点,O为原点,OPOQ,则m=__________.7.已知对于圆x+(y-1)=1上任意一点P(x,y),使x+y+m≥0恒成立,m范围是__________.8.当a为不等于1的任何实数时,圆x-2ax+y+2(a-2)y+2=0均与直线l相切,则直线l的方程为__________.9.在ΔABC中,三个内角A,B,C所对应的边分别为a,b,c,若lgsinA,lgsinB, lgsinC成等差数列,那么直线xsinA+ysinA=a与直线xsinB+ysinC=c的位置关系是__________.10.设A={(x,y)|0≤x≤2,0≤y≤2},B={(x,y)|x≤10,y≥2,y≤x-4}是坐标平面xOy上的点集,C=2
22222x1x2y1y2,(x,y)A,(x,y)B所围成图形的面积是__________.11222211.求圆C1:x2+y2+2x+6y+9=0与圆C2:x2+y2-6x+2y+1=0的公切线方程。12.设集合L={直线l与直线y=2x相交,且以交点的横坐标为斜率}。(1)点(-2,2)到L中的哪条直线的距离最小?
(2)设a∈R+,点P(-2, a)到L中的直线的距离的最小值设为dmin,求dmin的表达式。13.已知圆C:x2+y2-6x-8y=0和x轴交于原点O和定点A,点B是动点,且∠OBA=900,OB交⊙C于M,AB交⊙C于N。求MN的中点P的轨迹。
五、联赛一试水平训练题
1.在直角坐标系中纵横坐标都是有理数的点称为有理点。若a为无理数,过点(a,0)的所有直线中,每条直线上至少存在两个有理点的直线有_______条。
2.等腰ΔABC的底边BC在直线x+y=0上,顶点A(2,3),如果它的一腰平行于直线x-4y+2=0,则另一腰AC所在的直线方程为__________.3.若方程2mx2+(8+m2)xy+4my2+(6-m)x+(3m-4)y-3=0表示表示条互相垂直的直线,则m=__________.4.直线x+7y-5=0分圆x2+y2=1所成的两部分弧长之差的绝对值是__________.25.直线y=kx-1与曲线y=1(x2)有交点,则k的取值范围是__________.6.经过点A(0,5)且与直线x-2y=0, 2x+y=0都相切的圆方程为__________.7.在直角坐标平面上,同时满足条件:y≤3x, y≥8.平面上的整点到直线y
21x, x+y≤100的整点个数是__________.354x的距离中的最小值是__________.359.y=lg(10-mx)的定义域为R,直线y=xsin(arctanm)+10的倾斜角为__________.10.已知f(x)=x-6x+5,满足2
f(x)f(y)0,的点(x,y)构成图形的面积为__________.f(x)f(y)011.已知在ΔABC边上作匀速运动的点D,E,F,在t=0时分别从A,B,C出发,各以一定速度向B,C,A前进,当时刻t=1时,分别到达B,C,A。(1)证明:运动过程中ΔDEF的重心不变;
(2)当ΔDEF面积取得最小值时,其值是ΔABC面积的多少倍?
12.已知矩形ABCD,点C(4,4),点A在圆O:x+y=9(x>0,y>0)上移动,且AB,AD两边始终分别平行于x轴、y轴。求矩形ABCD面积的最小值,以及取得最小值时点A的坐标。13.已知直线l: y=x+b和圆C:x+y+2y=0相交于不同两点A,B,点P在直线l上,且满足|PA|•|PB|=2,当b变化时,求点P的轨迹方程。
六、联赛二试水平训练题
1.设点P(x,y)为曲线|5x+y|+|5x-y|=20上任意一点,求x-xy+y的最大值、最小值。2.给定矩形Ⅰ(长为b,宽为a),矩形Ⅱ(长为c、宽为d),其中a 4.在坐标平面上,纵横坐标都是整数的点称为整点,试证:存在一个同心圆的集合,使得:(1)每个整点都在此集合的某一圆周上;(2)此集合的每个圆周上,有且只有一个整点。5.在坐标平面上,是否存在一个含有无穷多条直线l1,l2,…,ln,…的直线族,它满足条件: 222 (1)点(1,1)∈ln,n=1,2,3,…;(2)kn+1≥an-bn,其中kn+1是ln+1的斜率,an和bn分别是ln在x轴和y轴上的截距,n=1,2,3,…;(3)knkn+1≥0, n=1,2,3,….并证明你的结论。6.在坐标平面内,一圆交x轴正半径于R,S,过原点的直线l1,l2都与此圆相交,l1交圆于A,B,l2交圆于D,C,直线AC,BD分别交x轴正半轴于P,Q,求证: 1111.|OR||OS||OP||OQ|w.w.w.k.s.5.u.c.o.m 1)知识与技能目标 1.通过由学生动手操作:用各种不同长度的木棒去拼三角形,归纳出能拼出三角形的各边长之间的关系和不能拼成三角形的三边的特征,目的是归纳出同时符合几不同条件的不等式的公共范围,即不等式组的解集. 2.通过确定不等式组的解集与确定方程组的解集进行比较,抽象出这二者中的异同,由此理解不等式组的公共解集. 2)过程与方法目标 通过由一元一次不等式,一元一次不等式的解集、解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组这些概念,发展学生的类比推理能力. 3)情感态度与价值观目标 通过培养学生的动手能力发展学生的感性认识与理性认识,培养学生独立思考的习惯. 教材解读 本节内容是在学习了不等式的解集之后的知识内容,在此基础上提出若某数同时满足几个不等式时,如何去确定这个数的取值范围,这就是不等式组的公共解集的确定,在实际生活中同样会遇到一个数所能满足的条件不止一个的问题,这就要用到不等式去确定其解. 学情分析 不等式的解集已经在前一节中学习并运用其解决实际问题,若由多个不等式构成的不等式组的解集如何确定呢?不等式的解集可类比方程的解进行求解,是否不等式组的解与方程组的解也类似呢?因此学生就会进行类比,进而可得出其解集的公共部分. 一、创设情境,导入新课 小明、小华、小芳是同班同学,学校体检有一项称体重,称完之后,小芳说:“我有38kg”,小明说:“我有48kg”,这时,小芳和小明就问站在一旁的小华:“你有多重?”小华说:“我比小明轻,但是要比小芳重!”那么你能说出小华大概有多重吗? 当然,这个问题很简单,如果小华有xkg,小华比小芳重:x>38,小华比小明轻:x<48,那么x的取值要使不等式 x>38 和x<48 都成立.记作:,在数轴上表示为 可以看出,使不等式组成立的x值,是所有大于38并且小于48的数(记作38 几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组. 二、师生互动,课堂探究 (一)提出问题,引发讨论 在学习不等式组之前,我们来开展小组活动吧,每个小组的同学准备五根小木棒,使它们的长度依次为3cm、10cm、6cm、9cm和14cm,用这些小木棒来搭三角形,要求所搭成的三角形的三边中必须有3cm和10cm这两根木棒,请大家先想想我们还有多少种不同的搭配方式,它们都能搭出三角形吗?再动手试试,验证你们的想法. 搭配方式有三种:3cm、10cm、6cm;3cm、10cm、9cm;3cm、10cm、14cm.•但并不是每种搭配方式都能搭成三角形.要构成三角形,必须有两条较短的边拼起来后要略比长边长,也即“任意两边之和大于第三边”,将此不等式变形后成为“任意两边之差小于第三边”,这样可发现只有一种搭配方式可构成三角形,通过拼图验证可得到如课本P143中图. 用不等式来解释,设第三边长为xcm,则有x>10−3又x<10+3,即x>7与x<13,这二者并不矛盾,比7大比13小的数在数轴上可表示为如图,在这部分数中任取一个都能与10cm和3cm构成一个三角形,所给的三条边6cm、9cm、14cm中只有9cm符合要求.这就是说第三边的取值必须同时满足两个条件:比7大且比13小,把x>7与x<13组合成一个整体即构成一元一次不等式组,即把两个不等式合起来,组成一个一元一次不等式组.由此例可知不等式组的解集即为各个不等式的解集的公共部分. (二)导入知识,解释疑难 典型例题讲解 例:解下列不等式组,并把解集在数轴上表示出来. (1)(2)(3)(4) 解:(1)由①得x>5,由②得x>−2,在数轴上表示为如图. 它们的公共部分为x>5,故不等式组的解集为x>5. (2)由不等式①得x<6,由不等式②得x≥1,在数轴上表示为如图. 它们的公共部分为1≤x<6,即为不等式组的解集. (3)由不等式①得x<1,由不等式②得x≥2,在数轴上表示为如图. 它们没有公共部分,故此不等式组无解. (4)由不等式①得x<−3,由不等式②得x<,在数轴上表示为如图. 它们的公共部分是x<−3,即为不等式组的解集. 由上述例题可发现不等式组的解集有四种情况: 若a>b:①当时,•则不等式的公共解集为x>a; ②当时,不等式的公共解集为b ④当时,不等式组无解. (三)归纳总结,知识回顾 1.你是如何确定方程组的解的? 方程组的解即是指同时满足各个方程的解. 2.方程组的解与不等式组的解有什么异同? 无论是方程组还是不等式组,它们的解均是指同时满足各个方程(不等式)的解的公共部分,但方程组的解一般只有一组,而不等式组的解一般有很多范围可选择. 命 题 者 说 考 题 统 计 考 情 点 击 2018·全国卷Ⅰ·T13·线性规划求最值 2018·全国卷Ⅱ·T14·线性规划求最值 2018·北京高考·T8·线性规划区域问题 2018·浙江高考·T15·不等式的解法 2017·全国卷Ⅰ·T14·线性规划求最值 1.不等式作为高考命题热点内容之一,多年来命题较稳定,多以选择、填空题的形式进行考查,题目多出现在第5~9或第13~15题的位置上,难度中等,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上。 2.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大。 考向一 不等式的性质与解法 【例1】(1)已知a>b>0,则下列不等式中恒成立的是() A.a+>b+ B.a+>b+ C.> D.>ab (2)已知函数f (x)=(ax-1)(x+b),若不等式f (x)>0的解集是(-1,3),则不等式f (-2x)<0的解集是() A.∪ B.C.∪ D.解析(1)因为a>b>0,所以<,根据不等式的性质可得a+>b+,故A正确;对于B,取a=1,b=,则a+=1+=2,b+=+2=,故a+>b+不成立,故B错误;根据不等式的性质可得<,故C错误;取a=2,b=1,可知D错误。故选A。 (2)由f (x)>0的解集是(-1,3),所以a<0,且方程f (x)=(ax-1)(x+b)=0的两根为-1和3,所以所以a=-1,b=-3,所以f (x)=-x2+2x+3,所以f (-2x)=-4x2-4x+3,由-4x2-4x+3<0,得4x2+4x-3>0,解得x>或x<-。故选A。 答案(1)A(2)A 解不等式的策略 (1)一元二次不等式:先化为一般形式ax2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集。 (2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解。 变|式|训|练 1.(2018·北京高考)能说明“若a>b,则<”为假命题的一组a,b的值依次为________。(答案不唯一) 解析 由题意知,当a=1,b=-1时,满足a>b,但是>,故答案可以为1,-1。(答案不唯一,满足a>0,b<0即可) 答案 1,-1(答案不唯一) 2.(2018·浙江高考)已知λ∈R,函数f (x)=当λ=2时,不等式f (x)<0的解集是________。若函数f (x)恰有2个零点,则λ的取值范围是________。 解析 若λ=2,则当x≥2时,令x-4<0,得2≤x<4;当x<2时,令x2-4x+3<0,得1 (x)<0的解集为(1,4)。令x-4=0,解得x=4;令x2-4x+3=0,解得x=1或x=3。因为函数f (x)恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4。 答案(1,4)(1,3]∪(4,+∞) 考向二 基本不等式及其应用 【例2】(1)(2018·天津高考)已知a,b∈R,且a-3b+6=0,则2a+的最小值为________。 (2)已知a>b,且ab=1,则的最小值是______。 解析(1)由a-3b+6=0,得a=3b-6,所以2a+=23b-6+≥2=2×2-3=,当且仅当23b-6=,即b=1时等号成立。 (2)==a-b+≥2,当且仅当a-b=时取得等号。 答案(1)(2)2 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号成立)的条件,否则会出现错误。 变|式|训|练 1.已知a>0,b>0,若不等式--≤0恒成立,则m的最大值为() A.4 B.16 C.9 D.3 解析 因为a>0,b>0,所以由--≤0恒成立得,m≤(3a+b)=10++恒成立。因为+≥2=6,当且仅当a=b时等号成立,所以10++≥16,所以m≤16,即m的最大值为16。故选B。 答案 B 2.已知函数f (x)=ln(x+),若正实数a,b满足f (2a)+f (b-1)=0,则+的最小值是________。 解析 因为f (x)=ln(x+),f (-x)=ln(-x+),所以f (x)+f (-x)=ln[(x+)·(-x+)]=ln1=0,所以函数f (x)=ln(x+)为R上的奇函数,又y=x+在其定义域上是增函数,故f (x)=ln(x+)在其定义域上是增函数,因为f (2a)+f (b-1)=0,f (2a)=-f (b-1),f (2a)=f (1-b),所以2a=1-b,故2a+b=1。故+=+=2+++1=++3≥2+3。(当且仅当=且2a+b=1,即a=,b=-1时,等号成立。) 答案 2+3 考向三 线性规划及其应用 微考向1:求线性目标函数的最值 【例3】(2018·全国卷Ⅱ)若x,y满足约束条件则z=x+y的最大值为________。 解析 作可行域,则直线z=x+y过点A(5,4)时取最大值9。 答案 9 线性目标函数z=ax+by最值的确定方法 (1)将目标函数z=ax+by化成直线的斜截式方程(z看成常数)。 (2)根据的几何意义,确定的最值。 (3)得出z的最值。 变|式|训|练 (2018·天津高考)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为() A.6 B.19 C.21 D.45 解析 不等式组表示的平面区域如图中阴影部分所示,作出直线y=-x,平移该直线,当经过点C时,z取得最大值,由得即C(2,3),所以zmax=3×2+5×3=21。故选C。 答案 C 微考向2:线性规划中的参数问题 【例4】(2018·山西八校联考)若实数x,y满足不等式组且3(x-a)+2(y+1)的最大值为5,则a=________。 解析 设z=3(x-a)+2(y+1),作出不等式组表示的平面区域如图中阴影部分所示,由z=3(x-a)+2(y+1)得y=-x+,作出直线y=-x,平移该直线,易知当直线过点A(1,3)时,z取得最大值,又目标函数的最大值为5,所以3(1-a)+2(3+1)=5,解得a=2。 答案 2 解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值。 变|式|训|练 已知x,y满足约束条件目标函数z=2x-3y的最大值是2,则实数a=() A. B.1 C. D.4 解析 作出约束条件所表示的可行域如图中阴影部分所示,因为目标函数z=2x-3y的最大值是2,由图象知z=2x-3y经过平面区域的点A时目标函数取得最大值2。由解得A(4,2),同时A(4,2)也在直线ax+y-4=0上,所以4a=2,则a=。故选A。 答案 A 1.(考向一)(2018·福建联考)已知函数f (x)= 若f (2-x2)>f (x),则实数x的取值范围是() A.(-∞,-1)∪(2,+∞) B.(-∞,-2)∪(1,+∞) C.(-1,2) D.(-2,1) 解析 易知f (x)在R上是增函数,因为f (2-x2)>f (x),所以2-x2>x,解得-2 答案 D 2.(考向一)(2018·南昌联考)若a>1,0 A.loga2 018>logb2 018 B.logba C.(c-b)ca>(c-b)ba D.(a-c)ac>(a-c)ab 解析 因为a>1,0 018>0,logb2 018<0,所以loga2 018>logb2 018,所以A正确;因为0>logab>logac,所以<,所以logba 答案 D 3.(考向二)(2018·河南联考)已知直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,则+的最小值为________。 解析 圆x2+y2-4x+2y+1=0的圆心坐标为(2,-1)。由于直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,故有a+b=1。所以+=(a+2+b+1)=≥+×2=,当且仅当a=2b=时,取等号,故+的最小值为。 答案 4.(考向三)(2018·南昌联考)设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为() A.B.C.D.解析 作出不等式组表示的平面区域,如图阴影部分所示,易知当直线y=kx经过点A(2,1)时,k取得最小值,当直线y=kx经过点C(1,2)时,k取得最大值2,可得实数k的取值范围为。故选C。 答案 C 5.(考向三)(2018·广州测试)若x,y满足约束条件 则z=x2+2x+y2的最小值为() A. B. C.- D.- 解析 画出约束条件对应的平面区域,如图中阴影部分所示,z=x2+2x+y2=(x+1)2+y2-1,其几何意义是平面区域内的点(x,y)到定点(-1,0)的距离的平方再减去1,观察图形可得,平面区域内的点到定点(-1,0)的距离的最小值为,故z=x2+2x+y2的最小值为zmin=-1=-。故选D。 本章内容主要包括两个内容:不等式、推理与证明. 不等式主要包括:不等式的基本性质、一元二次不等式的解法、基本不等式的应用、简单的线性规划问题、不等式的证明与应用. 推理与证明主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展 1趋势,选择题、填空题、解答题都可能涉及,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小. 广东高考在这一章的命题上呈现以下特点: 1.考查题型以选择题、填空为主,偶以解答题形式出现,但多数是解答题中的一部分,如与数列、函数、解析几何等结合考查,分值约占10%左右,既有中、低档题也会有高档题出现. 2.重点考查不等式解法、不等式应用、线性规划以及不等式与其他知识的结合,另在推理与证明中将会重点考查. 3.对合情推理与演绎推理及证明方法的考查,主要放在解答题中,偶尔会对数学归纳法进行考查,注重知识交汇处的命题. 预计高考中对本章内容的考查仍将以不等式的解法、基本不等式应用、线性规划为重点,将推理与证明和其他知识相融合,更加注重应用与能力的考查. 本章内容理论性强,知识覆盖面广,因此在复习过程中应注意: 1.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据. 2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、判别式法、构造法、几何法,这些方法可作适当了解,但要控制量和度. 3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来. 4.注意重要不等式和常用思想方法在解题、证题中的作用. 在复习不等式的解法时,加强等价转化思想的训练与复习.解不等式的过程是一个等价转化的过程,通过等价转化可简化不等式(组),以快速、准确求解. 加强分类讨论思想的复习.在解不等式或证不等式的过程中,如含参数等问题,一般要对参数进行分类讨论.复习时,学生要学会分析引起分类讨论的原因,合理地分类,做到不重不漏. 加强函数与方程思想在不等式中的应用训练.不等式、函数、方程三者密不可分,相互联系、互相转化.如求参数的取值范围问题,函数与方程思想是解决这类问题的重要方法. 在不等式的证明中,加强化归思想的复习,证不等式的过程是一个已知条件向要证结论转化的过程,既可考查学生的基础知识,又可考查学生分析问题和解决问题的能力,正因为证不等式是高考考查学生代数推理能力的重要素材,复习时应引起我们的足够重视. 5.强化不等式的应用. 高考中除单独考查不等式的试题外,常在一些函数、数列、立体几何、解析几何和实际应用问题的试题中涉及不等式的知识,加强不等式应用能力,是提高解综合题能力的关键.因此,在复习时应加强这方面的训练,提高应用意识,总结不等式的应用规律,才能提高解决问题的能力. 如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误. 6.利用平均值定理解决问题时,要注意满足定理成立的三个条件:“一正、二定、三相等”. 7.要强化不等式的应用意识,同时要注意到不等式与函数、方程的区别与联系. 对于类比型问题可以说是创新要求的体现,最常见的是二维问题与三维问题的类比,同结构问题的类比(比如圆锥曲线内的类比问题、数列内的类比问题等),较少对照不同结构的类比问题.关于归纳、猜想、证明是考得比较多、比较成熟的题型了,在复习备考中要把握考试的特点,注重落实. 归纳、演绎和类比推理在数学思维中所占的分量非常重,事实上,在高考中归纳、猜想、证明以及类比、证明这一类题目是常考常新的. 推理与证明问题综合了函数、方程、不等式、解析几何与立体几何等多个知识点,需要采用多种数学方法才能解决问题,如:函数与方程思想、化归思想、分类讨论思想等,对学生的知识与能力要求较高,是对学生思维品质和逻辑推理能力、表述能力的全面考查,可 以弥补选择题与填空题等客观题的不足,是提高区分度、增强选拔功能的重要题型,因此在最近几年的高考试题中,推理与证明问题正在成为一个热点题型,并且经常作为压轴题出现. 第六章 不等式、推理与证明 第一节 不等关系与不等式 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景.知识梳理 一、不等式的概念 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号“<”,“>”,“≤”,“≥”,“≠”连接两个数式或代数式以表示它们之间的不等的关系的式子,叫做不等式. 二、实数运算性质与大小顺序关系 1.a>b⇔a-b>0;2.a=b⇔a-b=0;3.a 三、不等式的基本性质 双向性: 1.定理1(对称性):a>b⇔b 2.定理2(传递性):a>b,b>c⇒a>c.3.定理3(同加性):a>b,c为整式或实数⇔a+c>b+c.4.定理3推论(叠加性): a>bc>d}⇒a+c>b+d.5.定理4(可乘性): a>bc>0}⇒ac>bc; a>bc<0}⇒ac nn* 7.定理4推论2(可乘方性):a>b>0⇒a>b(n∈N且n>1). 8.定理5(可开方性):a>b>0⇒ 四、不等式性质成立的条件 n n >b(n∈N*且n>1). 1例如,重要结论:a>b,ab>0⇒,不能弱化条件得a>b⇒.abab 五、正确处理带等号的情况 如由a>b,b≥c或a≥b,b>c均可得出a>c;而由a≥b,b≥c可能有a>c,也可能有a≥c,当且仅当a=b且b=c时,才会有a=c.注意:不等式的性质从形式上可分两类:一类是“⇒”型;另一类是“⇔”型.要注意二者的区别. 基础自测 1.已知a<0,b<-1,则下列不等式成立的是() aaaabbbbaaaaC.2>aD.>a>2 bbbb A.a>B.>a 解析:特殊值法,取a=-1,b=-2,验证知2a成立.也可用作差比较法. 答案:C 2.若0 C.log2a+log2b+ 1322 3D.log2(a+ab+ab+b) 2解析:特殊值法.取a=,b=,则log2b=log2 =1-log23>1-log24=-1;log2b 333 -(log2a+log2b+1)=-1-log21+log23>0; 3223 计算可知,b>a+ab+ab+b,3223 ∴log2b>log2(a+ab+ab+b).故选B.答案:B 3.已知a,b∈R且a>b,则下列不等式中一定成立的是____________. a1a1b 22 ①>1 ②a>b ③lg(a-b)>0 ④<b22 aa bb 解析:令a=2,b=-1,则a>b,=-2,故>1不成立;令a=1,b=-2,则a abab 1x222 =1,b=4,故a>b不成立;当a-b在区间(0,1)内时,lg(a-b)<0;f(x)=在R 2 1a1b 上是减函数,∵a>b,∴f(a)<f(b),即<.故④正确. 22 答案:④ bab+ma+n 4.a>b>0,m>0,n>0,则,由大到小的顺序是____________. aba+mb+n b1ab+m2a+n3 解析:取特殊值.如a=2,b=1,m=n=1,则=2,a2ba+m3b+n2 aa+nb+mb∴>bb+na+ma aa+nb+mb答案:>> bb+na+ma 1.设a,b为实数,则“0 a A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:当0.反过来若b<,当a<0时,则有ab>1,所以“0 aa 是“b<”的既不充分也不必要条件.故选D.a 答案:D 2.已知x=ln π,y=log52,z=e-,则() A.x 111111 解析:x=ln π>ln e=1,y=log52 22e42e 可得,y<z<x.故选 D.答案:D22 1.(2013·江门一模)若x>0、y>0,则x+y>1是x+y>1的()A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 解析:先看充分性,222 可取x=y=,使x+y>1成立,而x+y>1不能成立,故充分性不能成立; 若x+y>1,因为x>0,y>0,22222 所以(x+y)=x+y+2xy>x+y>1,∴x+y>1成立,故必要性成立. 综上所述,x+y>1是x+y>1的必要不充分条件. 答案:B 2.(2013·北京西城期末)已知a>b>0,给出下列四个不等式: 22ab-1332 ①a>b ②2>2 ③a-b>a-b ④a+b>2ab.其中一定成立的不等式为________. 解析:由a>b>0可得a>b,①成立; xab-1 由a>b>0可得a>b-1,而函数f(x)=2在R上是增函数;∴f(a)>f(b-1),即2>2,②成立; ∵a>b>0,∴a>b,22 ∴(a-b)-(a-b)=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立; 332332 取法乎上,持之以恒 七年级 数学学科 准印 份 包科领导签名: 9.2实际问题与一元一次不等式 学习目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。 学习重点:一元一次不等式在实际问题中的应用。学习难点:在实际问题中建立一元一次不等式的数量关系。 关键:从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。 一、课前准备:解下列不等式,并把他们的解集分别在数轴上表示出来。 (1)2x3x(2)xx2350 二、创设情境,置疑解疑 问题1:为了回馈广大顾客,百佳超市和鸿泰超市开展了如下优惠活动:下面我来调查一下,你遇到这样的活动你会去哪家超市? 百佳超市和鸿泰超市一同样的价格出售同样的商品,并且又各自推出不同的优惠方案: 百佳:累计购买100元商品后,再购买的商品按原价的90%收费; 鸿泰:累计购买50元后,再购买的商品按原价的95%收费。 分析:百佳的优惠方案的起点为购物款达到 元后; 鸿泰的优惠方案的起点为购物款达到 元后; (1)如果累计购物40元,在两家超市购物花费有区别吗? (2)如果累计购物80元,则在哪家超市购物花费小?为什么? (3)若累计购物超过100元,设累计花费x元,则 在百佳超市需要花费 元,在鸿泰超市需要花 元。(4)购物累计达到多少钱时(超过100元),在百佳购物花费更少? 超市的问题解决了,有一个工人又遇到了一点麻烦,看看你们能给他解决吗? 问题2:某工人计划15天里加工408个零件,最初三天每天加工24个,以后每天至少要加工多 少个零件才能在规定的时间内完成任务? 三、当堂训练: 1、一次环保知识竞赛共有25道题,答对一道得4分,答错或者不答毎道扣1分。这次竞赛中你 博闻强记,多思多问 取法乎上,持之以恒 要被评为优秀(85分或85分以上),那你至少需要答对几道题? 2、2002北京空气质量良好(二级以上)的天数与全年天数之比达到55%,2008年这样的比值超过70%,那么2008年北京空气质量良好的天数是多少? 四、小结: 用一元一次不等式知识解决实际问题的基本步骤有哪些? 五、课后作业 1、当x或y满足是条件时,下列关系成立? (1)2(x+1)大于或等于1 ; (2)4x与7的和不小于6 ; (3)y与1的差不大于2y与3的差 ; (4)3y与7的和的四分之一小于2。 §23抽屉原理 课后练习 1.幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.2.正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.3.把1到10的自然数摆成一个圆圈,证明一定存在在个相邻的数,它们的和数大于17.4.有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双.5.在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过 (假定四点在一直线上构成面积为零的四边形).6.在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么? 数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 课后练习答案 1.解 从三种玩具中挑选两件,搭配方式只能是下面六种: (兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿) 把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.原则2 如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原则1可看作原则2的物例(m=1) 2.证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色.3.证明 如图12-1,设a1,a2,a3,„,a9,a10分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是(a1,a2,a3),(a2,a3,a4),(a3,a4,a5),„,(a9,a10,a1),(a10,a1,a2)共十组.现把它们看作十个抽屉,每个抽屉的物体数是a1+a2+a3,a2+a3+a4,a3+a4+a5,„a9+a10+a1,a10+a1+a2,由于 (a1+a2+a3)+(a2+a3+a4)+„+(a9+a10+a1)+(a10+a1+a2)=3(a1+a2+„+a9+a10)=3×(1+2+„+9+10) 根据原则2,至少有一个括号内的三数和不少于17,即至少有三个相邻的数的和不小于17.原则 1、原则2可归结到期更一般形式: 原则3把m1+m2+„+mn+k(k≥1)个物体放入n个抽屉里,那么或在第一个抽屉里至少放入m1+1个物体,或在第二个抽屉里至少放入m2+1个物体,„„,或在第n个抽屉里至少放入mn+1个物体.数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 证明假定第一个抽屉放入物体的数不超过m1个,第二个抽屉放入物体的数不超过m2个,„„,第n个抽屉放入物体的个数不超过mn,那么放入所有抽屉的物体总数不超过m1+m2+„+mn个,与题设矛盾.4.证明 除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.制造抽屉是运用原则的一大关键 首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.5.证明如图12-2把正方形分成四个相同的小正方形.因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的.事实上,由于解决问题的核心在于将正方形分割成四个面积相等的部分,所以还可以把正方形按图12-3(此处无图)所示的形式分割.合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.6.解如图12-4(设挂牌的三棵树依次为A、B、C.AB=a,BC=b,若a、b中有一为偶数,命题得证.否则a、b均为奇数,则AC=a+b为偶数,命题得证.下面我们换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,由于树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.数学教育网http:// 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http:// 后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法2.数学竞赛教案讲义(9)——不等式 篇二
3.数学竞赛教案讲义(9)——不等式 篇三
4.数学竞赛教案讲义(9)——不等式 篇四
5.数学竞赛教案讲义(9)——不等式 篇五
6.数学竞赛教案讲义(9)——不等式 篇六