《算术平方根》教案

2024-07-05

《算术平方根》教案(共12篇)

1.《算术平方根》教案 篇一

算术平方根教学反思

本节的教学效果不错,因为本节教学过程中体现了几大亮点:

一、学生动手操作。

通过剪一剪、拼一拼,把两个面积为1的小正方形剪拼成一个大正方形,从动手操作中学生发现了大正方形的边长原来就是小正方形的对角线的长,从而引发了探究有多大的欲望。这样教学的作用是通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展培养了学生的形象思维。

二、探讨“有多大?”。

这是一个学生关注的具有挑战性的问题,也是说明引入算术平方根必要性的好问题(如果算术平方根都可以像完全平方数的算术平方根那样求得,恐怕就没有必要花那么多的精力来学习算术平方根了)。在探讨的过程中,主要采用两头逼近的方法慢慢引导学生理解大概在什么范围内,并从中了解到是一个无限不循环小数。解决这个问题的.过程体现了“数学中的无限逼近的思想”,并使学生体验“无限不循环”小数的特点,为引入无理数和实数概念作好准备。

三、探究被开方小数点移动规律。

通过计算器完成课本71页‘探究’的填表后,学生小组讨论得出被开方数的扩大和缩小与算术平方根的扩大和缩小之间的规律。让学生体验了计算器的重要性,以及通过讨论找到规律的成功喜悦感。

四、运用逼近法解决实际问题。

通过解决课本的例3这一个实际问题,让学生领会:一是用算术平方根解决实际问题,二是用逼近估算法比较一个有理数与一个无理数的大小。为学生后面的实数学习提供的方法。而且让学生体会到数学来源于生活,又反过来解决生活中的实际问题。

2.《算术平方根》教案 篇二

下面是我对八年级上册的《算术平方根》这一节课教学设计.

一、复习巩固

1. 求出下列各式的值.

2. 填空.

(1) 如果一个正数的平方等于4, 则这个数是___.

(2) 如果一个正数的平方等于100, 则这个数是____.

(3) 如果一个正数的平方等于则这个数是____.

这一教学环节是针对“要学什么”和“怎么学”去设计的.算术平方根与一个正数的平方刚好是一种互逆运算.这样设计为学生明白这一节课“要学什么”打下了基础.通过第2题练习, 使学生知道“怎么学”, 即怎样去求这样的一个正数, 使得这个正数满足平方后等于某个正数及知道运用什么样的思维方式去解决这一问题.

二、情景引入

引入问题情景:有这样一个古老的问题:用图1所示的两个面积为1的正方形, 能不能拼一个大的正方形?如果能, 这个大的正方形的面积是多少?它的边长是多少?

这一教学环节是针对“为什么要学”而设计的, 通过实际问题的呈现, 使学生感受到现有的知识的局限性, 让学生知道要解决现有的问题就必须学习新的知识.同时也让学生感受到无理数在实际生活中是真实存在的, 所以我们必须要学.

数学史的讲述:对我们刚刚拼出的这个面积为2的正方形的边长a是多少的这个问题, 在当年的古希腊数学界中引起了一场很大的争议.当时有一位著名的数学家叫毕达哥拉斯, 他认为:“一切数均可表示成整数或整数之比.”而有趣的是在毕达哥拉斯学派中的一名叫希帕索斯的成员发现, 面积为2的正方形的边长无论怎样都没法用整数或整数之比来表示, 所以在当时引起了数学界的恐慌, 历史上称为“第一次数学危机”.

这一教学环节是针对“怎样让学生乐意去学”而设计的, 通过古老问题的展示和数学史的讲述, 拓宽了学生的知识面, 激起学生学习的欲望, 达到使学生乐学的目的.

三、回归课本, 感知新知

问题:十月份举行的科技活动月中, 我们班的某位同学想裁出一块面积为25dm的正方形画纸, 画一幅科幻画去参加比赛, 则这张画纸的边长为多少?

解:因为52=25, 所以边长为5dm.

填表:

四、归纳新知

1. 一般的, 如果一个正数x的平方等于a, 即x2=a, 那么这个正数x叫做a的算术平方根.

2. 数学符号表示:a的算术平方根表示为 (其中a≥0) , 读作“根号a”, a叫做被开方数.

这两个教学环节的设计是让学生感知本节课要学习的算术平方根是什么, 即这一节课要学什么.算术平方根的定义可以这样分析理解:算术平方根是根据平方运算的逆运算来定义的, 所以运用定义求算术平方根, 实际上可以这样去思考:所求的什么数的平方等于a.这两个教学环节是针对“要学什么”和“怎么学”而设计的.

五、应用新知

例题赏析:求下列各数的算术平方根.

解: (1) 因为102=100, 所以100的算术平方根是10, 即

(2) 因为所以的算术平方根是即

(3) 因为0.012=0.0001, 所以0.0001的算术平方根是0.01, 即

解题小锦囊:求某个数的算术平方根, 根据定义可以这样思考:什么数的平方等于a, 如 (1) 根据定义可以这样思考:什么数的平方等于100?因为10的平方等于100, 所以100的算术平方根是10, 这样就可以求出100的算术平方根了.通过文字叙述理解算术平方根的概念, 用数学符号表示求算术平方的运算, 很好地巩固了算术平方根的知识, 这一教学环节也是针对“怎么学”而设计的.

六、巩固新知

练习1:求下列各数的算术平方根.

练习2:求下列各式的值.

练习1:这一设计是为了让学生学习模仿求一个数的算术平方根, 学生用自己的语言有条理地、清晰地阐述求算术平方根的方法, 然后用数学符号表示求算术平方的运算.初步掌握求算术平方根的方法, 提高语言表达能力, 达到巩固新知的目的.

练习2:通过运用数学符号表示算术平方根的运算发展学生的符号感, 使学生对知识的理解转化为数学技能.

这两个教学环节是针对“有没有学到什么”、“学得好不好”而设计的.主要目的是通过学生的自我展示, 从中暴露学生有没有学到什么、学得好不好.

七、拓展新知

练习3:求下列各数的算术平方根.

练习4:求下列各式的值.

练习3:通过加大深度的练习, 促使学生进行合作交流, 培养学生的团队精神.练习4对学有余力的学生进行挑战, 拓展学生思维, 满足多层次教学的要求.

这两个教学环节也是针对“有没有学到什么”、“学得好不好”而设计的, 主要目的是为了进一步检查学生有没有学到什么、学得好不好.

八、课堂小结

课堂小结:“通过本节课的学习, 你对本节课的知识有哪些认识?”

这一教学环节设计的目的是为学生提供交流的空间, 理顺本节课的知识, 达到掌握知识的目的.所以这一教学环节包含了:学生要学什么、怎么学、有没有学到什么、学得好不好.

3.《算术平方根》教案 篇三

一、区别

1.概念的区别

平方根:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也就是说,如果x2=a,那么x叫做a的平方根. 例如:32=9,3是9的平方根,(-3)2=9,-3也是9的平方根,即3和-3都是9的平方根.

算术平方根:一般地,如果一个非负数x的平方等于a,即x2=a,那么这个非负数x叫做a的算术平方根.例如:32=9,正数3是9的算术平方根.虽然(-3)2=9,但-3不是9的算术平方根.

2.书写方法的区别

平方根:一个非负数a的平方根记做±.例如,3的平方根记做±.

算术平方根:一个非负数a的算术平方根记做.例如,3的算术平方根记做.

3.个数的区别

平方根:一个正数有两个平方根,并且它们互为相反数.例如,25的平方根有两个,一个是5,另一个是-5.

算术平方根:一个正数的算术平方根只有一个,且这个数是正数.例如,25的算术平方根只有一个,是5.

注意,0是一个特殊的数.因为只有0的平方等于0,所以0的平方根和算术平方根都只有一个,即它本身.

二、联系

1.包含关系

一个正数的平方根包含了这个正数的算术平方根,一个正数的正的平方根即是这个数的算术平方根.例如,的两个平方根是±,其中是的算术平方根.

2.取值范围相同

只有非负数才有平方根,负数没有平方根;只有非负数才有算术平方根,负数没有算术平方根.一个数没有平方根,它也一定没有算术平方根.

三、常见题型

例1 求下列各数的平方根.

(1) 144;(2) ; (3) 0;(4) (-4)2.

解析:(1)因为(±12)2=144,所以144的平方根是±12.

(2)因为±2=,所以的平方根是±.

(3)因为02=0,所以0的平方根是0.

(4)因为(-4)2=16=(±4)2,所以(-4)2的平方根是±4.

点拨:解第(4)题时要慎重.对于这类有运算的题目,不妨先计算出来再求平方根.

例2 求下列各数的算术平方根.

(1) 256; (2) ; (3) (-0.9)2; (4) .

解析:(1)因为(±16)2=256,所以256的平方根是±16.取正的平方根,则256的算术平方根是16.

(2)因为±2=,所以的平方根是±.取正的平方根,则的算术平方根是.

(3)因为(-0.9)2=0.81,而0.81的平方根是±0.9,取正的平方根,则(-0.9)2的算术平方根是0.9.

(4)因为=9,而(±3)2=9,所以的算术平方根是3.

点拨:解(3)、(4)题要小心,不要想当然,要算出结果后再计算.

例3 判断下列说法是否正确,并说明理由.

(1)4是16的平方根;(2)16的平方根是4.

解析:(1)正确,因42=16,所以4是16的平方根.

(2)不正确,因(±4)2=16,所以16的平方根是±4.

例4 下列说法中正确的是().

A. -6是(-6)2的算术平方根B. 64的平方根是±8

C. 3是-9的算术平方根 D. 16的算术平方根是±4

解析:只有非负数才有平方根和算术平方根,所以选项C是不对的;一个正数有两个平方根,其中正的平方根才叫算术平方根,所以选项A 、D是不对的.故应选B.

点拨:解答本题的关键,是理解、掌握平方根和算术平方根的概念与意义.

求下列各式的值.

(1)±; (2);(3)-; (4)-.

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文

4.积的算术平方根等于什么 篇四

√ab=√a·√b(a≥0,b≥0)适用范围:被开方数如果还有字母,考虑它的隐含条件,被开方数是非负数,考虑整个式子的值的`符号。

积的算术平方根的化简

√18=√9×2=√32×2=√32×√2=3√2,首先将被开方数进行因式分解,化为乘积的形式,如果根号内有开的尽方的因式就移到根号外面来,用它的算术平方根来代替,达到化简的目的。

二次根式的乘法

5.《算术平方根》教案 篇五

算术平方根 【情境导入】

师:上课(师生互相问候)

师:下面请同学拿出讲义,我们一起看一看课前延伸部分,请同学们口答: 生:3 0.5 1 0 师:任意一个有理数的平方是什么数? 生:非负数。

师:回答正确。下面解决一个实际问题,问题3,大家会吗?有没有那个同学计算出结果? 生:…

【设计说明】:以旧引新,让学生建立新旧知识之间的联系,把学生的思维引入对本课研究有帮助的知识领域。激发学生的兴趣。

师:同学们只会设出方程X=14,但不会解,是吗?这节课我们就来解决这个问题。(生很兴奋)

师:下面同学们自学课本例1以上部分,然后回答问题:(生自学,师巡视)(时间差不多5分钟)请同学们问题:

生1:一般的,如果一个正数x的平方等于a,即X=a ,那么这个正数x叫做a的算术平方根。记作x=,读作根号下a,规定0的算术平方根是0

根号,这是表示正数a的算术平

22师:很好!你学得很认真,我们今天引入一个新的符号方根的符号,大家一起读两遍,写五遍。(师领读,学生跟读,然后写5遍)师:后面的同学继续回答,生2: 0.5 0 ,师:回答正确,同学们再互相举一些用根号表示数的例子。生互相举例 师(巡视等待):对

生3:因为一个有理数的平方不可能是负数。所以不对。师:不错,看看下一道题,生4回答

生:因为X=a,其中a是平方运算的结果,要么a是正数,要么a是零,因此负数没有算术平方根.【设计说明】:让学生通过自学,使学生的自主性得到很好的发展,培养学生的探究意识,激发学生的求知欲望,使教学目标得到较好的落实。师:下面仿照例1,求下列各数的算术平方根:(生自学讨论,师等待)

举例板书(2)因为0.9的平方等于0.81。所以0.81的算术平方根是0.9。下面同学们仿例练习。生练习,然后到黑板板书。师生共同评析

师:下面我们一起完成例2 2师读题:下列各式是什么意思?你能直接求出它们的值吗? 师析:这些数都是用根号表示的数,它们分别表示什么意思? 生:它们表示数的算的平方根

师:好,下面请同学们计算它们的结果

【设计意图】展示学生对算术平方根的思考过程,培养学生良好的学习习惯。学生口答结果

师:由此看来,同学们对今天所学的知识掌握得不错,下面请同学们完成自我检测题。学生当堂练习。(时间约为8分钟)【设计说明】加深对概念的理解,进一步培养学生的运算能力。师安排较好成绩的学生上交作业,并安排学生批改作业。师:请各小组长汇报成绩。组长1:全对

组长2:-(-3.61)的算术平方根有两个人算错。组长3:全对

组长4:第3题有三个人算错,已经改正。

师:今天同学们学得比较认真。下面我们小结一下所学内容。

6.平方根---教案(二) 篇六

问:

1.625的平方根是多少?这两个平方根的和是多少?

2.-7和7是哪个数的平方根?

3.正数m的平方根怎样表示?

4.下列各数的平方根各是什么?

答:

1.625的平方根是25和-25,这两个平方根的和是0.

2.-7和7是49的平方根.

(2)0的平方根是0.

(5)因为-16<0,所以-16没有平方根.

(6)因为(-4)3=-64<0,所以(-4)3没有平方根.

问:已知正方形的面积等于a,那么它的一条边长等于多少?

用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负

(1)被开方数a表示非负数,即a≥0;

号,如a≥0

数a的正的平方根.

例1求下列各数的算术平方根:

问:怎样求各数的算术平方根?

答:可以通过平方运算求一个正数的算术平方根.

解(1)因为102=100,所以100的算术平方根是10,即

(4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即

问:一个正数a的平方根与这个正数的算术平方根之间有什么关系?

指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的

它的算术平方根的相反数.

例2求下列各数的平方根及算术平方根:

(2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即

0.0081的算术平方根则是

问:说明下列各式所表示的意义是什么?分别求出它们的值.

1.下列各式中哪些有意义?哪些无意义?

2.判断下列各题正确与错误,并将错误改正.

3.求下列各数的平方根及算术平方根:

4.求下列各式的值:

答案:1(3)无意义,其他各题均有意义.

2.(1)正确;(2),(3),(4)错误.

(6)正确. (7)正确.

3.(1)±100,100; (2)±2.7,2.7;

平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系.

1.平方根和算术平方根的区别.

(1)定义不同.如果x2=a,那么x叫做a的平方根.

一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.

如果x2=a,并且x≥0,那么x叫做a的算术平方根.

一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.

(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.

2.平方根和算术平方根的联系.

(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.

(2)存在条件相同.非负数才有平方根和算术平方根.

(3)零的平方根和零的算术平方根都是零.

1.求下列各式的值:

2.求下列各数的平方根及算术平方根:

答案:

(4)±70,70; (5)±10-2,10-2.

平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:

1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示

2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.

7.八年级数学平方根教案 篇七

若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即[例1]求下列各数的算术平方根:

49a”

0=0.(1)900;(2)1;(3)64;(4)14.解:(1)因为302=900,所以900的算术平方根是30,即(2)因为12=1,所以1的算术平方根是1,即(),864(3)因为所以6472900=30;

1=1;

49647849497的算术平方根是8,即14;

(4)14的算术平方根是.?

[例2]自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间? 解:将h=19.6代入公式h=4.9t2得 t2=4,所以t=4=2(秒)即铁球到达地面需要2秒.算术平方根的性质.定义中的a和x都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a(a≥0)为非负数,Ⅲ.课堂练习

5一、填空题1.若一个数的算术平方根是4,则这个数是_________.2.9的算术平方根是_________.1443.正数_________的平方为25,179的算术平方根为_________.4.(-1.44)2的算术平方根为_________.5.81的算术平方根为_________,0.04=_________.二、求下列各数的算术平方根,用符号表示出来:

1(1)(7.4)2;

(2)(-3.9)2;

(3)2.25;

(4)24.21254答案:

一、1.5 2.33.二、(1)7.42

34.1.44 5.3 0.2.27.2;(2)(3.9)23.93.9;(3)2.251.5;(4)

21432.1.一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍? 2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍? 解:设原来的正方形边长为a,面积为S1,后来的正方形面积为S2.1.S1=a2,S2=na2(∴后来的边长(nna)2

na)为原来边长的倍.2.S1=a2,S2=100a2=(10a)2 ∴后来的边长10a为原来边长的10倍.1.平方根、开平方的概念 先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?

4(2)平方等于25的数有几个?平方等于0.64的数呢?

24243是9的算术平方根,5是25的算术平方根,那么-3,-5叫9、25的什么根呢 一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.[生]平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x的平方等于a,则x叫a的算术平方根,这里的x只能是正数.由此看来都有x2=a,这是它们的相同之处,而x的要求不同,这是它们的不同之处.平方根与算术平方根的联系与区别 联系:

(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有(根号下的数大于等于0).(3)0的平方根,算术平方根都是0.区别:

(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±

a,正数a的算术平方根表示为

a.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.开平方

求一个数a的平方根的运算,叫开平方,其中a叫被开方数.2.平方根的性质 0有一个平方根是零.负数没有平方根,例如-3没有平方根.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.3.讲解例题

[例]求下列各数的平方根.49(1)64;(2)121;(3)0.0004;(4)(-25)2;(5)11.解:(1)因为(±8)2=64,所以64的平方根是±8,即±764=±8;

74949749121(2)因为(±11)2=121,所以121的平方根是±11,即±=±11;

0.0004(3)因为(±0.02)2=0.0004,所以0.0004的平方根是±0.02,即±=±0.02;(4)因为(±25)2=(-25)2,所以(-25)2的平方根是±25,即±(5)11的平方根是±4.想一想

49(25)2=±25;

11.(1)((2)(647.2)2等于多少?()2等于多少?

a121)2等于多少?

(3)对于正数a,(解:(1)(64)2等于多少?

4949)2=64;(121)2=121;

(2)(7.2)2=7.2;

(3)(a)2=a(a>0)(一)随堂练习1.求下列各数的平方根

1001.44,0,8,49,441,196,10-4

1.44解:因为(±1.2)2=1.44,所以1.44的平方根是±1.2,即±因为02=0,所以0的平方根是0.即±0=±1.2;

=0;

8因为(±因为(107)2=8.所以8的平方根是±100491008;

10)210049,所以49的平方根是±7,即±

107;

因为(±21)2=441,所以441的平方根是±21,即±因为(±14)2=196,所以196的平方根是±14,即±114441196=±21; =±14;

112141214因为110-4=10,(±10)=10,所以104的平方根是±10,即±

104=±

10=±10=

2±100.2.填空

(1)25的平方根是_________;

(3)(5(2)

(5)2 =_________;)2=_________.解:(1)±5;(2)5;(3)5.(二)补充练习投影片:(§2.2.2 B)1.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a2;(6)a2-2a+2 2.求下列各数的平方根.7(1)121;(2)0.01;(3)29;(4)(-13)2;(5)-(-4)3.1.分析:一个数有没有平方根,就看它是不是负数,是负数就没有平方根;不是负数就有平方根.解:(1)∵(-3)2=9>0∴(-3)2有平方根(2)∵0的平方根是它本身∴0有平方根(3)∵-0.01<0∴-0.01没有平方根(4)∵-52=-25<0∴-52没有平方根(5)当a=0时,-a2=0,有平方根 当a≠0时,-a2<0,没有平方根.(6)∵a2-2a+2=(a-1)2+1,无论a取何有理数,(a-1)2+1>0 ∴a2-2a+2有平方根.说明:(1)负数没有平方根

(2)第(4)小题容易犯错误,-52=25>0.2.分析:根据平方与开平方互为逆运算,可以通过平方运算来求一个数的平方根,其中729259,(-13)2=169,-(-4)3=64,把带分数化为假分数,含有乘方运算先求出它的幂.∴121的平方根是±11

即±

0.01解:(1)∵(±11)2=121(2)∵(±0.1)2=0.01

7121=±11;

259∴0.01的平方根是±0.1

75即±

=±0.1;

2795(3)∵292595,(±3)2= ∴29的平方根是±3

即±=±3;

(13)2(4)∵(-13)2=169,(±13)2=169 ∴(-13)2的平方根是±13 即±=±13;(5)∵-(-4)3=64,(±8)2=64 Ⅵ.活动与探究 1.对于任意数a,解:不一定 当a=2时,1∴-(-4)3的平方根是±8 即±

(4)3=±8.a2一定等于a吗?

a21422124=2 当a=2时,当a=0时,a2

a2a20=0(2)2当a=-2时,14=2

1当a-2时,a2(12)2142=2.综上所述,当a≥0时,当a<0时,2.aa2a=a =-a

a中的被开方数a在什么情况下有意义,()2等于什么?

8.数学教案-用计算器求平方根 篇八

一.教学目标

1.会用计算器求数的平方根;

2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;

3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣.

二.教学重点与难点

教学重点:用计算器求一个正数的平方根的程序

教学难点:准确用计算器求解一个正数的平方根

三.教学方法

讲练结合

四.教学手段

实物投影仪,计算器

五.教学过程

在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。

现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。

例1.用计算器求 的值。

分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

解:用计算器求 的步骤如下:

小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。

例2.用计算器求 的值。(保留4个有效数字)

解:用计算器求 的步骤如下:

小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

例3.用计算器求 的值。

解:用计算器求 的步骤如下:

因为计算结果要求保留4个有效数字,

例4.用计算器求1360.57的平方根。

解:用计算器求1360.57平方根的步骤如下:

因为计算结果要求保留4个有效数字,

小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:

分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

解:按键的顺序是:

显示612.65685

≈612.7

练习:

求下列正数的算术平方根:

(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;

(7) ; (8)101.38

六.总结

利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。

八.作业

教材 A组1、2、3

9.立方根教案 篇九

一、教学目标

知识技能:了解立方根的概念,会用根号表示一个数的立方根;

数学思考:通过运用数学符号描述开方运算的过程,建立开立方的概念,发展抽象思维; 问题解决:会用根号表示一个数的立方根,会求一个数的立方根;

情感态度:通过学习立方根的概念,表示及求法,培养抽象思维,激发学习兴趣,培养学生的探索精神;

二、教学重点及难点

教学重点:掌握立方根的概念,会求一个数的立方根

教学难点:明确平方根与立方根的区别,能熟练地求一个数的立方根

三、教具准备

投影仪、小黑板

四、教学过程

1、创设情境,引入新知

现有一只体积为216cm的正方体纸盒,它的每一条棱长是多少? ⑴在这个实际问题中,提出了怎样的一个计算问题 ⑵你能得到一个数,使这个数的立方等于216吗? ⑶从这个问题中可以抽象得到一个什么数学概念?

32、新知探索及内化

如果某种植物细胞可以近似看作是棱长为1的正方体,那么当它的体积增大1倍时,这个正方体的棱长是多少?

3x2 x棱长为1的正方体的体积是1,设体积为2的正方体的棱长为,那么一般地,如果一个数的立方等于a,这个数就叫做a的立方根,也称为三次方根;也就是

33xaxaa说,如果,那么叫做的立方根,数的立方根记作a,读作“三次根号a”。33例如:4的立方是64,所以4是64的立方根,记作644,又如x2,x是2的立方根,记作x32。

给出立方根的定义:求一个数的立方根的运算叫做开立方。

开立方和立方互为逆运算,因此求一个数的立方根可以通过立方运算来求。

3、新知运用

例1:求下列各数的立方根

83(3)0.126125⑴,⑵,⑶0,⑷ 答案:⑴25,⑵0.6,⑶0,⑷3

[总结]立方根的性质:正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。例2:求下列各式的值

371333(8)(8)(0.7)64⑴,⑵,⑶,⑷ 3233答案:⑴8,⑵4,⑶0.7,⑷例3:求下列各式中的x

34

333(x1)125 8x2727x64⑴,⑵,⑶答案:略

例4:已知一个正方体的棱长是5cm,再做一个正方体,使它的体积等于原正方体的体积的8倍,求要做的正方体的棱长。答案:10cm

4、归纳小结

⑴掌握立方根的定义和性质 ⑵会求一个数的立方根 ⑶理解并掌握公式

5、布置作业

基础题 变式训练题 综合运用题

6、板书设计

10.平方差公式教案 篇十

课题:平方差公式 授课:张福仁 教学目标:

1、知识与技能目标:会用平方差公式进行多项式乘法运算

2、过程与方法目标:通过问题情境,引导学生自行得出平方差公式,再通过练习巩固。

3、情感态度与价值观目标:通过问题探究,培养学生独立思考、解决问题能力。教学重点:平方差公式理解、运用 教学难点:平方差公式理解、运用 教学过程

Ⅰ.提出问题,创设情境

[师]你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002 [生甲]直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000+1,1999可以写成2000-1,那么2001×1999可以看成是多项式的积,根据多项式乘法法则可以很快算出.[生乙]那么998×1002=(1000-2)(1000+2)了.[师]很好,请同学们自己动手运算一下.[生](1)2001×1999=(2000+1)(2000-1)=20002-1×2000+1×2000+1×(-1)=20002-1 =4000000-1 =3999999.(2)998×1002=(1000-2)(1000+2)=10002+1000×2+(-2)×1000+(-2)×2

=10002-22 =1000000-4 =1999996.[师]2001×1999=20002-12 998×1002=10002-22 它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.Ⅱ.导入新课

计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.(学生讨论,教师引导)[生甲]上面四个算式中每个因式都是两项.[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1•这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现.[生]解:(1)(x+1)(x-1)

=x2+x-x-1=x2-12(2)(m+2)(m-2)=m2+2m-2m-2×2=m2-22(3)(2x+1)(2x-1)=(2x)2+2x-2x-1=(2x)2-12(4)(x+5y)(x-5y)=x2+5y·x-x·5y-(5y)2 =x2-(5y)2 [生]从刚才的运算我发现: 也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.[师]能不能再举例验证你的发现? [生]能.例如: 51×49=(50+1)(50-1)=502+50-50-1=502-12.即(50+1)(50-1)=502-12.(-a+b)(-a-b)=(-a)·(-a)+(-a)·(-b)+b·(-a)+b·(-b)=(-a)2-b2=a2-b2 这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差.[师]为什么会是这样的呢? [生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.[师]很好.请用一般形式表示上述规律,并对此规律进行证明.[生]这个规律用符号表示为:(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.利用多项式与多项式的乘法法则可以做如下证明:(a+b)(a-b)=a2-ab+ab-b2=a2-b2.[师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)(a-b)=a2-b2起一个名字呢? [生]最终结果是两个数的平方差,叫它“平方差公式”怎样样? [师]有道理.这就是我们探究得到的“平方差公式”,•请同学们分别用文字语言和符号语言叙述这个公式.(出示投影)两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2 平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算

(出示投影片)例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)例2:计算:

(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座.在例1的(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2-22(a+b)(a-b)=a2-b2 同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:(b+2a)(2a-b)=(2a+b)(2a-b).如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.(作如上分析后,学生可以自己完成两个例题.•也可以通过学生的板演进行评析达到巩固和深化的目的)[例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2.[例2]解:(1)102×98=(100+2)(100-2)=1002-22=10000-4=9996.(2)(y+2)(y-2)-(y-1)(y+5)=y2-22-(y2+5y-y-5)=y2-4-y2-4y+5 =-4y+1.[师]我们能不能总结一下利用平方差公式应注意什么?

11.平方差公式教案 篇十一

专业辅导学生学习

第七节

平方差公式

(一)学习目的:

1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。

2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。

3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。学习重点:理解平方差公式的特点,会运用平方差公式计算 学习难点:会推导平方差公式,并能灵活运用公式进行计算 学习过程:

一、复习探究

1、请写出多项式与多项式相乘的法则:

2、计算下列各题

(1)(x2)(x2);(2)(13a)(13a)(3)(x5y)(x5y);(4)(y3z)(y3z)解:

3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论? 规律:

结论:

二、学习新课

1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程: 证明:

我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式.

学习周报

专业辅导学生学习

即:(ab)(ab)ab

两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。

2、应用公式

1、用平方差公式计算:

(1)(56x)(56x);(2)(x2y)(x2y)

分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(56x)(56x)5(6x)2536x

(2)(x2y)(x2y)x(2y)x4y 例

2、利用平方差公式计算

(1)(mn)(mn);(2)(2x5y)(5y2x);

222222222(3)(ab8)(ab8)

分析:注意找准相同项与互为相反数的项.解:(1)(mn)(mn)(m)nmn

(2)(2x5y)(5y2x)(2x)2(5y)24x225y

2(3)(ab8)(ab8)82(ab)264a2b2 现在让我们来试试吧!

练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。若不能,请说明原因。

2222(1)(a+b)(x-y)(2)(a+b)(a+b)(3)(a-b)(-a+b)(4)(-a-b)(a-b)(5)(a+3)(a-2)(6)(2x-3y)(2x+3y)练习

2、判断下列计算对不对,为什么?如果不对应怎样改正?

(1)(x6)(x6)x6;(2)(2ab)(2ab)2ab

2222244学习周报

专业辅导学生学习

(3)(5a2b)(5a2b)(5a)(2b)25a4b(4)(13x)(13x)1(3x)19x

练习

3、计算下列各题:

(1)(a+2)(a-2);(2)(3a+2b)(3a-2b);(3)(1-x)(-1-x);

222222(4)(-m2n+3)(-m2n-3);(5)(0.3m-0.1n)(0.1n+0.3m)(6)(解:

3、计算(mn)(mn)3n

分析:在混合运算中,观察是否有可以运用平方差公式的项先进行计算,将计算结果用括号括起来,避免符号出错.解:(mn)(mn)3n

(mn)3n(平方差公式)

m2n(去括号、合并同类项)

练习

4、计算: 2223x12y)(12y23x);;

22222(1)(3n2-5m2)(3n2+5m2);(2)(-2x2-3)(-2x2+3);(3)(3x-1)(3x+1)-(2x+3)(2x-3);(4)(a-b)(a+b)(a2+b2)(a4+b4);解:

学习周报

专业辅导学生学习

三、课堂小结

1、平方差公式是特殊的多项式乘法,要理解并掌握公式的结构特征.1)2)3)必须是两个二项式相乘;

必须有一项完全相同,另一项互为相反数 结果是相同项的平方减去互为相反数的项的平方.2、在混合运算中,用平方差公式直接计算所得的结果可以写在一个括号里,以免发生符号错误.四、课堂测试 得分:

1、填空(每空5分,共20分):

(1)(x+3y)=9y-x;(2)(-2ab-5)(2ab-5)= ;(3)(n22224)(n224);(4)(12b23a)=14b249a;

22、计算(每题10分,共80分):(1)(3a+2b)(3a-2b);(2)(-4b+3)(-4b-3);(3)(x-2y)(-x-2y);(4)(3x12y)(3x212y);(5)(m

2-3n)(m+3n);(6)(-3a+b)(3a+b);

22222323(7)(3a-2)[4a+(2a-b)(-2a-b)];(8)(x-2)(x+2)(x+4).解:

五、课后作业: 课本P36习题1.11知识技能第1题,P37联系拓广第1题.六、反思:

12.《平方根与立方根》参考教案 篇十二

三维教学目标 知识与技能:

1、了解平方根的概念、开平方的概念。会用根号表示一个数的平方根。

2、了解平方运算与开平方运算是互为逆运算

3、会用平方根的概念求某些非负数的平方根。过程与方法:

1、让学生经历概念形成过程,提高学生的思维水平。

2、培养学生的求同和求异思维,能从相似的事物中观察到他们的共同点和不同点。

情感态度与价值观:

1、创设学生熟悉的问题情景,培养他们对数学的好奇心和求知欲。

2、在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐。

3、提高学生“用数学”的意识。

教学重点:会用平方根的概念求某些非负数的平方根。教学难点:对只有非负数才有平方根的理解。课堂导入

1、到目前为止我们已学过哪些运算?

2、一个正方形边长为5厘米,它的面积为多少?是什么运算?它的 教学过程

一、创设问题情景

学校要举行美术作品比赛,小明很高兴,她想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少? 如果画布的面积依次改为:9、16、36„„那么相应的边长是多少?

二、探索归纳(1)平方根的概念

若x2a,则x叫做a的平方根。(2)举例:∵5225

∴5是25的一个平方根

问:25的平方根只有一个吗?还有哪些数的平方也等于25?(3)总结求一个数平方根的方法。

三、举例应用

例1 求100的平方根.

解 因为102=100,(-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.

例2求36的平方根。

解:因为(6)236,所以36的平方根为±6.四、试一试(1)144的平方根是什么?(2)0的平方根是什么?(3)的平方根是什么? 13(4)1的平方根是什么?

36(5)0、81的平方根是 什么?(6)-4有没有平方根?为什么? 答案:(1)14412,(2)、00(3)、42542137,(4)、1 255366请你自己也编三道求平方根的题目,并给出解答。

通过以上题目的解答,你发现了什么? 概括:

一个正数必定有两个平方根.,它们互为相反数;0的平方根是0;负数没有平方根。

五、课堂练习

1、平方得81的数是,因此81的平方根是。

2、平方根是它本身的数是。

3、如果-b是a的平方根,那么

A、ba2; B、ab2 ; C、ba2; D、ab2

4、求下列各式中的x的值 ⑴x2196 ⑵5x2100 答案:

1、±9,±9,2、0

3、B

4、x=±16,x=±2

六、课堂小结

1、平方根的定义。

2、平方根的性质。正数有两个平方根它们互为相反数,0的平方根是0,负数没有平方根。课堂作业

1、求下列各数的平方根:

162(1)49(2)(3)36(4)2。

812、已知2a-1的一个平方根是+3,求2a-1的另一个平方根及a的值。答案:

1、(1)∵749(3)∵749 22∴±7是49的平方根。∴±7是49的平方根。

4162(2)∵(4)∵24

8192 ∴4162是的平方根。24 9812 ∴±2是2的平方根。

2、因为一个数如果有平方根,那么它的两个平方根互为相反数。已知2a-1的一个平方根是+3,所以2a-1的另一个平方根是-3。∵2a-1=3 ∴ a=5 2教学反思 易错点:对平方根的意义不理解;对平方与开平方两种运算之间的互逆关系不理解。

上一篇:让感谢走进心田下一篇:以自己某一节课的教学设计或教案为例,分析

热搜文章

    相关推荐