平行线的判定说课稿(共9篇)
1.平行线的判定说课稿 篇一
《平行线的判定》说课稿
各位评委、各位老师大家好:
今天我说课的内容是义务教育北师大版数八学年级上册第七章第三节《平行线的判定》,下面我将从教材分析、学生分析、教学目标、教学重难点、教学方法、教学过程等六个环节来说课。
一、教材分析
本课是八年级学过的“同位角”,“内错角”,“同旁内角和”“平行线”的继续,是后面研究平移以及三角形、四边形(特别是平行四边形)的相关学习的基础.从本节课起,培养和发展学生合情推理能力,同时也开始从有条理的口头表述逐渐过渡到书写自己的理由.因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的几何推理等内容的基础,也是空间与图形的重要组成部分。
二、学情分析
学生对“同位角”,“内错角”,“同旁内角”和“平行线”,四个概念已经了解,并且 学生已经具备一定辨别能力,已经具备一定知识基础和一定认知能力,而不是一张“白纸”,虽对于两条直线的平行关系有了初步的认识,但是这个认识是很肤浅的,仅仅处于对生活中存在的平行线现象的感知层面,对于如何判断两条直线平行,缺乏相关的知识.另一方面该年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。
三、教学目标
知识目标:
1、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些简单的实际问题。
2、会用三角尺过已知直线外一点画这条直线的平行线。能力目标:
会用判定方法1得出判定方法2和3,会用判定方法1,2得出方法3,会用判定方法1.2.3进行简单推理。
情感目标:体会“由未知向已知”转化的数学思想是认识客观事物的基本方法
经历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流。
四、教学重点和难点
重点:掌握平行的判定方法。
难点:会进行文字语言,图形语言,符号语言之间的互译,理解“转化”的思想.
五、教法学法分析 教法:
动手实践,自主探索,合作交流是学生学习数学的重要方式。著名西方教育家布鲁纳认为“探索是数学教学的生命线”,所以组织学生自主探索知识的过程,可突出学生是认识的主体,也有利于师生角色转化。
为体现自主学习的教改模式。让学生主动提出问题,独立思考问题,合作探究问题,并对所学知识进行当堂有效训练和评价。
学法:动手实践、自主探索与合作交流相结合。
六、教学过程:
为更好突出重点突破难点完成教学任务,将本课的教学过程设定如下五个环节:创设情景,激发求知欲——独立自主,探究新知——师生互动,解决疑难——巩固训练,反思归纳——分享收获,布置作业。
(一)创设情景,激发求知欲望
现有一本书,一条彩带,我们有什么办法知道它的两边会平行呢? 引入课题板书课题,《平行线的判定》。
意图:数学源于生活,数学是自然的.。营造课堂氛围,激发对学习内容的兴趣。
(二)独立自主,探究新知
追问思考:
做一做:三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行?
画一画:用移动三角尺的方法画两条直线平行线。
这种方法根据什么条件去画的?
得出:“同位角相等二直线平行”。这一基本事实。
“三线八角”有几种?其它两种在怎样的条件下可使二直线平行? 你能证明出来吗?
小组合作交流,尝试推导判定二、三。
意图:让学生自己学会思考,发现、分析、推理解决具体问题,培养学生自己解决问题的自信心,培养学生自觉探究的良好习惯。
(三)、师生互动,解决疑难
让两名学生到黑板上写出其证明过程
师生互动,进一步修正二、三的具体证明过程,并强调步骤的书写。引导学生思考课本173页想一想。老师补充这里作平行线的道理。完成课本上的随堂练习。
在平行线的判定中,学生对三种角的观察视角上容易出问题,补充形象识别三类角的方法:同位角的形象大使“F”;内错角的形象大使“Z”;同旁内角的形象大使“U”; 只不过它们有时不是很规则:倒立着、反向着、躺着的„„这种方法很方便于寻找哪两条线平行。
意图:让学生学会用说理的方式展示推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究、得出结论的自然延续。对推理能力的培养需要有一个循序渐进的过程。可以用自然语言结合图形进行说明“说点儿理”“说理”“简单推理”“用符号表示推理”等不同阶段逐步提高。
(四)、巩固训练,反思归纳
1.如下图所示,填上一个适合的条件______________,可使AB∥CD。
(第一题)
(第二题)
2、如图,E是AB上的一点,F是DC上的一点,G是BC延长线上的一点。(1)如果∠B=∠DCG,__ ∥ 根据是(2)如果∠DCG=∠D,∥ 根据是(3)如果∠DFE+∠D=180,__ ∥ 根据是—。
(五)、分享收获,布置作业
1.你能说出几种判定平行的方法?填空:①______________ 那么这两条直线也互相平行。
②______________
两直线平行。③______________ 两直线平行
。④______________ 两直线平行。作业:
必做:课本习题7.41、2、3、4.、2、选做:请将你学习这节课的体会记录写在数学日记中。
2.平行线的判定说课稿 篇二
今天我说的是:人教版义务教育课程标准实验教科书八年级下册第十九章第一节“平行四边形及性质”一课。我主要从以下几个方面介绍我对本节课的设计。
一、设计理念
本节课以学生观察操作、合作探究、感悟发现为学习主要方式, 实施开放式教学。创设民主、宽松的教学气氛, 最大限度地调动学生的积极性, 体现了教师的教学行为和学生的学习方式的转变。
二、教材及学情分析
1. 教材的地位和作用
平行四边形不仅是对已学的平行线和三角形知识的应用与深化, 而且为以后将要学习的矩形、菱形、正方形、梯形等知识打下了基础, 起着承上启下的桥梁作用。另外, 为证明线段相等、角相等、两直线平行提供了新的方法和依据。因此, 本节课的重要性是不言而喻的。
2. 学情分析
学生在小学时已经对平行四边形有了初步的、直观的认识, 但对于严密的推理论证, 从知识结构和知识能力上都有所欠缺。而利用动手操作来实现探究活动, 对学生具有一定的吸引力, 可激发学生的强烈的求知欲。
3. 教学目标
根据课程标准的要求, 结合教材的具体内容, 从学生的实际认知水平出发, 确立了以下三个维度的教学目标。
(1) 知识与技能:掌握平行四边形的相关概念和性质, 培养学生初步应用这些知识解决问题的能力。
(2) 过程与方法:通过观察、实验、猜想、推理、交流等教学活动, 学生亲历探索的过程, 体会解决问题策略的多元化。
(3) 情感态度与价值观:培养学生独立思考的习惯与合作交流的意识, 激发学生探索数学奥秘的兴趣, 使学生在数学活动中获得成功的体验。
4. 教学重、难点
教学重点:理解并掌握平行四边形的概念和性质。
教学难点:利用图形变换的思想, 探究平行四边形的性质。
5. 教材的处理
按教材编排, 平行四边形性质共分5课时完成, 我对本节教学内容进行适当的重新组合。第一课时重点是安排学生探究平行四边形的概念及所有性质, 并初步运用这些性质进行有关的论证和计算。这样安排, 能很好地体现知识结构的完整性和系统性。
三、教学方法和手段
本节课在教法上体现教师的启发引导, 帮助学生实现认识上与态度上的跨越。在学法上突出学生的自主探究、合作交流, 利用多媒体、自制教具辅助教学, 增强教学的直观性、实效性。
四、教学程序
1. 创设情境, 揭示主题
问题一:同学们, 你们留意观察过我们教学楼前的两个花坛吗?它们是由一些什么样的图形组成的?学生根据已有的经验, 可能回答是平行四边形、菱形、四边形等。教师用多媒体展示, 直观上看是平行四边形构成的。
问题二:房屋装修, 想换掉旧的瓷砖, 需要预算一下用料情况。聪明的瓦工说, 平行四边形有一种对称的美, 只要量出一个角的度数, 就能知道其他三个角的度数, 测量出一组邻边长, 便能计算出周长, 这样根据瓷砖的尺寸就可以预算了。这是为什么?告诉学生, 学习完本节课就能明白解决问题的道理。出示课题。
这样设计, 从学生的生活实际出发, 创设情境, 提出问题, 激发学生的强烈的好奇心和求知欲。让学生感受到平行四边形与生活实际紧密相连, 同时把思维的兴奋点集中到要研究的平行四边形上来, 为下一步的学习新知识创造良好的开端。
2. 实践探究, 感悟新知
本环节设置以下几个活动:
活动一:拼一拼。你能利用两个全等的三角形拼出四边形吗?学生动手操作, 教师留意观察。请同学们把拼出的6种不同的四边形展示在黑板上。
活动二:看一看。观察拼出的特殊四边形对边有怎样的位置关系?说说你的理由。给出平行四边形的定义, 对黑板上的图形进行识别, 让学生体验类比的教学思维。
活动三:画一画。让学生根据定义画一个平行四边形, 观察它有哪些基本元素。教师示范画图, 结合图形介绍对边、对角、对角线及平行四边形的记法、读法, 规范学生的几何语言。教师强调定义的两方面作用。
通过拼图、看图、画图游戏让学生经历概念的探究过程, 自然而然地形成概念, 符合学生的认知规律, 避免概念教学的机械记忆。同时, 学生对平行四边形相关元素也获得丰富的直观体验, 为介绍图形性质作了有利铺垫。
3. 大胆猜测, 探究新知
首先, 教师展示模型, 让学生仔细观察, 大胆猜测, 对边、对角、对角线大小有什么关系。培养学生仔细观察, 积极思维的能力。其次, 学生利用模型, 采用度量、平移、旋转、折叠、拼图的方法, 初步验证猜测的结论。小组合作探究, 教师以合作身份参与并适当予以指导。鼓励学生探究方式、结果表示方法的多样化, 并填写实验报告。第三, 学生展示实验过程、结果, 教师引导按边、角、对角线进行归类梳理, 使知识的呈现具有条理性。学生相互交流, 并用规范的语言描述性质。然后请大家思考, 利用以前学过的知识, 对以上结论进行验证, 教师小结。
本环节注重直观操作和简单推理有机结合。把几何论证作为探究活动的自然延续和必然发展, 使学生的实践精神、创新意识和自觉说理的能力得到提高。
4. 开放训练, 深化新知
例1:平行四边形ABCD中∠A比∠B大40度, AB=8, 周长等于24。从这些信息中你能得到哪些结论?把“周长等于24”改为“对角线AC、BD交于点O, △AOB的周长为24”求AC、BD的和是多少?本环节打破讲解书上例题的传统, 自己设计开放题作为例1, 有利于充分运用已学的性质, 加强对新知识的应用意识。
例2:解决课前提出的实际问题。你现在知道它是怎么计算的吗?依据是什么?回扣导言, 体现数学教学的连贯性和知识的应用性。
5. 分层作业形成技能
A类练习:
(1) △ABC中, 已知∠A=50°, 则∠B= () , ∠C= () , ∠D= () 。
(2) △ABC中, 已知∠A+∠C=200°, 则∠A= () , ∠B= () 。
(3) △ABC中, AB=3, BC=5, 则△ABC的周长为 () 。
(4) △ABC中, AC、BD相交于点O, AC=10, BD=8, △AOB的周长为16, 则AB= () 。
B类练习:
(1) 试一试, 把一根平放在平行四边形ABCD的纸条固定在对角线的交点处, 然后拨动纸条, 观察几次拨动的结果, 你有什么发现?学生在这样动态的思维场景中观察、分析、归纳、推理, 培养学生发现问题、分析问题、解决问题的能力, 使学生真正成为知识的探究者。
(2) 已知平面内三点A、B、C, 是否存在点D, 使得这四个点顺次联结构成平行四边形, 如果存在, 作出图形并说明理由。
作业的设计体现了分层训练的教学原则, 同时为探究平行四边形性质的应用, 做好铺垫。做到既着眼学生的共同发展, 又关注学生的个性差异。
6. 反思小节, 启迪升华
这是一次知识与情感的交流。引导学生谈谈本节课的收获及在知识获得过程中的体验和感受。这样可以及时反馈学生的学习效果, 便于课堂教学的优化。
(1) 通过探究本节课你得到了哪些结论?
(2) 总结解决四边形的问题的方法, 证明线段相等、角相等的方法。
(3) 在应用性质解题时应注意哪些问题?
7. 板书设计 (图略)
五、教学反思
3.《用向量讨论垂直与平行》说课稿 篇三
【关键词】 教材分析 学情分析 教法学法 教学过程 教学反思
【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2016)08-087-01
一、教材分析
1.在教材中的地位与作用。本章内容《空间向量与立体几何》是在学习了立体几何的基本理论(必修2)和空间向量知识(必修4)的基础上提出的,本章的前三节为本节的学习和研究奠定了基础。本节主要是利用向量工具研究空间中的线线、线面、面面的位置关系,是本章的核心内容。
2.教学目标分析。根据《新课程标准》的理念,基于对教材的理解和分析,考虑到学生已有的认知结构及心理特征,制定如下三维教学目标:(1)知识与技能目标。能用向量语言表述空间中线线、线面、面面的垂直与平行的位置关系;掌握平面的法向量的求法。(2)过程与方法目标。结合已有的立体几何知识,运用向量方法,解决立体几何中垂直与平行的问题。(3)情感态度与价值观目标。体验科学探索的曲折过程,感受在探索问题的过程中的挫折感和成就感,培养合作意识和创新精神,激发学习兴趣。
3. 教学重难点分析根据以上教学目标确定如下:教学重点:能用向量方法判断垂直与平行的位置关系;会求平面的法向量。教学难点:结合已有的立体几何知识,运用向量方法,用向量语言证明垂直与平行的问题。
二、学情分析
学生已经学习了立体几何中线线、线面、面面的位置关系,具备有关知识储备,对坐标法解决几何问题也有了初步的认识。但是利用向量工具解决空间中垂直与平行的问题还没有系统的学习过,需要老师循序渐进的引导。
三、教法学法分析
1.教学:启发引导、数形结合、案例分析、构建模型。
2. 学法:观察分析、自主探究、合作交流、讨论归纳。
四、教学过程展示
本节课主要分五个环节来完成:复习引入、自主探究、知识运用、课堂小结及布置作业。
(一)复习引入。给出三个问题,让学生思考:①什么是直线的方向向量?②什么是平面的法向量?③如何利用向量知识判断直线与平面间的平行或垂直问题?
设计意图: 1.个问题是引导学生复习旧知识,为本节课的学习打铺垫;2.个问题是引导学生思考与本节课有关的问题。
(二)自主探究。观察图形,并用向量语言表述以下位置关系:设空间直线l1,l2的方向向量分别是1, ,平面α、β的法向量分别是 ,2,则:①线线平行:②线线垂直:③线面平行:
④面面平行:⑤线面垂直;⑥面面垂直
设计意图: 1.学生合作交流,完成自主探究部分。2.学生根据图形,结合已有的立体几何知识,运用向量语言,数形结合,找到垂直与平行关系的等价条件,为突破重难点打下基础。
(三)知识运用
例1.(线面垂直判定定理)若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直。
设计意图:让学生从理论上学会用向量方法证明几何问题,从另一个侧面体现了利用向量方法研究垂直与平行的重要性,至此突破难点。
【方法归纳】:用空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。(回到图形问题)
设计意图:由例3归纳解题步骤,帮助学生梳理解题思路,构建知识体系。
学生练习:完成课本41页练习:1.2.3.
(以上三道题目考察的知识点依次是:线线位置关系,线面位置关系,面面位置关系)
设计意图:学生自己检验是否掌握了所学知识,并对所学方法加深理解。
(四)课堂小结(讨论归纳)。(1)用向量表示线线、线面、面面垂直与平行的关系;(2)求法向量的步骤;(3)用向量方法解决立体几何问题的步骤。
设计意图:引导学生对本节知识进行回顾,同时检验学生对本节知识的掌握程度,有利于教师更好地根据学生的情况进行针对性的辅导。
(五)布置作业(反馈提升)。1.课本42页第2、3题;2.学有余力的同学完成课本41页的思考交流。(第2、3题考察的知识点依次是:线线位置关系,面面位置关系;思考交流是对“面面垂直的判定定理”的证明)
设计意图:分层布置作业,尽可能适应不同层次学生的需要。通过完成作业,学生可以巩固所学知识,反馈学习效果,同时也起到了复习的作用。在做作业的同时,可以加深对知识的理解,提升思维能力。
五、教学反思
4.《平行四边形的判定》的说课稿 篇四
二、教材分析
本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。
三、教学重难点
重点:探索并掌握平行四边形的判别条件。
难点:对平行四边形判别条件的理解及说理的基本方法的掌握。
四、教学准备
两根长40厘米 和两根长30厘米的木条
五、教学设计
首先复习近平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做”,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。
六、教学过程
1、复习近平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)
2、小组活动
用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。
(通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。
平行四边形的判定定理——两组对边相等的四边形是平行四边形。
3、课本91页的“做一做”
(其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)
4、“议一议”
问题
1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。
(先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)
问题
2、要判别一个四边形是平行四边形,你有哪些方法?
5.平行线的判定说课稿 篇五
巩义二中闫长辉
课题:§ 3.1.2 两条直线平行与垂直的判定
教材:普通高中课程标准实验教科书(人教A版)必修
(二)第三章第一节第二部分内容课时:1课时
下面,我从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析:
1、学习任务分析:
直线与方程是平面解析几何初步的第一章,主要内容是用坐标法研究平面上最基本、最简单的几何图形——直线。学习本章,既能为进一步学习解析几何的圆、圆锥曲线、线性规划、以及导数、微分等做好知识上的必要准备,又能为今后灵活运用解析几何的基本思想和方法打好坚实的基础。
本节课是在学生学习了直线的倾斜角、斜率概念和斜率公式等知识的基础上,进一步探究如何用直线的斜率判定两条直线平行与垂直的位置关系。核心内容是两条直线平行与垂直的判定。它既是直线斜率概念的深化和简单应用,也是后续内容学习的重要基础。因此,我认为本节课的教学重点为:根据两条直线斜率判定两条直线平行与垂直。
用斜率判定两条直线的位置关系,体现了用代数方法研究几何问题的思想,这是贯穿于本节乃至本章内容始终的一种思想方法,它是解析几何研究问题的基本思想,本质还是数形结合。因此体会数形结合的数学思想也是本节课的教学任务之一。
2、学情分析:
在初中数学中,学生已学习过两条直线平行与垂直的判定。对两条直线平行与垂直的几何判断方法并不陌生,并且具备了一些初步推理能力。但用两条直线的斜率判定两条直线平行与垂直,是用代数方法研究几何问题,学生面对的是一种全新的思维方法,首次接触会感到不习惯。按说要学好本节内容,学生还需具备三角函数的有关知识,但此前学生并没有这方面的知识储备。尤其是对诱导公式的认识是有一定困难的。因而要导出两条直线垂直的斜率条件,学生会感到困难。因此,我以为本节课的教学难点为:探究两条直线斜率与两条直线垂直的关系。
二、教学目标设计:
《课程标准》指出本节课的学习目标是:能根据斜率判定两条直线平行或垂直。根据《课标》要求和本节教学内容,并考虑学生的接受能力,我把本节课的教学目标确定为:
1、能根据斜率判定两条直线平行或垂直。
2、体验、经历用斜率研究两条直线的位置关系的过程与方法,通过两条直线斜率之间的关系解释几何含义即初步体会数形结合思想。
3、感受坐标法对沟通代数与几何、数与形之间联系的重要作用。
三、课堂结构设计:
本节课从总体上讲是一节原理及简单的应用教学,诱思探究教学理论认为高中的数学课堂应该是学生在自主探究、动手实践、合作交流、阅读自学等学习方式下,师生之间、学生之间进行愉快而有效的多边互动。结合本节课知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先让学生回顾上节课学习的内容创设问题情景,通过学生自主探究,归纳和抽象得出两条直线平行与垂直的判定条件。然后通过例题和练习使学生巩固判定条件,接着通过拓展提升,使学生进一步加深对判定条件的理解,最后通过课堂小结提高学生的认识,形成知识体系。
四、教学媒体设计:
根据本节课的教学任务以及学生学习的需要,教学媒体的设计如下:
1、多媒体辅助教学:
制作高效实用的多媒体课件。其一,在探索两条直线垂直的判定条件时,利用几何画板展示探究的过程,让学生直观感知、操作确认自己的猜想是正确的,加深学生对判定条件的理解。其二,改变相关内容的呈现方式,节约课时,增加课堂容量。
2、设计科学合理的板书:为使学生对本节课所学习的内容有一个整体的认识,教学时将重要内容进行板书,如:
§3.1.2两条直线平行与垂直的判定
结论1:结论
2、例
1、例
2、变式训练1:变式训练2:
五、教学过程设计:
下面我就课堂教学的各个环节的设计做简单的说明。
(一)创设情景,引入新课:
活动一:
1、什么叫倾斜角?它的范围是什么?
2、什么叫斜率?如何计算呢?
3、已知直线经过A(1,3)、B(-1,-1),直线经过C(2,2)、D(1,0)①计算直线的斜率; ②在直角坐标系中画出直线。
给学生约30秒的时间思考问题1、2,请学生口述答案,老师强调注意的条件。通过解决问题3,学生发现k1= k2,并观察出是平行的,学生很自然发现两条直线的斜率与位置有着
某种联系,从而引出本节课的课题。
设计意图:一方面通过回顾,巩固上节课的教学内容,并为本节课做好知识方面的准备。另一方面也为引出本节课的课题。同时也是为了培养学生发现问题,提出问题的能力,激发学生运用旧知探求新知的欲望。也是为了体现由特殊到一般的认知规律。
(二)新知的探究与应用:
1、两条直线平行的判定:
说明:为了降低难度,设定两条直线不重合且有斜率存在。
(1)设置问题,归纳结论 设两条直线与的斜率分别为活动二: 与。
1、当时,与满足怎样的关系?
给学生约30秒的时间思考、整理,请学生表述推导过程,教师板演。归纳:
2、反之,当。时,两条直线与有怎样的位置关系?,但要明确其中的原理势必受到三角函数基础知识的限制,学生通过思考,很快得出直线
教师可给予适当的讲解。归纳:
结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
设计意图:(1)培养学生运用已有知识解决新问题的能力;(2)培养学生自主探究问题的习惯;(3)让学生体验探究两条直线斜率与直线的位置关系的过程,更好的理解两直线平行的条件。
(2)应用举例:
例
1、已知A(2,3),B(-4,0)P(-3,2),Q(-1,3),试判断直线AB与直线PQ的位置关系,并证明你的结论.给学生约1分钟的时间思考,然后老师进行简要的分析,最后由师生共同
完成证明过程。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程
做出示范。体会用代数方法解决几何问题的思想方法。
变式训练1:已知四边形ABCD的四个顶点分别为A(-7,0)、B(2,-3)、C(5,6)、D(-4,9),试判断四边形ABCD的形状,并给出证明。
由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.在做完此题时,细心的学生会发现它可能还是一个正方形,如何判断呢?引出下一个探究的问题:斜率之间有何关系时两条直线垂直?
设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)为了发现问题,提出问题。也为下一环节做好铺垫。
2、两条直线垂直的判定:
说明:为了降低难度,设定两条直线的斜率是存在。
(1)设置问题,归纳结论
活动三:
1、当时,它们的斜率k1与k2有何关系?
探究:(1)直线(2)直线且的倾斜角为300,的倾斜角为1200,k1与k2的关系.且的倾斜角为600,的倾斜角为1500,k1与k2的关系
。由学生自主探究,得出
猜想:任意两条直线垂直时,此时老师利用几何画板直观演示任意两条相互垂直时直线斜率之积为-1.,验证猜想的可靠性。
提出问题:我们能否证明上述结论呢?
该结论的证明过程涉及到三角函数的相关知识,学生无法完成。教师通过分析、讲解,完成证明过程。归纳:
2、反之,当 时,直线与有怎样的位置关系? 学生思考后得出与是垂直的。由于结论的证明涉及三角函数的相关知识,完成证明很困难,老师利用几何画板直观演示,验证两条直线的斜率之积为-1,它们是相互垂直的即可。归纳:
结论:如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
设计意图:(1)为了更容易突破本节课的教学难点,更好的理解两直线垂直的条件。(2)为了使学生的认识符合从具体到抽象,从特殊到一般的认知规律。(3)充分渗透了数形结合的数学思想。
(2)应用举例:
例2:已知A(-6,0)、B(3,6)、P(0,3)、Q(6,-6),试判断直线AB与直线PQ的位置关系。
给学生约30秒的时间思考,然后老师进行简要的分析,最后由师生共同完成证明过程。接着与学生一同解决变式训练1提出的判断平行四边形ABCD是否是正方形,前后呼应,给学生留下一个完整的影响。
设计意图:直接应用新知解决数学问题,同时也为学生规范表达数学过程做出示范。体会用代数方法解决几何问题的思想方法。
变式训练2: 判断下面两条直线的位置关系: 直线经过两点A(3,1),B(-2,0),直线经过点P(1,-4),且斜率为-5,则
__。(学生思考,口答即可)。
变式训练3:已知A(5,-1)、B(1,1)、C(2,3)三点,试判断△ABC的形状。由学生独立完成,其中一人上黑板板演,教师巡视并给予必要的指导.设计意图:(1)培养学生应用新知独立解决数学问题的能力。(2)体会用代数方法解决几何问题的思想方法。
(三)拓展提升:
1、若直线的斜率不存在,则直线的斜率为多少时?直线和:
(1)平行;(2)垂直。
给学生约30秒的时间思考,请一位学生口述答案,教师在黑板上画出相应结论的图像。归纳(一般情况):
2.若直线与的斜率相等,则与一定平行吗?
给学生约30秒的时间思考,请一位学生口述答案,教师出示结果。
(此结论是利用斜率证明三点共线的)
变式训练3:
已知A(1,-1)、B(2,1)、C(0,-3),这三点是否在同一条直线上,为什么?
设计意图:对特殊情况做出补充:即直线的斜率不存在时,两条直线平行与垂直的判定方法。使得学生对平行与垂直的判定有更全面的认识。拓宽学生的知识面,使所学的知识系统化。
(四)课堂小结:
1、本节课我们学习了哪些新知识?新方法?
2、在应用这些新知识时应注意哪些问题?
3、在本节课的学习中运用了哪些数学思想?
学生发言,相互补充,教师点评,然后师生共同概括总结:
知识:
1.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
2.如果两条直线有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即
方法:代数方法研究几何问题。
思想:数行结合思想。
设计意图:通过对所学内容进行小结,使学生既学习了知识又培养了能力,并对所学内容有一个更全面的认识。
(五)、布置作业:
1、课本p89习题3.1 a组 6、72、思考题:
已知三个点A(2,2),B(-5,1),C(3,-5),试求第四个点d的坐标,使这四个点构成平行四边形。
设计意图:(1)作业1是直接应用,模仿练习。
(2)作业2是供学有余力的学生选做。旨在培养学生创造性的能力。
六、教学评价设计:
评价方式的转变是课程改革的一大亮点。课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、通过学生的自主探究、合作交流、以及与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
2、在学生讨论、交流、合作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、通过应用来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
6.平行线的判定说课稿 篇六
沈越
前几天听了马艳华老师的展示课,马对本节课的每个教学环节关注细微,总体感觉,学生学起来轻松,教师听起来顺畅,就我个人而言,收获颇多,受益匪浅,一节课的展示、交流,体现教师对教材的解读深度,饱含了处理教学问题的经验丰富,彰显教师干练的教学风格,本人将这节课听后感觉简单地给大家梳理了一下,与大家共同交流、探讨:
本节课是在学生已经学习了平行线的性质和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,马老师先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。
我们这次公开课的主题是高效课的实践与研究。新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课马老师选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、新技术教学法:在教学过程中充分利用多媒体教学技术,给学生以直观的感受,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
在学法指导上,通过教师的引导,学生小组讨论,分层展示,总结出平行线的性质和判定的综合应用,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,应用角度关系怎样找线的位置关系。画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5(3)把一条直线平行移动到另一个位置,这两条直线一定平行。通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
7.“平行四边形的判定”教学设计 篇七
平行四边形的判定
教学目标
知识与技能:掌握平行四边形的判定方法,并能简单运用。
过程与方法:学生经历动手操作、观察、探究、归纳、总结等过程,获得用数学的思想方法处理问题的能力。
情感、态度与价值观:①通过学生的合作交流,培养学生的集体意识和合作意识;②使学生养成自主探究、合作探究、自觉运用三种数学语言的良好习惯,培养学习数学的兴趣。
教学重点
①平行四边形的判定方法的得出过程。
②会用平行四边形的判定方法解决问题。
教学难点
理解判定方法,以及判定方法的应用。
教学工具
课件;师生各准备两个全等的三角形纸板。
教学过程
一、温故蕴新
教学内容:
出示第一个问题:两个全等的三角形能否拼成一个平行四边形?(学生动手拼图)
师生活动:
通过学生动手拼平行四边形,合作交流,个性展示。活动时间要充足,保证学生能够充分思考。教师及时点播、引导学生理清解决问题中用到的知识点和思想方法。
设计意图:
这个环节的目的是通过一个拼图活动复习本课要用到的基本知识点和思想方法。有利于学生顺利找到判定方法。例如:平行四边形的定义、通过做辅助线将四边形的问题转化成三角形的问题来解决的思想方法。
二、借故生新
教学内容:
出示第二个问题探究判定定理:两组对边分别相等的四边形是平行四边形。
师生活动:
学生观察教具演示,做猜想,并证明,感受方法的多样性。
教师演示教具,引导学生观察,点拨、订正。教师演示速度要适当,不能太快,留给学生仔细观察,以及充分思考的时间。
每个环节都让学生经历“自主探究—合作交流—教师点拨—订正规范—返悟小记”的知识发展过程。
设计意图
本环节的主要目的有两个:
1.针对本节的知识点而形成的典型例题进行讲解分析,让学生知道做这种题型的思路是什么。因此,在这儿要让学生充分的暴露不足和缺陷,教师及时的订正,已形成典型例题的基本解题方法和思想。为以后学生做题有法可循、有据可依打下基础。
2.以题目为载体,总结做题的方法,渗透基本的数学思想。例如:本节课的典例中,逐渐引导学生由“定义是一种判定方法”去解决问题,整个过程充分引导学生暴露问题的思考过程。使学生感觉思考的可以看得见摸得着并不是那么神秘,使学生克服思维的恐惧。在此环节,逐步渗透解题的思想,以期随着时间的推移使之慢慢形成习惯,使以后的学习事半功倍。
思考
要注意学生思路的连贯性,设计问题要有很好的衔接性,一个题目都有明确的设计意图,而不是任何一个题目都可以去做,所以它不是一个单独的题目而是一个桥梁,让学生思路畅通,直达目的,而不是拖泥带水,这样学生才会理解的扎实到位。
三、培故孕新
教学内容:
出示第三个问题,复习巩固两种判定方法,并得出第三种判定方法:一组对边平行且相等的四边形是平行四边形。
师生活动:
学生观察教师在黑板上的尺规作图过程,确定几何图形满足的条件,思考平行四边的判定方法。学生合作、教师点拨、学生总结形成方法
设计意图:
本环节主要是检验学生对“平行四边形的定义”和“两组对边分别相等的四边形是平行四边形”这两种判定方法的理解,同时又是第三种判定方法“一组对边平行且相等的四边形是平行四边形”的证明得出过程。同时又是“转化”这一思想方法的运用过程
四、课堂小结
教学内容:
回顾本节课的学习历程,你学习了哪些知识?知道了哪些思想方法?
师生活动:
教师总结这节课的知识点的研究方法和解决问题的研究过程
设计意图:
让学生通过本环节总结知识体系以及解决问题的方法,形成知识的沉淀与积累。
本节课的教学设计特色:
1.注重情境的创设和直观教具的作用
本节课内容比较抽象,针对这一特点,设计了多个问题情境,动手拼平行四边形,观察老师的画图过程等,以学生喜欢的学习方式作为切入点,使学生感受到边的位置与大小影响四边形的形状。按照“动手—观察—发现—猜想—验证—总结概括”的模式展开教学活动,让学生主动进行动手、观察、猜测、验证、交流与反思,让学生在学习数学的过程中,用自己的亲身体验来感悟知识的形成过程。创设问题情境,不仅使学生掌握数学知识和技能,而且以境生情,使学生更好的体验教学中的情景,使原有的枯燥、抽象的数学知识变得生动形象、饶有趣味。
2.注重发挥小组合作意识
本节课多次运用小组合作的学习方式,在学生需要的时候提供给他们合作交流的时间。例如:在拼平行四边形的时候,先由大家自主探索,再组内交流,让大家思考的结果“资源共享”,认识会更全面、更深刻,总结出的拼法多、想法多。这样,学生通过与他人沟通、交流、合作,给对方提供有用的信息,自己也认真听取他人的建议与意见,取长补短,从而掌握知识,认清事物本质,并获得数学活动的经验。
3.注重发挥直观教具的优势
课前师生都准备了学具、教具,制作学具本身就提高了学生的动手能力,同时也促进了学生的动手、动脑之间的协调能力。课堂上,学生动手拼平行四边形,感受边边角角与图形的联系,使抽象的问题直观化,从而激发了学生学习的兴趣和探究的欲望。如:在“温故蕴新”这一环节,学生很难想象三角形拼接的各种情况,但有了实物——两个全等的三角板,问题就变得简单多了,而且学生能够总结出多个规律,这是凭空想象所做不到的。
本节课的设计是从学生已有的知识与经验出发,遵循学生的认知规律,在学生自主探究、讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性。以问题为载体,在探究平行四边形的判定方法的过程中,丰富了学生数学活动的经验,让学生学会探索、学会交流、学会学习。
(作者单位 山东省博兴县吕艺镇中学)
8.平行线性质的说课稿 篇八
一、说教材
1、教材的地位与作用
《平行线的性质》是鲁教版六年级数学下册第七章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和探索直线平行的基础上进行教学的。
本节课是空间与图形领域的基础知识是今后三角形内角和、三角形全等、三角形相似等知识的学习的理论基础。
2、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线判定和性质的区别
二、说教学目标
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的`性质,会用平行线的性质定理进行简单的计算、证明,区分平行线判定和性质。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:通过创设情境,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。
三、说学情
初一学生已经学习了基本平面图形、两条直线的位置关系、探索两直线平行的条件基础等相关知识,对于平行线的有了自己认知,虽然学生基础差,学生间差距较大,但可以利用学生对新事物的好奇心来激发求知欲望。
四、说教法、学法
1、情境导入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、鼓励学生大胆猜测,指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
3、在学法指导上,教师引导、学生观察、动手测量、猜想、总结出平行线的性质。
五、教学过程
1、创设情境、导入新课
(1)取一张A4纸对折、展开,找出内错角,并猜测内错角是否相等?若将两个对角相折,内错角是否相等?学习了这节课后我们就很容易知道答案了。
【设计意图】学生动手,实例导入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据内错角相等可以判定两条直线平行,反过来,如果两条直线平行,内错角之间有什么关系呢?同位角、同旁内角之间又有什么关系呢?
【设计意图】:通过对平行线判定的复习引入新课,一是巩固已有知识,促使学生知识思维的迁移;二是引导学生比较性质与判定的区别。
2、自主学习、探究新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,加深平行线性质与判定的区别。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)平行线的性质
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
(5)平行线的性质和平行线的判定区别:
平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得出角的关系。
3、典例解析、知识应用
(1)解决情境导入提出的问题
(2)讲解例2、例3。
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处。
4、反馈练习、巩固落实
(1)利用所学的知识完成P76《做一做》和《随堂练习》
(2)练习P77第《知识技能》
【设计意图】:通过练习,检验学生对知识的理解和掌握情况,使学生能更加熟悉该知识点。
5、归纳总结、提升拓展
【设计意图】:比较归纳加强区别,进一步突破难点
6、布置设计、回扣目标
P80《知识技能》 第2、3题
9.初中数学说课稿《矩形的判定》 篇九
各位评委、各位老师:
你们好!本日我要为各人讲的课题是《矩形的判断》,凭据新课标理念,对应本节,我将以教什么、怎样教以及为什么如许教为思绪,从课本阐发、讲授目的阐发、讲授计谋阐发、讲授历程阐发四个方面加以阐明,
一、教材分析(说教材):
1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
2、教学目标:1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。3、使学生经历探究矩形判定的.过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
3、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程
环节一:创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:1、矩形的定义:有一个角是直角的平行四边形叫矩形2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。3、平行四边形的性质:
平行四边形的性质平行四边形判定
平行四边形两组对边分别相等
平行四边形两组对边分别平行 两组对边分别平行(或相等)的四边形是平行四边形
平行四边形一组对边平行且相等
平行四边形对角线互相平分 一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
平行四边形两组对角分别相等 两组对角分别相等的四边形是平行四边形
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由,
(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
如图,△ABC中,点O是AC边上的一个动点,
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在讲堂上的积极互助,大胆思索接纳肯定,提出盼望。
【平行线的判定说课稿】推荐阅读:
七年级下册《平行线》说课稿07-28
初一数学平行线的判定10-11
八年级数学:平行线的判定08-01
平行线的判定和性质专题练习10-31
垂直和平行说课稿09-01
平行线性质和判定练习06-19
平行四边形的面积说课稿完整版08-12
人教版四年级数学上《平行与垂直》说课稿06-23
立体几何中线面平行垂直性质判定20107-19
《平行与相交》的评课稿07-21