考研不等式的证明

2024-09-02

考研不等式的证明(共7篇)

1.考研不等式的证明 篇一

凯程考研辅导班,中国最权威的考研辅导机构

2018考研高数:不等式证明的方法

不等式证明是考研数学试卷中的中上等难度题目,下面凯程网考研频道简单讲一下不等式的几种证明方法,希望考生能够详细地去做题验证,灵活把握。

利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。

利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。基本思路是通过定积分中值定理消去不等式中的积分号,从而与其他项作大小的比较,进而得出证明。

除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。

其实看看凯程考研怎么样,最简单的一个办法,看看他们有没有成功的学生,最直观的办法是到凯程网站,上面有大量学员经验谈视频,这些都是凯程扎扎实实的辅导案例,其他机构网站几乎没有考上学生的视频,这就是凯程和其他机构的优势,凯程是扎实辅导、严格管理、规范教学取得如此优秀的成绩。

辨别凯程和其他机构谁靠谱的办法。

凯程考研辅导班,中国最权威的考研辅导机构

任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

页 共 2 页

2.考研不等式的证明 篇二

例1 ( 2010年湖北理科高考压轴题) 已知函数f ( x) = ax+b/x+ c ( a > 0) 的图象在点 ( 1, f ( 1) ) 处的切线方程为y = x- 1.

(Ⅰ) 用a表示b, c;

( Ⅱ) 若f ( x) ≥lnx在[1, + ∞ ) 上恒成立, 求a的取值范围;

( Ⅲ) 证明: 1 +1/2+1/3+ … +1/n> ln ( n + 1) +n/ (2 ( n + 1) ) ( n≥1) .

解析: ( Ⅰ) , 解得.

( Ⅱ) 由 ( Ⅰ) 知, .

令.

则.

( ⅰ) 当 0 < a <1/2时, (1 - a) /a> 1,

若, 则g' ( x) < 0, g ( x) 是减函数, 所以g ( x) < g ( 1) = 0.

即f ( x) < lnx, 故f ( x) ≥lnx在[1, + ∞ ) 上不恒成立.

( ⅱ) 当 a ≥1/2时, (1 - a) /a< 1.

若x > 1, 则g' ( x) > 0, g ( x) 是增函数, 所以g ( x) > g ( 1) = 0.

即f ( x) > lnx, 故当x≥1时, f ( x) ≥lnx.

综上所述, 所求a的取值范围为[12, + ∞ ) .

( Ⅲ) 由 ( Ⅱ) 知, 当 a ≥1/2时, 有 f ( x) ≥ lnx, ( x ≥ 1)

令 a =1/2, 有.

且当x > 1时,

将上述n个不等式依次相加得

整理得.

评注: 在解决第 ( Ⅱ) 问的恒成立问题后, 要证明第 ( Ⅲ) 问, 通常借助第 ( Ⅱ) 问, 合理赋值, 一般来说寻找端点值, 得到不等式后, 再分析不等式的结构特征, 对x赋值叠加得证. 另外, 注意这个结构也经常使用.

例2 ( 2014年湖北武汉2月调研考试理科)

( Ⅰ) 已知函数, 使 f ( x0) ≤ 0, 求实数t的取值范围;

( Ⅱ) 证明:, 其中0 < a < b;

( Ⅲ) 设[x]表示不超过x的最大整数, 证明:.

解析: ( Ⅰ) 若t < 0, 令, 则;

若 t = 0, , 不合题意;

若t > 0, 只需.

求导数, 得

令f ' ( x) = 0, 解得x = lnt + 1.

当x < lnt + 1时, f ' ( x) < 0, 所以f ( x) 在 ( - ∞ , lnt + 1) 上是减函数;

当x > lnt + 1时, f ' ( x) > 0, 所以f ( x) 在 ( lnt + 1, + ∞ ) 上是增函数.

故f ( x) 在x = lnt + 1处取得最小值f ( lnt + 1) = t - t ( lnt+ 1) = - tlnt.

所以 - tlnt≤0, 由t > 0, 得lnt≥0, 所以t≥1.

综上可知, 实数t的取值范围为 ( - ∞ , 0) ∪[1, + ∞ ) .

( Ⅱ) 由 ( Ⅰ) , 知 f ( x) ≥ f ( lnt + 1) , 即

取 t = 1, 0, 即

当x > 0时, lnx≤x - 1, 当且仅当x = 1时, 等号成立,

故当x > 0且x≠1时, 有lnx < x - 1.

令, 得) , 即

令, 得, 即b, 亦即

综上, 得

( Ⅲ) 由 ( Ⅱ) , 得

令 a = k, , 得

对于, 分别取k = 1, 2, …, n,

将上述n个不等式依次相加, 得

所以

对于1, 分别取k = 1, 2, …, n - 1,

将上述n - 1个不等式依次相加, 得

, 即

所以

综合12, 得

易知, 当p < q时, [p]≤[q],

所以

又因为[1 + lnn] = 1 + [lnn],

所以

评析: 这道题是一道很好的试题: 第 ( Ⅰ) 问存在性问题是函数中的常考点, 它与恒成立问题同等重要. 第 ( Ⅱ) 问要求证明重要不等式, 这是一个非常重要的不等关系; 第 ( Ⅲ) 问更是引进高斯函数, 使老题焕发新颜. 其中两点: 一是不等式的证明需要借助 ( Ⅱ) 中的结论, 合理赋值;二是简单考察高斯函数的两条性质: ( 1) 当x < y, [x]≤[y]; ( 2) 当n∈Z, x∈R, [n + x] = n + [x].

例3 ( 2014年襄阳高三模拟试题) 已知函数

( Ⅰ) 求f ( x) 的极值;

( Ⅱ) 求证:

解析: ( Ⅰ)

因为a < 0, 当x∈ ( - 1, - a - 1) 时, f ' ( x) < 0; 当x∈ ( - a - 1, + ∞ ) 时, f ' ( x) > 0, 故

( Ⅱ) 由 ( Ⅰ) 知取a = - 1, , 当 x > 0 时, , 取得, 从而

, 即

, 得证

评析: 在第 ( Ⅱ) 中要敏锐发现令a = - 1, 构建函数不等式, 它本质即不等式, 再给其赋值即可.

例4 ( 2014年四川名校诊断测试) 已知函数在x = 1处取得最大值, g ( x) = ( x + 1) f ( x) .

( Ⅰ) 求函数f ( x) 的解析式;

3.数列求和不等式的证明 篇三

题目 已知数列[an]的通项公式是[an=3n-2n].求证:对一切正整数[n],有[1a1+1a2+???+1an<32].

思路1:放缩为可求和的等比(等差)数列

证明 因为[3n-3n-1=2?3n-12?2n-1=2n],

所以[3n-2n3n-1],所以[1an13n-1].

于是[1a1+1a2+…+1an1+13+…+13n-1]

[=1-13n1-13][=321-13n<32].

思路2:放缩后能裂项相消

证明 当[n=1]时,[1a1=1<32];

当[n=2]时,[1a1+1a2=1+15<32],显然成立.

当[n3]时,[an=3n-2n=1+2n-2n]

[=1+C1n?2+C2n?22+…+Cn-1n?2n-1+2n-2n]

[=1+C1n?2+C2n?22+…+Cn-1n?2n-1>C2n?22]

[=2nn-1],

又因为[a2=5>2×2×2-1],

所以[an>2nn-1]([n2]),

所以[1an<12nn-1=121n-1-1n]([n2]),

所以[1a1+1a2+1a3+…+1an]

[<1+121-12+13-14+…+1n-1-1n=1+121-1n<32.]

思路3:构造加强不等式,借助数学归纳法

①当[n=1]时,左边[=1a1=1],右边[=32],命题成立.

②假设当[n=k]([k2],[k∈][N])时成立,即[i=1k13i-2i<32]成立.为了证明当[n=k+1]时命题也成立,我们首先证明不等式:[13i+1-2i+1<13?13i-2i]([i1],[i∈][N]).

要证[13i+1-2i+1<13?13i-2i],

只需证[13i+1-2i+1<13i+1-3?2i],

只需证[3i+1-2i+1>3i+1-3?2i],

只需证[-2i+1>-3?2i],

只需证[-2>-3],该式子明显成立,

所以[13i+1-2i+1<13?13i-2i].

于是当[n=k+1]时,[i=1k+113i-2i=13-2+i=2k+113i-2i][<1+13i=1k13i-2i<1+13×32=32],

所以在[n=k+1]时命题也成立.

4.不等式的证明方法 篇四

一、比较法:

ab等价于ab0;而ab0等价于a

b1.即a与b的比较转化为与0

或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:

综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:

正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:

要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a21a;n(n1)n;

②将分子或分母放大(或缩小);

③利用基本不等式,如:

log3lg5(n(n1)lg3lg522)2lglglg4; n(n1);

④利用常用结论:

k1k

1k1

1k

11k1k

12k

1k;

1k(k1)

1k1

1k

1k1

1k

1k(k1)1k;



(程度大)

1k

1

(k1)(k1)

2k1

();(程度小)

五、换元法:

换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:

已知x2y2a2,可设xacos,yasin;

已知x2y21,可设xrcos,yrsin(0r1); 已知

xaxa

2

ybyb

1,可设xacos,ybsin;

已知

1,可设xasec,ybtan;

六、数学归纳法法:

与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:

第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则

(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出

P(k1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2m),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1nk的n成立可推出P(k1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k1)成立可推出P(k2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若

P(1)

成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m1,n),P(m,n1)成立,证明P(m1,n1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明

n

k

11k

sinkx0,(0x)

就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:

通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:

善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22

例1 已知a,bR,且ab1.求证:a2b2

252

.证法一:(比较法)a,bR,ab1

b1a

a2b2

252

ab4(ab)

122(a

12)0

a(1a)4

2a2a

即a22b22

证法二:(分析法)

252

(当且仅当ab时,取等号).a22B2

252

ab4(ab)8

252

b1a

225122

(a)0a(1a)4822

显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)

假设(a2)2(b2)2

252,则 a2b24(ab)8

252

252

.由ab1,得b1a,于是有a2(1a)212

1

所以(a)0,这与a0矛盾.22

.所以a2b2

252

.证法五:(放缩法)

∵ab1

∴左边=a2b2

a2b221252ab4

222

=右

边.点评:根据不等式左边是平方和及ab1这个特点,选用基本不等式

ab

ab2.2

证法六:(均值换元法)

∵ab1,所以可设a

12t,b

t,1

∴左边=a2b2(t2)2(t2)2

5525252

=右边.tt2t

2222

当且仅当t0时,等号成立.点评:形如ab1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法)

设ya2b2,由ab1,有y(a2)2(3a)22a22a13,所以2a22a13y0,因为aR,所以442(13y)0,即y故a2b2

252

.252

.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A0,B0,则(A+B)nAn+nA(n-1)B,其中nN.证明:由二项式定理可知

n

(A+B)=AniBiAn+nA(n-1)B

n

i0

(A+B)A+nA

nn(n-1)

5.积分不等式的证明方法 篇五

摘要

在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.

关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

南通大学毕业论文

ABSTRACT

When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.

Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty

南通大学毕业论文

1.引

不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.

实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.

本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.

在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.

南通大学毕业论文

2.几个重要的积分不等式

在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz不等式,Young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.

2.1 Cauchy-Schwarz不等式

无论是在代数还是在几何中Cauchy-Schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,F,P中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.

定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有

[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.

aaabbb证明:要证明原不等式成立,我们只需要证

设Ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证FbFa成立,aa由Ft在[a,b]上连续,在a,b内可导,得

Ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt

ftgxgtfxdx0.

(2.1)a由(2.1)式可知Ft在[a,b]上递增,由ba,知FbFa,故原不等式成立.

证毕

实际上关于Cauchy-Schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文

fxfxdxgxfxdx0,aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出

CauchySchwarz不等式的推广形式.

定理2.2[2] 设fx,gx,hx在a,b上可积,则

hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有

bat1fxt2gxt3hxdx

bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa

ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为

babbaf2xdxbagxfxdxabhxb2fxdx

xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将Cauchy-Schwarz不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz不等式及其推广形式在积分不等式证明中的应用.

除了Cauchy-Schwarz不等式之外还有很多重要的积分不等式,例如Young不等式,相较于Cauchy-Schwarz不等式我们对Young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young不等式进行一些研究.

2.2 Young不等式

Young不等式,以及和它相关的Minkowski不等式,HÖlder不等式,这些都是在现代分

南通大学毕业论文

析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young不等式的证明.

定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.

证明:引辅助函数g(a)abf(x)dx,(2.2)

0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是

当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即

gamaxgxgf1b

(2.3)

由分部积分得

f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为

11f(x)dx0xdf(x),g(f1(b))f1(y)dy,(2.4)

0b将(2.2)式和(2.4)式代入(2.3)式得

abf(x)dxf(y)dyf1(x)dx,000ab1b即f(x)dxf1(x)dxab. 证毕

00ab 6 南通大学毕业论文

3.定积分不等式常见的证明方法

关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.

3.1 利用函数的凹凸性

在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.

定理3.1 若t定义在间隔m,M内,且t0,则t必为下凸函数.

定理3.2 设fx在[a,b]上为可积分函数,而mf(x)M.又设t在间隔mtM内为连续的下凸函数,则有不等式

1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有

1b1bfxdxfxdx,aabababa即fxdxabba1dxbbfx12dxba.

证毕,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.

3.2 辅助函数法

辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明

南通大学毕业论文 的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.

例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.

00a11x证明:令Fxf(t)dt 0x1,由fx连续,得Fx可导

x0则Fxfxxftdt0xx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而Ft0,Fx在(0,1]上单调减少,则对任意a(0,1),有F(a)F(1). 即

a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令FxFx1xf(t)dt,0x1,由fx连续,得Fx可导, 则 x0x0fxxftdtx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而Ft0,Fx在(0,1]上单调减少,则对任意0ab1,有F(a)F(b),即

1a1b ftdtftdt.

(3.1)

a0b0由f非负,可得fxdxfxdx.

(3.2)0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.

证毕

babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8

1dx(ba)2. f(x)南通大学毕业论文

在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.

证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx

xaxftxfxdtdt2dt

afxaftxfxft2dt0, aftfx

所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.

2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]

ba证明: 原不等式即为xfxdx则Fttft1t2a1taftf , a,t.

2abbfxdx0,构造辅助函数 aa2tattFtxfxdxfxdx ,ta,b,a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以Ft0.故Ft在a,b上单调递增,且Fa0, 所以对x(a,b],有FxFa0.当xb时,Fb0.即

baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:

1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.

2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.

3.3 利用重要积分不等式

在第2部分中我们给出了Cauchy-Schwarz不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.

南通大学毕业论文

例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.

402证明:由fxftdtf0和fxftdtf10x1x

可得

f2xx0ftdt2xx1112dtf2tdtxf2xdx,(x0,), 0002111112dtf2tdt(1x)f2xdx,(x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,(3.3)0811

2(3.4)fxdx.8010

112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]

112fxdx.

证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxM,gxdx0,a则以下两个积分不等式

bafxgxdx2b2f2xdxg2xdxm2bag2xdx及

aaabbb bafxgxdx2MmMmbaaf2xdxg2xdx成立.

ab证明:取hx1,由gxdx0及定理2.2知

babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.

2因此

 bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.

(3.5)

2b2a 10 南通大学毕业论文

由mfx可知 bafxdx2b22m2ba,bb2因而bafxgxdxafxdxagxdxmbaag2xdx.

22MmMm由于0mfxM,因此fx.

22化简得f2xMmMmfx, 两边同时积分得 f2xdxMmbaMmfxdx, aabb22由算数-几何平均值不等式可知

于是2baf2xdxMmbaf2xdxMmba,abbaabf2xdxbafxdx2Mm4Mm2.

1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx

b2Mma4Mmb

(3.6)f2xdxg2xdx.

ab由式(3.5)和式(3.6)可知

bafxgxdx2MmMm2baf2xdxg2xdx.

证毕

ab以上两道题分别利用了Cauchy-Schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.

3.4 利用积分中值定理

积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.

定理3.3(积分第一中值定理)若f(x)在[a,b]上可积且mf(x)M,则存在 11 南通大学毕业论文

u[m,M]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.

定理3.4(积分第一中值定理的推广)若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立

fxgxdxfgxdx.

aabb定理3.5(积分第二中值定理的推广)若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.

aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.

证明:由积分中值定理知

0afxdxf1a, 10,a; fxdxf2ba,2a,b;

ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕

0ba即

例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.

2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.

证法一

bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文

abab由定理3.4可知,分别存在1a,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且

210121,所以有 f2f10.

ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二

证明:由定理3.5可知:存在a,b,bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.

由fx单调增加及a,b知fafb0,a0,b0.

bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.

3.5 利用积分的性质

关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.

例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,13 南通大学毕业论文

有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt

0101 fx0dt0110ftdtftdt01ftftftdtdt 0

1fxfxdx.故原不等式成立, 证毕

013.6 利用泰勒公式

在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.

定理3.6(带有拉格朗日型余项的Taylor公式)设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:

f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nRn(x)

(1)

2!n!f(n1)()其中Rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.

例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,Mmaxfx,xa,b试证明:fxdxabba123M.

证明:对xa,b,由泰勒公式得

f

fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文

两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8Mb22dxMba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.

222222

ababab因为fx0,所以可以得到 fxffx,222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕

2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.

3.7 利用重积分

在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.

南通大学毕业论文

3.7.1 直接增元法

命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.

aa

bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:

xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.

axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.

aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt(其中D{(x,t)|axb,atx})aaDbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt

atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.

aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕

在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量

aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.3.7.2 转换法

在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分

命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D{(x,y)|axb,cyd}上可积,且

Df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.

acacbdbd其中D{(x,y)|axb,cyd}

例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:

南通大学毕业论文

babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.

aaabbbaaabbb

证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:

babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,aaabbaabbb令Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证I0;

Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx

aaaabbbb

同理

p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy

aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy

aap(x)p(y)g(y)[f(y)f(x)]dxdy.

(3.7)bbbIp(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx

a

p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p)xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.

(3.8)aa

(3.7)(3.8)得

2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即I0.

证毕

2.将常数转换为重积分的形式

在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中D{(x,y)|axb,ayb}.

D例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx

abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)D 17 南通大学毕业论文

移项可得(Df(x)1)d0, f(y)2(Df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)DDf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(D故 (Dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕

aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.

3.8 利用微分中值定理

微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.

例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:

2baa1bfxdx1maxfx. x2a,b证明:应用Lagrange中值定理,a,x,其中axb,使得

fxfafxa, 因为fa0, 所以fxMxa, Mmaxfx,xa,b从a到b积分得

a bfxdxMbaM2bxadxMxadxx2

aa2bM1122bamaxfxba.即222babafxdx1maxfx.证毕 x2a,b 18 南通大学毕业论文

例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:

fxdxf121003xdx.

证明:令Fxx0ftdt,Gxf3tdt,02xFx,Gx在0,1上满足柯西中值定理,则

fxdx10210f03xdxF1F0FG1G0G02fftdt0f32ftdt0f2 01

2ftdtftdtf2f0202f11 , 01.

2fff所以 10fxdx2f2xdx.

证毕

01通过以上两道题目可以发现:

1.在应用Lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange中值定理.

2.在研究两个函数的变量关系时可以应用Cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用Cauchy中值定理.

无论是Cauchy中值定理还是Lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.

南通大学毕业论文

4.总

我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.

南通大学毕业论文

参考文献

[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22

6.等式或不等式的概率方法证明 篇六

等式或不等式的证明是数学中常见的问题, 其证明方法可谓多种多样, 但在以往证明中我们一般只对等式或不等式左右两边的具体数字或符号感兴趣, 如果把数字或符号形象化、具体化, 给它们建立起一个形象直观的数学模型, 不但使等式或不等式加以证明, 而且得到式子存在的数学意义, 加深对等式或不等式的理解。以下将从概率论中的基本概念和定理出发, 利用概率方法完成对等式或不等式的证明。

1 运用加法定理证明等式

2 运用数学期望证明不等式

3 运用随机变量及其分布函数证明不等式

4 结束语

从以上过程可以看出, 运用概率方法来证明等式或不等式是具有优越性的, 不仅证明过程简洁, 更重要的是建立了具体的数学模型, 便于理解。同时, 我们也能看到, 在运用概率方法时, 往往不是单独的一个知识点就能解决问题的, 常常需要几个知识一起运用, 如分布函数结合了期望, 概率结合数学分析中的一些定理, 体现了数学知识联系的紧密性。

参考文献

[1]梁之舜, 邓集贤, 等.概率论及数理统计[M].高等教育出版社.2002

[2]盛骤, 谢式千, 等.概率论与数理统计[M].北京:高等教育出版社.2001

[3]薛留根.概率论解题方法与技巧[M].北京:国防工业出版社.1996

7.一道不等式证明题的后续 篇七

证明 因为m>0,所以1+m>0,所以要证2≤,即证(a+mb)2≤(1+m)(a2+mb2),即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,故2≤.

注析 不等式形式虽较繁琐,但作为一个证明题,是较容易证明的.从上述证法中,我们可以发现当且仅当a=b时,不等式取等,两边统一为一个平方数a2.以下,我们考虑此不等式的实际意义.

考虑函数f (x)=x2,则2=f ,=,故原不等式即f ≤.

如图1,设A(a,0),B(b,0),a<b,则C(a,a2),D(b,b2).容易判断a<<b,而直线CD的方程为y=(x-a)+a2,即y=(a+b)x-ab,当x=时,y=.由图(点G恒在点F上方)易知f <.

可见,不等式成立的几何意义是,函数f (x)=x2图像上任两点间的图像在这两点连线的下方.特别地,当m=1时,原不等式即2≤,改成函数值形式即f ≤.

此形式在课本中不止一次出现过.比如:对任意的x1,x2∈R,若函数f (x)=2x,试比较与

f 的大小关系.

换个角度看,设E,0,G,,则有点E分线段AB的比值为m,点G分线段CD的比值也为m.从而无需求直线CD的方程也可判断不等式的正确性.由此,试题的命制建立在定比分点的坐标公式和函数的“凸凹”性上.

变式1 如图2,对于函数f (x)=x2(x>0)上任意两点A(a,a2),B(b,b2),连结线段AB,则线段AB必在曲线AB的上方,设点C分的比为λ(λ>0),则由点C在点C′上方可得不等式>2.请分析函数y=lnx(x>0)的图像,类比上述不等式可得到的不等式是________.

解析 由点C分的比为λ,知=λ,则有C,,显然有>2成立.而对函数y=lnx的图像进行类似构造,易知点C在点C′下方,则有不等式<ln成立.

注析 此题将之与类比推理结合起来,关键是要能快速看出已知命题为什么成立,明白就里便可迅速写出结果.

变式2 (2011届泰州中学高三期中)函数f (x)=2x,对x1,x2∈R,x1≠x2,α=,β=(λ>1),比较大小:f (α)+f (β)_____ f (x1)+f (x2).(填“<”,“=”,“>”之一)

解析 易知<α<x2,x1<β<,且α+β=

+=x1+x2.

如图3,设C(x1,f(x1)),D(x2,f(x2)),x1<x2,H,,E(α,f(α)),F(β,f(β)),G,,由图(点H在点G上方)易知f (α)+f (β)<f (x1)+f (x2).

注析 题中字母变量过多,一般可考虑作差比较,但此法需要代数变形,即使取些特殊值也要经过一番试探.考虑借助图形,我们可以快速找到式子的几何意义,大大缩减了问题解决的用时.

变式3 (2010年江苏卷改编)设函数f (x)=lnx+(x>1),给定x1,x2∈(1,+∞),x1<x2,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|f (α)-f (β)|<|f (x1)-f (x2)|,则实数m的取值范围为________.

解析 因为f ′(x)=-=>0对x∈(1,+∞)恒成立,所以函数f (x)在(1,+∞)上是单调递增函数.

而α+β=mx1+(1-m)x2+(1-m)x1+mx2=x1+x2.

(1) 若m≤0,则α=mx1+(1-m)x2≥mx2+(1-m)x2=x2,则β≤x1,即有β≤x1<x2≤α,所以|f (α)-f (β)|≥|f (x1)-f (x2)|,不符题意;

(2) 若m≥1,则α=mx1+(1-m)x2≤mx1+(1-m)x1=x1,则β≥x2,即有α≤x1<x2≤β,所以|f (α)-f (β)|≥|f (x1)-

f (x2)|,不符题意;

(3) 若0<m<1, 则α=mx1+(1-m)x2<mx2+(1-m)x2=x2,则β>x1,即有x1<α≤β<x2,所以|f (α)-f (β)|<f (x1)-

f (x2),满足题意.

综上,可知实数m的取值范围为(0,1).

注析 事实上,条件中的等式“α=mx1+(1-m)x2”是定比分点坐标公式的变形.如图4,设A(x1,0),B(x2,0),C(α,0),D(β,0),则等式“α=mx1+(1-m)x2”的几何意义是点C分线段AB的比值为-1.由“α+β=x1+x2”,可知α和β,x1和x2都关于对称出现.故只有α和β均在x1,x2之间时,才满足题意,即-1>0,亦可得m∈(0,1).

变式4 设关于x的方程x2-mx-1=0有两个实根α,β,且α<β,f (x)=.对正实数λ,μ,试比较大小:f- ______|α-β|.(填“<”,“=”,“>”之一)

解析 对函数f (x)求导,得f ′(x)=,易知f ′(x)>0对x∈(α,β)恒成立,即函数f (x)在(α,β)内单调递增.

对正实数λ,μ,有0<<1,0<<1,且+=1,所以α<<β,α<<β,所以f-f<|f (α)-f (β)|.而|f (α)-

f(β)|=-==

|α-β|=|α-β|,故应填<.

注析 在定比分点的坐标公式中,将比值的具体值模糊化,只要x=λα+μβ(λ+μ=1),就可判断x在(α,β)内.由λ,μ的不确定性,只知左边是区间(α,β)内的两个函数值的差,不易求值,可见结果的取得需要经历合理的猜想及必要的计算.而过程显示,题中函数的极值差与极值点的差的绝对值相等,美妙的结果(如图5).

对试题解决过后的再思考,或许会将我们引领到更为广阔的天地中去.放手去做,放心去翔,驰骋于思维的练兵场,收获是斐然的.

上一篇:我国货币市场对货币政策有效性的制约分析下一篇:一个优秀的安全员应具备以下七大素质