八年级数学竞赛辅导资料一

2024-08-11

八年级数学竞赛辅导资料一(精选5篇)

1.八年级数学竞赛辅导资料一 篇一

全国初中数学竞赛辅导(八年级)教学案全集

第二十八讲 怎样把实际问题化成数学问题(一)

数学从逻辑上讲,是训练思维的工具.通过学习数学可以使人更加聪明,办事更有条理,思维更加灵活而富于创造性.另一方面,如果从应用上讲,数学也是一种应用技术,应用数学知识、原理和方法可以解决各种实际问题.那么怎样把一个实际问题化成数学问题来解决呢?这是一个比较复杂的过程,大体上可以通过以下步骤进行:

(1)了解实际问题中量的关系和图形元素的关联;

(2)根据量或图形间的关系,寻找相应的数学模式;

(3)考虑数学模式中的条件与结论的蕴涵关系,提出数学问题;

(4)应用数学知识、原理,求出数学问题的解答;

(5)由数学问题的解答,对实际问题作出解释与讨论;

(6)推广数学模式所能解决的更广泛的实际问题.

但是由于实际问题千变万化,特别复杂,所以当把实际问题化成数学问题求解时,也有不同的思考方法.下面提出几点较为常见的方法,供读者参考.

1.抽象分析法

例1 “七桥问题”.在18世纪东普鲁士的首府哥尼斯堡有一条河,叫作布勒格尔河,横贯城区,在这条河上共架有七座桥(图2-146).所谓“七桥问题”就是:一个人要一次走过这七座桥,但对每一座桥只许通过一次,问如何走才能成功?这个问题,引起当时德国人的好奇,很多人都热衷于解决它,但谁也没有成功.

欧拉(Euler)是一位大数学家,由于千百人的失败,使他猜想:这种走法可能根本不存在.但是怎样证明这种走法不可能呢?欧拉运用抽象分

析法,将之化成数学问题,于1736年证明了他的猜想,使“七桥问题”得到圆满的解决.那么欧拉是怎样抽象成数学问题进行思考的呢?

使问题简单化.

作为解决实际问题的第一步,要尽可能使问题简单化.为此要抓住问题的要点,做初步的抽象处理.显然岛的大小和桥的长短与问题无关,因此可以不加考虑.如果把岛及陆地用点表示,桥用线表示,那么这个问题就成了一笔画问题(图2-147).

在图2-147中,由A到B有桥1;由B到D有桥2,桥3;由D到C有桥4,桥5;由C到A有桥7;由A到D有桥6,共七座桥.这样,就把实际问题数学化了,使问题的解决推进了一步.

一般说来,在数学思考中,常把原问题不改变本质地加以变形,使其简单化,以利于找到解答.例如,列方程解应用问题就是这种思想的一种体现.先把实际问题化成含有已知量和未知量的方程,然后再把方程作同解变形,化为最简方程,较容易地求出方程的解,实际问题也就解决了.

寻找解决问题的方法.

问题简化了,也不一定能得到解决,关键是如何抓住本质加以分析,从中发现规律性.为此,我们还是从更特殊的情况进行观察分析.

(1)假如只有三座桥(图2-148).对于图2-148(a)来说,无论从哪个端点起一笔画出总是可能的.但对图2-148(b)来说,无论从哪个端点起,一笔画完总是不可能的.

(2)假如有四座桥(图2-149).对于图2-149(a),(b)来说,显然可以一笔画成.但对图2-149(c)来说,却不能一笔画成.

研究了这些简单例子,对我们有什么启发呢?为此,数学家提出了网络这一概念,以便利用新概念的特性,解决已经提出的问题.

定义 网络是由有限个点(称作网络的顶点)和有限条线(称作网络的弧)所组成的图形.这些点和线满足以下条件:

(i)每条弧都以不同的两个顶点作为端点;

(ii)每个顶点至少是一条弧的端点;

(iii)各弧彼此不相交.

这样,所谓一笔画问题,就是网络中的同一条弧不许画两次,而把网络全部勾画出来的问题.

(3)研究网络能一笔画出的特点,寻找解决问题的方法.我们假定一个网络能一笔画出来,那么这个网络中显然有一点为起点,另一点为终点,其他各点为通过点.设某点为起点,如果以某点为顶点的弧不只一条,那么由某点沿一条弧画出去,必沿另一条弧画回来,因此,最初是画出去,然后进出若干次后,把集中在某点的弧全部通过完毕为止,最后一次必须是画出去,所以在起点集中的弧必须是奇数条.而终点的情况刚好与起点相反,先是画进,再画出,进出若干次,最后一次必是画进,因此终点也集中奇数条弧.但起点与终点同为一点时,必是先出后进,中间或许经过若干次进出,最终回到起点.因此在该点集中的弧必是偶数条,而在中途通过的点所集中的弧显然也必定是偶数条.

通过上面分析可知:一个网络中的点可分为两类,一类顶点集中了偶数条弧,另一类顶点集中了奇数条弧.我们称前者为偶点,后者为奇点.例如,在图2-149(b)中,A,B为奇点,C,D为偶点.通过对图2-148和图2-149的考察,我们可以直观地想到如下结论:

(i)一个网络若能一笔画出来,其中偶点个数必须是0或2.

(ii)一个网络中的奇点个数若是0或2,那么这个网络一定能一笔画出来.

欧拉证明了以上两条猜想,得到了著名的欧拉定理:一个网络能一笔画的条件是当且仅当这个网络的任意两个顶点都有弧连接,并且奇数点的个数等于0或2.

(4)回到原问题.利用欧拉定理,“七桥问题”很容易就解决了.因为在图2-147中,奇点个数是4,不满足欧拉定理的条件,因此不可能按约定条件通过七座桥.

(5)推广.如果一个网络的奇点个数不是0或2,则这个网络不可能一笔画成.那么要多少笔才能画成呢?这就成为多笔画的问题了.多笔画的研究发展了网络理论的研究与应用,后来发展成现代数学的一个分支——图论.

归纳上述分析方法,可以大致看出利用抽象分析法解决实际问题的思维过程:

(1)把实际问题简单化,抽象成数学问题.

(2)解决问题是靠发现事物间由简单到复杂、由特殊到一般的内在联系.

(3)发现的思路是以具体实例作为经验观察,由简到繁地考察构成实例间的基本事实和关系;再由诸特例作出一般的归纳猜想,并加以理论证明.

(4)应用论证后的法则,解决各种难题,实际上是化难为易.

(5)把法则加以推广,以解决更多的实际问题,并扩展数学的理论和应用.

2.数据处理法

有些实际问题需要收集问题中的若干对应数据,从数据中观察相关变量的依存关系或对应关系,可以得到大致体现实际问题有关变量变化规律的数学模型,从而解答实际问题.下面举一个实例,说明这种方法的应用.

例2 怎样由树的断面直径来推断树的高度.

解 第一步:设计变量.根据这个问题,我们可以设预测的某种树的高度为y,离地面1.5米处的直径为x厘米.

第二步:收集x,y的对应数据,为此我们测量12棵树的x,y的对应值,列表如表28.1.

第三步:由对应数据求出y对x的函数关系式.

常用的方法是作图法.把直径x看作自变量,高度y看作因变量.每一对(x,y)看作一个点,画在坐标纸上(图2-150),作成散点图.从散点图可以直观地看出两个变量之间的大致关系.我们从图2-150可看出,y随x的增大而增大,并且这些点的分布近似一条直线.

这时,我们在图上画出尽可能接近这些点的一条直线,自然,有些点正好在直线上,有的点却有所偏离,不在直线上,这说明有些误差,但如果重复测量几次,误差不会太大.因此,我们所画出的直线近似地表示着x和y之间的线性关系,所以这条直线的函数表达式——一次函数式就可作为树的高度y和直径x间的关系式了.下面我们就来求出这个一次函数式.

设这条直线的一次函数式为:

y=ax+b.

为了求出常数a,b,在直线上取两点,取点的原则是:为使直线位置稳定,取直线上距离较远的两点;为便于计算,取坐标数据整齐些的两点.为此,我们取点(4,8.6)和(40,26),将此两点的坐标代入y=ax+b,得方程组

所以 y=0.48x+6.68.

第四步:利用上述函数关系式,根据直径x的数值,预报树高y的数值.例如,当x=15厘米时,树高y等于多少米?显然,此时

y=0.48×15+6.68=13.88(厘米).

这就是说,当树的直径为15厘米时,树高为13.88米.

上面是用两对实验数据(两个点)求出的直线方程.利用实验数据的信息较少,因此准确性较差.下面利用平均值法改进一下,作法是:在直线的上、下取两组靠近直线的点,如(4,8.6),(9.3,10.7),(14.3,13.5)为一组;(32,22.4),(40,26),(42,28)为一组,用每组x,y的平均值(9.2,10.93)和(38,25.47)作为两点,再按上面的方法求出直线方程y=0.50x+6.28,以此作为实验数据,y对x间的函数关系就比较准确些.

说明 上面的方法,是数学在解决实际问题时的一种应用,经常用在处理实验数据中,当实验数据为有序数对(x,y)时,相应地在直角坐标系中描出点(x,y)的散点图.如果散点图近于一条直线,要找出变量x,y间的函数关系时,就可用这种方法.然而由实验数据作出的散点图不一定近于直线,而近于一条曲线时,也可找到x,y间的函数关系式,不过需要更多的数学知识,我们在此就不介绍了.

3.运筹优化法

有些实际问题,可以根据问题的要求,首先筹划一些可行的处理方案,然后比较这些方案的优劣,选择其中一种或几种方案加以优化组合,并用数学方法加以处理,以便得到最佳的解决方案.下面举一个实例说明这种方法的应用.

例3 要做20个矩形钢框,每个由2.2米和1.5米的钢材各两根组成,已知原钢材长4.6米,应如何下料,使用的原钢材最省?

分析与解 要做成20个矩形的钢框,就需要2.2米和1.5米的钢材各40根.一种简单的想法是:在每一根原料上截取2.2米和1.5米的钢材各一根,这样每根原钢材剩下0.9米的料头,要做20个钢框,就要用原钢材40根,而剩下的料头总数为0.9×40=36米.

显然,上述想法,浪费材料,不太合理.因此,我们可以考虑合理套裁,就可以节省原料.下面有三种下料方案可供采用.

为了省料而得到20个钢框,需要混合使用各种下料方案.设用第Ⅰ种方案下料的原材料根数为x1;用第Ⅱ种方案下料的原材料根数为x2;用第Ⅲ种方案下料的原材料根数为x3.所谓原材料最省,也就是使所剩下的料头总和最少.为此根据表28.2的方案,可以列出以下的数学模型

y=0.1x1+0.2x2+0.9x3,解之得

其中0≤x3≤40.把x1,x2代入y得

可以看出,x3越大,y的值也越大,所以x3的取值应尽量小.

当x3=0时,可取x1=14,x2=20.

当x3=1时,x1=13,x2=20,都是用原材料34根,料头的总数为

y=34×4.6-(2.2+1.5)×40=8.4(米).

所以,原材料最省的下料方案是:按方案Ⅰ下料13(或14)根,用方案Ⅱ下料20根,用方案Ⅲ下料1(或0)根,这样只需34根原材料就可做出20个钢框.

练习二十八

1.下列图形是否可以一笔画出?

2.图2-154是3×3的方格型道路网,如果每个小方格的边长为1千米,那么由A点出发走完全部路段,最后又回到A点,最少要走多少千米?

3.设x表示排在弹簧上的物品的重量(千克),y表示弹簧伸长的长度(厘米),已知(x,y)有如下的对应测量值:

(1)画出此组数据的散点图;

(2)求出y关于x的函数表示式;

(3)当x=2.3千克时,试预报弹簧伸长的长度.

4.有一批长50米的钢筋,现要截成长度为9.5米和7米的两种钢筋备用,问怎样截法可使原材料的利用率最高?并求利用率是多少?

2.小学中高年级数学竞赛题一组 篇二

1.一条毛毛虫长成成虫,每天长1倍,8天能长到8厘米,长到32厘米还要()天。

2.四个小学生,恰好一个比一个大1岁,他们的年龄和是38岁,这四个小学生中最小的是()岁。

3.三年级有50名运动员参加学校的运动会,号码排列是1~50,这些号码中一共出现()个“1”。

4.庐江与合肥之间的旅客列车,除起点、终点外,中途还要停靠4个站,铁路部门要准备()种车票。

5.张三、李四、王五三位同学中,有一个人在别人不在的时候为集体做了件好事,事后老师问是谁做的好事,张三说是李四,李四说不是他,王五也说不是他。这三个人中只有一个人说的是真话。做好事的人是()。

四年级

1.安德利超市开展袋装牛奶“买5送1”活动,一个班级有学生60人,每人发一袋牛奶,至少要买()袋。

2.从中午12点时针与分针相遇起,到晚上12点止,时针和分针还能相遇()次。

3.小强和小刚两人比赛上楼梯,当小强跑到三楼时,小刚恰好跑到二楼。照这样计算,小强跑到九楼时,小刚跑到()楼。

4.甲乙两地相距680千米,汽车从甲地出发,行驶8小时后距离中点20千米,这辆汽车每小时行多少千米?

五年级

1.10除以13所得的商的小数点后第2008个数是()。

2.有45个学生,参加篮球、足球、乒乓球三项体育活动中的一项、二项或三项,其中参加相同活动项目的学生至少有( )人。

3.A、B、C、D四个数每次去掉一个数,将余下的三个数求平均数,这样算了4次,得到以下四个数:45、60、65、70。这四个数的平均数是多少?

4.有8个球编号为①~⑧,其中7个球一样重,另外一个球轻1克。怎样用天平称出这个较轻的球,且次数最少?试分析。

六年级

1.如果甲数的与乙数的相等,那么甲数与乙数的比是(),乙数比甲数多。

2.计划运一批水泥,第一次运来总数的,第二次运来180吨,这时运来的与没运来的吨数的比是4∶3,计划运来的这批水泥有( )吨。

3.某工厂男工与女工人数的比是5∶3,调来3名男工后,现在男、女工人数的比是11∶6,这个工厂有女工( )人。

3.八年级数学竞赛辅导资料一 篇三

第二十一讲 分类与讨论

分类在数学中是常见的,让我们先从一个简单的例子开始.

有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数?

因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论.

任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个.

上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论.

分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论.

例1 求方程

x2-│2x-1│-4=0 的实根.

x2+2x-1-4=0,x2-2x+1-4=0,x1=3,x2=-1.

说明 在去绝对值时,常常要分类讨论.

例2 解方程x2-[x]=2,其中[x]是不超过x的最大整数.

解 由[x]的定义,可得

x≥[x]=x2-2,所以 x2-x-2≤0,解此不等式得

-1≤x≤2.

现把x的取值范围分成4个小区间(分类)来进行求解.

(1)当-1≤x≤0时,原方程为

x2-(-1)=2,所以x=-1(因x=1不满足-1≤x<0).

(2)当0≤x<1时,原方程为

x2=2.

(3)当1≤x<2时,原方程为

x2-1=2,所以

(4)当x=2时,满足原方程.

例3 a是实数,解方程

x│x+1│+a=0.

分析 方程中既含有绝对值,又含有参数a,若以平方化去绝对值的话,则引入了高次方程,把问题更加复杂化了.对这种问题,宜讨论x的取值范围来求解.

解(1)当x<-1时,原方程变形为

x2+x-a=0.①

当△=1+4a≥0(且a=-x│1+x│>0),即a>0时,①的解为

(2)当x≥-1时,原方程为

x2+x+a=0.②

又x≥-1,即

综上所述,可得:当a<0时,原方程的解为

例5 已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围.

解 设三角形的三个角度数分别是α,β,γ,且有α≥β≥γ. 由题设α-γ=24.

(1)若β+γ=n,则α=180°-n,γ=α-24°=156°-n,β=n-γ=2n-156°.

所以

156°-n≤2n-156°≤180°-n,所以 104°≤n≤112°.

(2)若α+γ=n,则β=180°-n,于是

所以

所以 112°≤n≤128°.

(3)若α+β=n,则γ=180°-n,α=γ+24°=204°-n,β=n-α=2n-204°.于是

180°-n≤2n-204°≤204°-n,所以 128°≤n≤136°.

综上所述,n的取值范围是104°≤n≤136°.

例6 证明:若p是大于5的质数,则p2-1是24的倍数.

分析 关于整数的问题,我们常把它分成奇数和偶数(即按模2分类)来讨论,有时也把整数按模3分成三类:3k,3k+1,3k+2.一般地,可根据问题的需要,把整数按模n来分类.本题我们按模6来分类.

证 把正整数按模6分类,可分成6类:6k,6k+1,6k+2,6k+3,6k+4,6k+5.因p是大于5的质数,故p只能属于6k+1,6k+5这两类.

当p=6k+1时,p2-1=36k2+12k=12k(3k+1).

因k,3k+1中必有一个偶数,此时24│p2-1.

当p=6k+5时,p2-1=36k2+60k+24

=12k2+12k

=12k(k+1)≡0(mod 24).

所以,P2-1是24的倍数.

例7 证明

A=││x-y│+x+y-2z│+│x-y│+x+y+2z

=4max{x,y,z},其中max{x,y,z}表示x,y,z这三个数中的最大者.

分析 欲证的等式中含有三个绝对值符号,且其中一个在另一个内,要把绝对值去掉似乎较为困难,但等式的另一边对我们有所提示,如果x为x,y,z中的最大者,即证A=4x,依次再考虑y,z是它们中的最大值便可证得.

证(1)当x≥y,x≥z时,A=│x-y+x+y-2z│+x-y+x+y+2z

=2x-2z+2x+2z=4x.(2)当y≥z,y≥x时,A=│y-x+x+y-2z│+y-x+x+y+2z

=2y-2z+2y+2z=4y.

(3)当z≥x,z≥y时,因为

│x-y│+x+y=max{x,y}≤2z,所以

A=2z-│x-y│-x-y+│x-y│+x+y+2z=4z.

从而 A=4max{x,y,z}.

例8 在1×3的矩形内不重叠地放两个与大矩形相似的小矩形,且每个小矩形的每条边相应地与大矩形的一条边平行,求两个小矩形周长和的最大值.

解 两个小矩形的放置情况有如下几种:

(2)两个小矩形都“横放”,如图2-124及图2-125所示,这时两个小矩形的周长和的最大值是

2(a+3a)+2[1-a+3(1-a)]=8.

(3)两个小矩形一个“横放”,一个“竖放”,如图2-126,这时两个小矩形的周长和为

练习二十一

1.解不等式:│x+1│+│x│<2.

2.解关于x的不等式:a(ax-1)>x-1.3.解方程:││x-3│-2│=a.

4.解方程:x2-2[x]-3=0.

6.设等腰三角形的一腰与底边分别是方程x2-bx+a=0的两根,当这样的三角形只有一个时,求a的取值范围.

4.八年级数学竞赛辅导资料一 篇四

第五讲 恒等式的证明

代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.

两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.

把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.

证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.

1.由繁到简和相向趋进

恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).

例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.

分析 将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.

证 因为x+y+z=xyz,所以

左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)

=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2

=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)

=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)

=xyz+xyz+xyz+xyz

=4xyz=右边.

说明 本例的证明思路就是“由繁到简”.

例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且

证 令1989x2=1991y2=1993z2=k(k>0),则

又因为

所以

所以

说明 本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.

2.比较法

a=b(比商法).这也是证明恒等式的重要思路之一.

例3 求证:

分析 用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.

证 因为

所以

所以

说明 本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.

不为零.证明:

(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).

同理

所以

所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).

说明 本例采用的是比商法.

3.分析法与综合法

根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.

证 要证 a2+b2+c2=(a+b-c)2,只要证

a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证

这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.

说明 本题采用的方法是典型的分析法.

例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.

证 由已知可得

a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以

(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.

因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以

a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.

又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以

a=b,c=d.

所以

ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.

说明 本题采用的方法是综合法.

4.其他证明方法与技巧

求证:8a+9b+5c=0.

a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).

所以

6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得

6(a+b)+3(b+c)+2(c+a)

=6k(a-b+b-c+c-a),即 8a+9b+5c=0.

说明 本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.

例8 已知a+b+c=0,求证

2(a4+b4+c4)=(a2+b2+c2)2.

分析与证明 用比差法,注意利用a+b+c=0的条件.

左-右=2(a4+b4+c4)-(a2+b2+c2)2

=a4+b4+c4-2a2b2-2b2c2-2c2a2

=(a2-b2-c2)2-4b2c2

=(a2-b2-c2+2bc)(a2-b2-c2-2bc)

=[a2-(b-c)2][a2-(b+c)2]

=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.

说明 本题证明过程中主要是进行因式分解.

分析 本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.

证 由已知

说明 本题利用的是“消元”法,它是证明条件等式的常用方法.

例10 证明:

(y+z-2x)3+(z+x-2y)3+(x+y-2z)3

=3(y+z-2x)(z+x-2y)(x+y-2z).

分析与证明 此题看起来很复杂,但仔细观察,可以使用换元法.令

y+z-2x=a,① z+x-2y=b,② x+y-2z=c,③

则要证的等式变为

a3+b3+c3=3abc.

联想到乘法公式:

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有

a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以

(y+z-2x)3+(z+x-2y)3+(x+y-2z)3

=3(y+z-2x)(z+x-2y)(x+y-2z).

说明 由本例可以看出,换元法也可以在恒等式证明中发挥效力.

例11 设x,y,z为互不相等的非零实数,且

求证:x2y2z2=1.

分析 本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.

证 由已知有

①×②×③得x2y2z2=1.

说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.

总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.

练习五

1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.

2.证明:

(x+y+z)3xyz-(yz+zx+xy)3

=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).

3.求证:

5.证明:

6.已知x2-yz=y2-xz=z2-xy,求证:

x=y=z或x+y+z=0.

7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:

5.八年级数学竞赛辅导资料一 篇五

第十九讲 特殊化与一般化

特殊化的方法就是在求解一般数学命题的解答时,从考虑一组给定的对象转向考虑其中的部分对象或仅仅一个对象.也就是为了解答一般问题,先求解特例,然后应用特殊的方法或结论再来求解一般问题.

另外,特殊化、一般化和类比联想结合起来,更可以由此及彼地发现新命题、开拓新天地.

1.特殊化、一般化和类比推广

命题1 在△ABC中,∠C=90°,CD是斜边上的高(图2-102),则有CD2=AD·BD.

这是大家所熟知的直角三角形射影定理.

类比命题1,如果CD是斜边上的中线,将怎样?由此得到命题2.

命题2 在△ABC中,∠C=90°,CD是斜边上的中线(图2-103),则有CD=AD=BD.

这便是大家已经学过的直角三角形中的斜边中点定理(在此定理中仍保持CD2=AD·BD).

再类比,如果CD是∠C的平分线,将怎样?于是得到命题3.

命题3 在△ABC中,∠C=90°,CD是∠C的平分线(图2-104),则有

这是一个新命题,证明如下.引DE⊥BC于E,DF⊥AC于F.

因为

所以

我们把命题

1、命题

2、命题3一般化,考虑D点是AB上任一点,便产生了以下两个命题.

命题4 在△ABC中,∠C=90°,D是斜边AB上的任一内分点(图2-105),则有

证 引DF⊥AC于F,DE⊥BC于E.因为

CD2-BD2=CE2-BE2=(CE-BE)BC,而

所以

所以

命题5 在△ABC中,∠C=90°,D是斜边AB上的任一外分点(图2—106),则有

证 只要令命题4之结论中AD为-AD,则有

我们再把命题4和命题5特殊化,令D点与A点重合(即│AD│=0),那么无论是①式或②式都有

AB2=BC2+AC2.这就是我们熟知的勾股定理.

命题4或命题5与通常形式下的广勾股定理是等效的,因此,它们也可称作广勾股定理.下面用命题4或命题5来证明以下定理.

定理 在△ABC中,AB=c,BC=a,AC=b,a在c上的射影为n,时,取“-”号,∠B为钝角时,取“+”号).

证 我们仅利用命题4证图2-107中的情况(∠B<90°).

为此,我们作图2-109,其中∠DBA=90°,CD=x,CE⊥DB于E,并设CE=n.由命题4,立得

所以

b2=a2+c2-2cn.

同理可证图2-108(∠B>90°)的相应结论.

2.特殊化、一般化在解题中的应用

例1 设x,y,z,w为四个互不相等的实数,并且

求证:x2y2z2w2=1

分析与解 我们先考虑一个特例,只取两个不同实数,简化原来命

(1)求证这个特殊化的辅助问题就容易多了.事实上,因为

又因为

到原命题,由

容易想到变形

去分母变形为

①×②×③×④,并约去(x-y)(y-z)(z-w)(w-x)(利用x,y,z,w互不相等)就得到

x2y2z2w2=1.例2 设凸四边形O1O2O3O4的周长为l,以顶点O1,O2,O3,O4为圆心作四个半径为R的圆轮.如果带动四个圆轮转动的皮带长为s,求s的长度(图2-110).

解(1)先解一个特例(图2-111).设只有两个圆轮⊙O1,⊙O2,2│O1O2│=l'.显然,带动两轮转动的皮带长度为

s=l'+2πR.

(2)再回到原题,我们猜想:

s=l+2πR.

以下证实这个猜想是正确的.

为此,设皮带s与各圆轮接触的四个弧为

由于它们是等圆上的弧,因此,只要证出这四条弧恰好组成一个圆即可.

事实上,引O1A'3∥O2A3,由于O1A1∥O2A2,所以∠A1O1A'

O1为圆心,以R为半径的圆.因此,四圆弧之长为2πR.又因为O1O2=A1A2,O2O3=A3A4,O3O4=A5A6,O1O4=A7A8,所以

l=A1A2+A3A4+A5A6+A7A8.

所以,所求皮带长为

s=l+2πR.

例3 设a1,a2,„,an都是正数.试证:

证 欲证①成立,先考虑最简单的情形,设n=3,即证

把②变形为

即证

由于④中左边有(a1-a2),(a2-a3),(a3-a1),其和为零,因此,我们猜想:若④式左边相加,其和不小于(a1-a2),(a2-a3),(a3-a1)之和即可.为此,我们证更简单的事实.

设a,b是任意正整数,则有

事实上,由(a-b)2≥0有

a2-ab≥ab-b2,根据⑤,④显然成立,因为

≥(a1-a2)+(a2-a3)+(a3-a1)≥0,从而③式成立,②式成立.

剩下来的工作是把②式推到一般情形①,这是很容易的.因为根据⑤,①式必然成立,因为

练习十九

1.如图2-112.已知由平行四边形ABCD各顶点向形外一条直线l作垂线,设垂足分别为A',B',C',D'.求证:

'A+B'B=C'C+D'D.

2.在上题中,如果移动直线l,使它与四边形ABCD的位置关系相对变动得更特殊一些(如l过A,或l交AB,BC等),那么,相应地结论会有什么变化?试作出你的猜想和证明.

3.在题1中,如果考虑直线l和平行四边形更一般的关系(如平行四边形变成圆,或某一中心对称图形,垂线AA',BB',CC',DD'只保持平行等),那么又有什么结论,试作出你的猜想和证明.

上一篇:学钢琴-要选择正规专业培训学校下一篇:大学元旦晚会的致辞